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Digital data signals are usually equalized by passing samples of
the received signal through an adaptive equalizer consisting of a
tapped delay line having adjustable coefficients (tap weights). The
equalizer tap weights are adjusted by starting the transmission with
a short training sequence of digital data known in advance by the
receiver. This paper analyzes the situation when the known training
sequence is replaced by a sequence of data symbols estimated from
the equalizer output and treated as known data. Such procedures are
called “decision-directed” startup. With a known training sequence,
the “least-mean-square” adjustment algorithm corresponds mathe-
matically to searching for the unique minimum of a quadratic “error”
surface whose unimodal nature assures convergence. In decision-
directed startup, by contrast, the use of estimated and unreliable
data changes the error surface into a multimodal one so that complex
behavior may result. We describe the nature of the error surfaces for
binary and four-level transmission, thereby gaining insight into con-
vergence problems. The most significant conclusion is that a poor
choice for the initial tap settings may result in the taps converging to
an undesirable setting. We show that, because of finite step-size
effects, fluctuations are significant at the undesired settings and
cause the spurious capture to have a long, but finite, duration. Finally
we provide information on stability, convergence times, and lifetimes
and their relation to the adaptation parameter (step size).

I. INTRODUCTION

In high-speed data transmission (4.8 or 9.6 kilobit/s) over voice-
grade telephone channels, it is necessary to compensate for the linear
amplitude and phase distortion to which the data signal will be
subjected. This compensation is usually accomplished by passing sam-
ples of the received signal through an adaptive equalizer consisting of
a tapped delay line having adjustable coefficients (tap weights).
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Since the distortion is initially unknown, the tap weights must be
suitably adjusted. Conventionally, the equalizer tap weights are
adapted by starting the transmission with a short training sequence of
digital data known in advance by the receiver. The receiver then uses
the difference between the equalizer output signal and the known data
to adjust the tap weights.

In modern data-communication environments the above method
may not always be practical, and thus new training procedures which
do not make use of a known data-training sequence are required.

A natural suggestion is to replace the known training sequence with
a sequence of data symbols estimated from the equalizer output, and
treat these as if they were known data. Such procedures are often
called “decision-directed” startup. However, when these decision-di-
rected startup procedures are used the estimated data may be unreli-
able, so that it is not even certain that the tap weights will converge to
their correct settings.

For example, assume that there are N tap weights, ¢1, ¢z, - -+, ¢n, to
be adjusted. The collection of these numbers is to be regarded as a
vector ¢ in an abstract N-dimensional space. For the case of a known
training sequence, the conventional tap-adjustment algorithm for find-
ing the optimum tap settings (called the least-mean-square algorithm)
corresponds mathematically to searching for the unique minimum of
a certain quadratic “error” surface defined in this ¢ space. The simple
unimodel nature of this surface assures convergence. In decision-di-
rected startup, by contrast, the use of estimated and unreliable data
changes the error surface being searched into a multimodal one, so
that quite complex behavior may result. The local minima are of two
types. First there are the desired local minima, ones whose positions
correspond to tap settings yielding the same performance as if known
data were used. Second, there are the undesired, or extraneous, local
minima which appear at positions corresponding to tap settings yield-
ing inferior equalizer performance.

We begin our work in Section III by describing the nature of the
decision-directed error surfaces for binary (+1) and four-level (£1, £3)
transmission. In general, the surfaces in N dimensions are too complex
for an exact description to be given. However, low-dimensional exam-
ples give considerable insight into the problems encountered with
convergence. Our most significant conclusion is that a poor choice for
the initial tap settings may result in the taps converging to an unde-
sirable setting and remaining there for a long time. In Section IV we
show that although random fluctuations of the taps about the desired
minima are small, this is not the case for random fluctuations about
the extraneous minima. Rather, being trapped at one of the extraneous
minima is an event having a long but finite lifetime. These lifetimes
depend on the geometry of the error surface, and on the adaptation
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parameter (step size) of the algorithm. Finally, we give quantitative
information on stability, convergence times, and lifetimes, and their
relation to the step size, although it is sometimes necessary to resort
to approximations and idealized geometries to do so, even for the
simplified mathematical model that we consider.

Gitlin and Werner' have made an experimental study of decision-
directed startup. They discovered that using the least-mean-square
algorithm to update the tap weights works with estimated data in the
binary case, but not in the four-level case. Other surprising phenomena
have been observed. For example, E. Y. Ho® observed that occasionally,
with four-level data, the signal constellation at the equalizer output
would be perfect, except for one item. The signal points would be so
reduced in amplitude that all data would be decoded as x1, yielding
an error rate of one-half. No ready explanation for these observations
was at hand. Subsequent prodding from J. Salz lead us to conduct the
present investigation, and, in the course of our general study, expla-
nations of the above phenomena were found.

Il. MODEL AND REVIEW

We begin this section with a description of the model that we use.
As with many mathematical investigations, we have a choice as to
what should be included in the formulation of the problem. Here,
although we make several simplifications for mathematical tractability,
our simplified model will provide an understanding of the unusual
phenomena that have been observed in the experimental studies of
decision-directed startup.

The model is as follows: We consider baseband transmission of
independent, equiprobable, binary or four-level data over a noiseless
channel with no distortion. The receiver is an N-tap synchronous
equalizer whose initial tap setting is assumed arbitrary. We study the
subsequent convergence of the tap vector to a final value when the
mean-square-adjustment algorithms are modified in an obvious way
to include the case of estimated data. The equations appropriate to
the model are given at the start of Section IIL

As to notation, the vector of real tap coefficients is denoted by ¢ =

(e1, -+ -, cn).T The kth data symbol is denoted by ax, while at time n,
n=0,1,2, .., the equalizer output y, is, for any fixed tap setting c,
Yn = C-8pn, (1)
where
a, = (@n, Qns1, =+ + 5 Anan-1) (2)

+ In the mathematics, all vectors are column vectors. In sentences, or in listing, the
vector is, for typographic convenience, written as a row without using the usual
superseript plus (+) to denote transposition.
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is the vector of N channel samples that would be stored in the equalizer
for this ideal situation.

Ideally, we desire the output sequence (1) to be the sequence of data
symbols. For this to occur, an ideal tap vector might be, for example,
c¢c=(,0 0, --+, 0) or, in fact, any vector ¢ having exactly one
component unity and the rest zero. For each such choice of tap vector
the sequence of data values is reproduced, but with a different (and
unimportant) time delay. For the present problem the set of desirable
tap vectors must be enlarged to include the negatives of those just
described, as well. The data must then be differentially encoded.

We conclude this section with a review of the least-mean-square
(Lms) algorithm, and its analysis, for the case when the data are known
by the equalizer. This review has two purposes. First it prepares the
way for similar considerations in blind startup, and also it introduces
some approximations that will be used throughout the paper.

With known data, the optimum tap vector is defined to be the
vector, Copt, which minimizes the mean-square error &% where

& = Elc-a, — ai]’, (3)

E denoting expectation with respect to all data symbols, and c-a
denoting the inner product between the vectors ¢ and a. Of course,
c-a = c*a. Regarding (3), note that (2) restricts / to satisfyn<Il=<n
+ N — 1 so that a meaningful problem will result. For definiteness we
choose [ = n so that (3) becomes

& = E[c-a, — a.]’, (4)

where, again, the expectation is with respect to all the data symbols

{a.}, and ¢ is a generic point in tap space. Regarded as a function of

¢, the right member of (4) describes the mean-square-error surface.
We observe that the data symbol a, satisfies

Ea, =0, (5)
Ea? = o2 = 1 binary,
5 four-level, (6)

while the data vector a, satisfies, using independence of the data
symbols,
Ea,a; = o2l (7

In (7), I is the identity matrix for N dimensions. It is also customary
to denote Ea,a, by 63v, v=(1,0,0, -- -, 0). Then, from (4), the error
surface £° may be written

& = o2[1 + cte — 2ctv]. (8)
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This surface is convex and has a unique minimum at ¢ = Cop. = v. The
value &% of &% at the minimum is

83 =0. 9

In applications, the error surface is unknown, and an iterative
gradient search, called the LMs algorithm, is used to find cop. If at the
nth iteration the tap vector had the value ¢,, the known-data algorithm
for our model is

Cps1 = Cp — O€,A,, (10)
where
ep =Cn-8, — Qn (11)

is the instantaneous output error. The step-size parameter a deter-
mines the stability and speed of convergence. To see this explicitly,
denote the error vector after the nth iteration, ¢, — Copt, by €.. Then
it can be shown that (10) and (11) give

€pel1 = (I - aana:)ens (12}
and so
E " €n+1 H2 =F G:A-(I - aana:)zen- (13)

To evaluate the expectation in the right member of (13), it is standard
practice to assume €, and a, are statistically independent. This as-
sumption works surprisingly well in practice, and here and henceforth
in our paper this so-called “independence assumption” is made. More
innocently, because it may be checked by exact calculation, we ap-
proximatet

E(a.a;)(aa,) = E[(a.-ax)a.a,]
=~ E(a,-a,)E (ana}) = Noil (14)

Thus (13) becomes, on taking the expectation,
E| €| = (1 — 2a0z + Nota®)E || e | (15)

From (15) we see that the algorithm converges if (1 —2ao2 +Noza®)
< 1 or, in other words, if

2
O<(¥<-Iva—2. (16)

+ We have exactly that E[(a.-a,)a.ar] = NoiI + [Ea; — 0311 Now [Eay — 03] =0
for the binary case and equals —4.5 for the four-level case. It may be neglected with
respect to the first term even when N, the number of taps, is only moderately large.
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Convergence is most rapid when (1 — 2ac2 + Noia®) is smallest, i.e.,
when

a=a = (17)

No?Z’
We close this section with some more notation. During transmission

the data symbols are determined by “slicing” the equalizer output y,.
We name this nonlinear function sl( - ), for slicer. It is defined for binary

transmission by
sl(x) = sgn(x) (binary)
and for four-level transmission by

sl(x) = — sl(—x) = { ; ,lf g:?f 2, (4-level)

lll. DECISION-DIRECTED SURFACES

The standard modification of (10) and (11), which is appropriate to
decision-directed startup, and which we analyze in this work, is simple
to describe. Instead of (10) and (11) we have

Cn+1 = Cn — A€nlln, (18)
€n = Cp-8y — dn, (19)

where |
a, = sl(c,-a,). (20)

Thus we have replaced the known-data symbol a, in (11) by its
estimate (20).}

The task undertaken in this section is to describe the error surface
that goes along with (18)-(20). That is, we want to give the equivalents
of (4) and (8) which apply for known data. Since é, serves as an
estimated gradient in (18), the surface, which we call %, is, in principle,
described by

F' = E[c-a, — G,]* = E[c-a, — sl(c-a,)]*, (21)

¢ being a generic point in tap space. Averaging over the data vector a,
imposes the major difficulty. By stationarity, the average in (21)

T To one unfamiliar with the actual data-transmission algorithm, it no doubt seems
absurd to regard a, as known, as in (18), but yet a,, its first component, is not known.
Actually in the real problem, a, in (18)-(20) is replaced by a vector which is measured.
For the ideal channel the measured value would, in fact, be a,, but the point is that the
machine which implements the algorithm is built to handle the general case and would
not know of, nor could it make use of, this fact. A similar remark could have been made
in the treatment of (10) and (11).
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doesn’t depend on n and in such situations we often drop the subscript,
writing simply a for a,.. The components of a are then (a,, ---, an).
Having mentioned this, we trust that no confusion will arise with the
convention established in (2).

We begin with the binary case. Applying (6) and (7) to (21) gives

F'=1+c-c—2E|c-a|, (22)

where the last term in (22) must still be averaged over the 2" binary
vectorsa®,i=1,2, -- -, 2". Now note that, for a fixed i, the hyperplane
c-a"’ = 0 divides N-space into two regions, depending on the sign of
c-a"; in one region, ¢-a"” > 0, while e-a” < 0 in the other. Then the
entire collection of such hyperplanes divides N-space into a number of
cone-shaped regions with the property that, in each cone, ¢c-a" has a
fixed sign (which depends on i). Suppose then, that ¢ is in one of these
cones, called &, and let & denote the set of indices {i} for which
c-a” >0, s0 |c-a”| = e¢-a”, i € ¥ Denote the complement set of
indices by %*. With this notation (22) becomes, for ¢ € &,

2 . .
372=1+c-c—?[2 c.a? - Y c-a‘”]

(=R IES e

1 6] [t3]
=1l+4+cec—2¢c x|lYXa’— ) a

2 ey iE%e
=1+ c-c — 2¢-cy, (23)

where ¢ is defined by (23) in the obvious way. Since the quadratic
form in (23) is strictly positive definite, the function %~ has a unique
minimum in the region %, at ¢ = ¢, provided that the vector ¢y € A.
If ¢y & &, F is convex but has no minimum interior to #. In the former
case, we denote the value of % at the minimum by % §, and we have

.g—g= 1—cp-co=>0. (24)

The above discussion shows that &#* always has its quadratic part,
c-¢ = ¢'Ic, determined by the identity matrix, while the linear term,
— 2¢-.¢p, changes from region to region; we expect a different ¢, for
each region. But since | x| is a continuous function, we see, from (22),
that #? is also continuous.

Counting the number of cone-shaped regions appears to be very
difficult in general. The problem is equivalent to the following. Let 0,
the origin, be at the center of an N-cube, and consider all hyperplanes
through 0 which are perpendicular to some vertex vector. Into how
many cones do these hyperplanes divide N-space? For N = 2, 3, 4, 5,
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there are 4, 14, 104, 1882 cones, respectively.f We obtain sufficient
insight for our purposes by considering some low-dimensional examples
of (23).

For N = 2, the lines through the origin which are perpendicular to
the vertex vectors divide the plane into four regions, as shown in Fig.
1. Calculating ¢, for region I, for example, gives, using (23),

-H{0)-(9)- (- O =

Its position along the ¢; axis is indicated by a small circle (as are the
¢, vectors for the other regions). Since ¢ is actually in region I, we
have a local minimum there with #3 = 0. Note that if a data vector a
= (a,, a2) is sent, then e-a = cp-a = a;, and perfect detection of the
first symbol occurs. Note £” in (8) also has its unique minimum at this
point. However, from (19) and (20), é, will always be zero if ¢ = ¢o =
(=1, 0) as well. Thus #* has a local minimum there too, and also at the
points ¢ = (0, 1) (the second symbol is also a valid one to use for
detection). Such symmetries will always occur, and we consider just a
representative ¢o, e.g., (1, 0, 0, ..., 0), for general N. This vector is
representative of one of 2N positions to which we would wish the
algorithm to converge. For N = 2, no other minima occur.

The case N = 3 is the first interesting one. To describe the cones, we
have shown their intersection with the cube in Fig. 2. Two types of
cones occur. There are four-sided ones which intersect the faces in
squares, and three-sided ones having their axes along the vertex
directions. Representative minima of %2 occur at ¢, = (1, 0, 0) and ¢
= (1/2)(1, 1, 1). Thus there are six minima of the first type (centers of
faces), and eight of the second type (along vertex directions). At the
former, #3 = 0; at the latter, #5 = 0.25.

If we are in the region containing (1, 0, 0), we always make a correct
decision (on the first symbol of the a vector, it turns out) and the
probability of error P. = 0. If we are in the region containing (1, 1, 1),
the data vectors a = (1, 1, 1), (1, 1, —1), (1, —1, 1), and their negatives
always have their first symbol decoded correctly [i.e., a; = sgn(c-a)]
whereas (1, —1, —1) and its negative give an incorrect value. Thus P.
= 1/4 for the first symbol when the tap vector is in this region. For
this situation it happens that P. = 1/4 for any other symbol too.

Thus, for N = 3 we see that if we choose a bad initial state for the
equalizer, namely an initial tap vector lying in a vertex cone, conver-
gence via gradient search will be to the local minimum at (1/2)(1, 1, 1).
For all practical purposes, it will, because of initial conditions, have
converged during decision-directed startup to an undesired set of tap

+ A list of the number of regions for N up to ten is given in Ref. 3.
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Fig. 1—Cones for N = 2.

weights, We are assuming here that the LMs algorithm behaves as if
the true gradient of the surface were being used. This is essentially
true if the step size a is small enough; more comments on this will be
made later.

Similar situations prevail in five dimensions, where local minima
occur when the taps are proportional to the representative vectors
(10000), (11100), (11111), (53311), and (22111). There are also two
other classifications of cones which do not have local minima in their
interiors.

The situation which includes noise and distortion should be clear.
Certain unknown optimum tap settings exist, one of which we would
hope to converge to, during decision-directed startup. If we make an
initial guess close to such a desired local minimum, we converge there.
If not, we converge to an undesired setting, yielding a bad error rate.
Later, when we consider fluctuations for a finite step size, we shall see
that capture at a spurious minimum need not be permanent; capture
at a desired local minimum will be.

At this point we stop our investigation of the binary problem and

DECISION-DIRECTED EQUALIZER CONVERGENCE 1865



Fig. 2—Cones for N = 3.

move briefly to the four-level case. For this new situation we have, in
place of (22), the representation

Ft=gc.c + E[sl*(c-a) — 2c-asl(c-a)], (26)

where sI*(x) means (sl(x)). In (26) the average is taken with respect to
all 4" equilikely vectors a, which have +1, +3 as components. Note
that #2 in (26) is a continuous function of ¢, because sl*(x) — 2x sl(x)
is continuous.

We again partition N-space into regions, where now in each region
sl(c-a") is constant for each fixed i, i = 1, 2, ---, 4. The averaging
indicated in (26) again leads to a quadratic-plus-linear structure within
each region, although the regional map is now considerably more
complex that in the binary case. Its most outstanding feature is that
the regions are now not cone-shaped. A map of regions for the four-
level, N = 2 problem is drawn in Fig. 3 where the additional complexity
is readily apparent. The error-free regions about the optimum tap
vectors are indicated by the small kitelike regions, cross hatched in
the figure. A much more accurate guess would have to be made with
four-level transmission to assure that one had error-free data in a
decision-directed startup procedure.

For the four-level case in N dimensions we still have local (and
global) minima at the optimum tap values represented by (1, 0,
0, ---,0), 5 = 0, and other local minima as well. Although we have
made no attempt to describe all the other local minima, there is one
class that we do mention. We find it by looking for a local minimum of
(26) atc=¢co=(g,0,0, ---,0), g > 0. In the neighborhood of such a
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tap vector we have sl(e-a) = sl(ga,). If 0 < g < 2/3, then sl(ga;) =
sgn(a,), and we have

F*=gsc.c+1—2Ec-asgna; =1+ oic-c — 4c. (27)
It follows from (27) that there is a minimum at
c=(%00...,0), (28)
which
Fi=02. (29)

A graph of #? as we move out along the ¢, axis, is independent of
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Fig. 3—Regions for N = 2, four-level transmission.
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the dimension N, and is shown in Fig. 4. In particular, the minimum at
the value of ¢ given by (28), and also the global optimum, are to be
noted.

The character of the equalizer output when the tap vector is trapped
at (28) may be noted. Instead of observing the 1, +3 data values we
would see +2/5, +6/5, all of which would be decoded as +1. E. Y. Ho?
has, in fact, observed such contracted signal constellations during

startup experiments.
An approximate description of a large number of other minima is
deferred to Appendix A.

IV. FINITE STEP SIZE

In Section III we described the error surface appropriate to decision-
directed startup with the mean-square algorithm and showed that it
had many minima. Further, we assumed for sufficiently small step size
a that the local motion on this surface followed the gradient directions.

[

0.56
0.2

| | ] 1
0 0.4 0.67 1.0 2.0
G

Fig. 4——The surface #* along the ¢, axis (four-level transmission).
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This implies that we would reach equilibrium at a local minimum and
remain there. For finite step size this is a useful picture, but it is only
an approximate one. The most important correction that we must
make to it is to realize that the extraneous minima of % that we have
discovered are not truly stable. We will, if only we wait long enough,
always reach one of the global minima with #* = 0.

To illustrate this, assume that we are initially in a region possessing
a local minimum at ¢ = ¢, and that we remain in that region for a long
time. Then one may derive an equation for the behavior of the mean
norm of the error vector €, = ¢, — ¢o. In fact, subtracting ¢, from both
sides of (18) gives

€n+1 = €, — 0By[An-€, + Co- 8, — sl(Cn-an)]. (30)

By definition of our regions and the assumption that we do not leave
the region, we have

sl(c,-a,) = sl(co-a,), all n. (31)
Letting
Qo = co-a, — sl(co- a,), (32)

and squaring both members of (30) and taking averages with respect
to all data symbols, we have

E€2. = E[€2 — 2a(€: a)% — 2aQ o€n- 1]
+ a’Eaja,[(€.-a,)° + 2Quve,-a, + Q3F], (33)

where, for notational simplicity, we have set €2 = | €, |*. Then it may
be shown, from (33), using approximations of the type described in
Section II, that we have, approximately,

Eei, = (1 — 2a02 + No’oi)Ee? + Nolol F3. (34)

Thus, from (34), as n becomes large the average of the squared-error
vector approaches

alN

Eel=————F;.
2 — aNo? 0

(35)
To insure rapid initial convergence one normally chooses aNo% = 1,
and for this choice of a, (35) becomes Ee% = #;/os.

Stability requires aNo> < 2, as is readily apparent from (34).

If we are in equilibrium about ¢, then %5 = 0 and, from (35), there
are no fluctuations. However, consider the binary case with N = 3, ¢
= (1/2)(1, 1, 1), and « = 1/N. For this case, E€2 = %} = 0.25; thus a
typical error vector might have length about vEe2 = v0.25 = 0.5. But
the distance from ¢ to (1, 0, 0) is only v0.75 = 0.87. Certainly it is
reasonable to expect that fluctuations would soon move ¢ from the
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region containing ¢, to the error-free region containing ¢.n = (1, 0, 0),
with convergence to c.p: resulting.

As we note from (35), the mean-squared fluctuation decreases for
small a. Thus, for a small, we expect to wait a very long time for
deviations of the required magnitude to occur, and our earlier assump-
tion of being trapped at an undesired minimum is, in this sense,
justified.

Examining the detailed mechanism causing ultimate convergence to
a ¢,y for the above example is worthwhile. For definiteness, consider
convergence to (1, 0, 0). Table I illustrates the possible a vectors (only
four of the eight need be listed) and the resulting decisions on the first
symbol.

In any infinitely-long time sequence of independently chosen vectors
a, there will occur, if we wait, long runs where the vector (1, —1, —1)
does not occur. Then we have no errors in the first symbol, and the
tap vector moves, if the run is long enough, to a neighborhood of (1, 0,
0), after which no errors occur, independently of what the succeeding
a vectors are. In this manner we can imagine, in higher-dimensional
problems, special sequences, low in errors for the kth symbol, causing
the tap vector to move from region to another region, until the error-
free region about the kth coordinate axis is entered.

For small step size a diffusion approximation should describe the
randomness quite well. However, the difficulty that we have in describ-
ing (or even counting) the regions in N-dimensions prevents such an
approach from giving precise information as to convergence times.
Nevertheless some model problems are considered in Appendix B.

Simulations show that, for the binary problem, some moderate delay
is experienced with regard to convergence to c.p,x when starting as a
random position with « = 1/N. The delay does become excessive for
four-level transmission. This may be due to the smaller error-free
region which must be reached.

APPENDIX A
Approximate Description of Some Minima

The discussion in Section III emphasized the great plurality of
regions and local minima associated with the surface represented by

1
Table |—Decision table for ¢q = 3 (1,1,1)

a Co-a d = sgn(co-a)
(1,1,1) 3 1 (correct)
(1,1,-1) 1 1 (correct)
(1, -1, 1) 1 1 (correct)
(1,-1,-1) -1 —1 (error)
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(21). A natural question is whether we can obtain an approximate but
simpler representation of at least some of these minima. This appendix
provides an affirmative answer to that question for large values of the
dimension N. We begin with the surface (22) which applies to the case
of binary transmission:

Ft=1+c-c—2E|c-a|. (36)

The key is to note that if the vector ¢ has many components approxi-
mately equal, then ¢- a will be approximately Guassian with mean zero
and variance Y.V ¢f. Since, for a zero-mean Guassian variable having
variance o2 we have E | x| = v2/7 o, (36) becomes

N 2 N
?z=1+¥c?—2\/;\f§e?. (37)

%2 has a local minimum c is such that

\[S = \/% = 0.798. (38)

At the local minima we have
P2 =0.363. (39)

For four-level transmission the surface with which we must deal is
described by (26). The presence of the function sl(c-a) only slightly
complicates the calculations now; answers may readily be obtained
numerically. We now have local minima whenever

\ / Y ¢ =051, (40)

and at the minima we have
F = 0.340. (41)

Thus if N is large and c is not too close to any axis, we expect many
minima located at the indicated radii, and all of about the same depth.
Hence for these minima we expect the motion from one to the other
to be more like free diffusion rather then leakage from a well. The
difference in diffusion times for these two ideal situations is discussed
in greater detail in Appendix II.

We close this appendix with a remark on the characteristic appear-
ance of the equalizer output when its tap vector is trapped at a local
minimum of the type just described (in contrast to the local minimum
found at the end of Section III). The Gaussian assumption made
concerning the distribution of ¢- a, which is, in fact, the output, implies
that the output will have a unimodal distribution, peaked at the origin,

DECISION-DIRECTED EQUALIZER CONVERGENCE 1871



and of variance indicated above. Such had been observed by Gitlin
and Werner.'

APPENDIX B
Model Diffusion Problems

In discussing finite step-size effects in Section IV we suggested that,
for small step size, a diffusion approximation would be a useful model
for the random dynamics inherent in the adaptive algorithms that we
are considering. We saw, further, that decision-directed startup pro-
cedures lead to a complicated region geometry for the error surface,
and we mentioned that this precluded precise computation for the
convergence rate of the optimum tap weights. However, an intuitive
feeling for typical behavior certainly is worthwhile, and so we present
in this appendix solutions to some simple but relevant model problems
in diffusion.

A typical diffusion problem for our work would involve, say, finding
the average time for a particle, starting at a given initial position, to
diffuse to an error-free region. In setting up such a problem for solution,
the boundary of the error-free region would be replaced by an absorb-
ing barrier and the mean-first-passage time to hit the barrier would be
required. Therefore, in our model problems, we treat situations where
the starting point is surrounded by an absorbing barrier of simple
form.

It is well known that one may approximate an isotropic random
walk in N dimensions by a free diffusion.! If p(x, &; Xo, to) = p is the
probability density for finding the particle at time £ at position x, given
that at time # it was as X,, then the density p obeys the diffusion
equation*

ap

e DVp, (42)

V2 being the N-dimensional Laplacian operator. The diffusion constant
D is given by*
1
D=_E|Ax|’
s Elax|le, (43)
where AX is a step in the random walk that we are approximating by

the diffusion, and p is the number of steps per unit time.
We have, of course, the initial condition for (42),

lime,,, p = 6(x — X0). (44)

Furthermore, there are the boundary conditions: p = 0 on an absorbing
wall, while the normal derivative of p vanishes at a perfectly reflecting
surface.
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Our first task is to find an expression for the diffusion constant D in
terms of the constants of the equalization problem. To this end, we
rewrite (36) [restricting it to a given region and using (32)] as

€41 = €, + Aen - ﬂan[an'en]; (45)

with
A€, = aa,Qo. (46)
Equation (45) is then of the form of a random walk with a restoring
term —aa,(a.-€:). The quantity Ae, alone, represents the steps that
would be taken in a free-random walk, and thus Ae, is to be identified

with the step Ax in (43). Assuming for convenience an isotropic
diffusion, we have, approximately,

E| e = o*(E aia,)(E Q) = Nale2F%. (47)

Thus if we identify the time ¢ with n, so that p = one step/sec, we
have, using (47) in (43),

2 2
D=G?,?& (48)

which is the expression for D that we seek. :

To generalize (42) to include the effect of the restoring term in (45),
we note that the diffusion equation may also be regarded as the
Fokker-Planck equation* corresponding to the continuous time version
of the random walk. The dynamical equation governing the latter
would simply be

de
-E=\Eﬁmn, (49)

n(¢) being a Gaussian white-noise vector, of zero mean, independent
components, each component of which is normalized as

En(t)n(t’) = 8(t — t'). (50)

Including the restoring term of (45) yields the following continuous-
time dynamical equation approximating the motion:

% = —aole + V2D n(t), (51)

where we have used (7) to obtain the first term of the right member.}

+ The reader may wonder why no noise term appears in the dynamical equation
analogous to the random dynamical term a,a; €, of (30). The answer is simply that such
a term is of higher order in a and we neglect it for simplicity. Theorems relevant to such
small o diffusion approximations were first given by Kushner.®! It was he who first
suggested application of diffusion theory to stochastic approximation algorithms.
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We simply state that the Fokker-Planck equation for the density p =
p(x, t; Xo, to) corresponding to this Markovian system is
Z—}: = V.[acZxp] + DV’p. (52)

The machinery just described is sufficient to solve some interesting
problems. Obtaining the solutions for the simple problems that we
consider is not difficult, and therefore only the results will be given.
The detailed discussion up to this point was necessary for establishing
the relationships between the constants appearing in our problem and
those of diffusion theory.

Our first model problem is: What is the mean-first-passage time
for a particle to freely diffuse (no restoring force) to a surrounding
sphere of radius R, in N dimensions?

The answer may be derived using the diffusion equation (42) and
the average time turns out to be given by

R R 1

- & _E_1_
2DN %iad’eiN

This expression for the average first-passage time ¢ implies that if,
during decision-directed startup, we are in a region such as suggested
in Appendix A and the step size a is, on the one hand, small enough
for a diffusion approximation to hold, but yet is large enough so that
small variations of % in going from one local minimum to a neighbor-
ing one are negligible, then we expect diffusion time out of the region
to increase as 1/a’. Further, if « is held at a fixed percentage of the
typical value a = (1/Na2), then ¢ is proportional to N, the number of
equalizer taps.

We choose our second example to be one dimensional, for simplicity.
A brownian particle starts at the minimum of a symmetric well, as
shown in Fig. 5, and we assume that the points at £R are absorbing.
What is the average time £ before the particle is absorbed, i.e., leaves
the well?

If we take the equation of motion of the particle to be

X =—kx + on(t), (53)

where n(t) is white noise as in (50), then, making appropriate use of
the Fokker-Planck equation (52), we find

2 1 1 2
t= Eﬁ [2 j exp(—6v?) dvj exp(u?) dwjl = % @, (54)
(] v

a

where
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1/2kR2———™

2
o=rE. (55)
o
As for the properties of f(6), we have f(0) = 1, f(f) = 1, and
1+ g, 0 small, (56a)
fO) = 144, =1, (56b)
e n
%93 # large. (56¢)

Using (48) and (51) to make contact with the equalization parameters,
we have

RZ R2 R2
=" 7ol (67)
and
R2
4= .
o7l (58)

This last equation, in conjunction with (56¢c), shows that, as a — 0, the
average trapping time for a particle in an isolated well grows exponen-
tially with 1/a.

For the usual four-level decision-directed algorithm, we have already
noted a local minimum at ¢, = (2/5, 0, 0, - - -, 0); see Section IV and
Fig. 4. Further, we saw that neither #3, nor the distance to the error
free-region in the ¢; direction (which distance we identify with the R
of the above example), depended on the dimension N. However, by
stability, « cannot exceed 2/NoZ. Therefore, since 8 =(R*/ #§)oN, it
follows from (54) and (56¢) that ¢ would be enormously long for large
N. In practice, for a 32-tap equalizer, the observed shrinkage of the
output signal constellation appears to persist indefinitely. Numerically;
from Fig. 3, we use R = 0.667 — 0.400, #5 = 0.2. Setting a = 1/Noi, we
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have that, for a 32-tap equalizer, R*/o® = N = 326, # = 57. Using (54)
and (56¢), this corresponds to 10* iterations, on the average, before
leaving the well.

REFERENCES

1. R. D. Gitlin and J. J. Werner, unpublished work.

2. E. Y. Ho, private communication.

3. S. Muroga, T. Tsuboi, and C. R. Baugh, “Enumeration of Threshold Functions of

Eight Variables,” IEEE Trans. Computers, C-19 (Sept. 1970), pp. 818-825.

4. S. Chandrasekhar, “Stochastic Problems in Physics and Astronomy,” reprinted in
Selected Papers on Noise and Stochastic Processes, N. Wax, ed., New York:
Dover, 1954.

. H. J. Kushner and H. Huang, “Rates of Convergence for Stochastic Approximation
Type Algorithms,” to appear in Siam J. Control and Optimization.

(<]

1876 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1980



