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Integral equation formulations of electromagnetic scattering prob-
lems have been successful for scatterers which are only a few wave-
lengths wide. For a large scatterer, the integral equation methods
have been uneconomical because too many basis functions are
needed to represent the surface current on the scatterer. We use
scattering from an infinitely long thin strip to demonstrate that the
integral equation methods are economical for wide scatterers if the
basis functions are properly chosen. Exact solutions of simple prob-
lems, as well as the geometric theory of diffraction, can be used to
suggest the appropriate functions. The results demonstrate the fea-
sibility of the techniques used.

I. INTRODUCTION

Integral equation methods for solving electromagnetic scattering
problems reduce a two-dimensional problem to a one-dimensional
integral equation by formulating the problem in terms of the unknown
surface currents on the scattering body or bodies. Similarly, three-
dimensional scattering problems are reduced to two-dimensional in-
tegral equations.

The unknown surface currents are approximated by a sum of basis
functions times unknown coefficients. The basis functions are usually
chosen to be simple piecewise constant or linear functions, although
higher-order polynomials or piecewise polynomials are sometimes
used. The coefficients are chosen to solve (approximately) the integral
equation. The resulting electromagnetic field exactly obeys Maxwell’s
equations and the radiation condition, but obeys the boundary condi-
tions on the scatterer(s) only approximately.

Even if higher-order polynomial basis functions are used, the density
of functions on the scatterer must be at least two per wavelength. As
a rule of thumb, five to ten functions per wavelength are typical. For
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scatterers whose dimensions are more than a few wavelengths, the
integral equation formulation takes too many of the usual basis fune-
tions, and has therefore been thought to be uneconomical.

For scatterers which are many wavelengths wide, the integral equa-
tion formulation can be economical if sufficiently good basis functions
can be found. This is demonstrated using a two-dimensional problem,
consisting of scattering a plane wave from a perfectly conducting,
infinitesimally thin strip x = 0, —d/2 < y < +d/2, =® < z < », This
geometry has been the subject of considerable analysis, and approxi-
mate solutions are available. The exact solution as an infinite series of
Mathieu functions is also available, but is difficult to use.

For this model problem, excellent accuracy can be obtained with
only 17 basis functions, even for a strip more than 60 wavelengths
wide.

If the incident wave depends on z only as exp(ik.z), the problem is
two dimensional, and the vector electromagnetic scattering problem
may be separated into two scalar scattering problems, one for the E-
wave, and one for the H-wave. This is done in Section II.

In Section III, we present integral equations to be solved for the
currents on the scatterer.

Section IV takes up the difficulties in solving the integral equations.
An appropriate set of basis functions may be found by considering the
form of the extract solution for scattering from a half-plane. (Some of
the integrals are either singular or Cauchy principal-value integrals,
and must be done carefully.)

After the approximate currents on the scatterer have been found,
the electromagnetic fields far from the scatterer can be calculated. In
Section V, the far fields are calculated numerically and compared to
those predicted by the geometrical theory of diffraction, which is
accurate in the high-frequency (wavelength < width of scatterer)
limit. Agreement is excellent.

Il. FORMULATION OF THE SCATTERING PROBLEM

We assume a time variation of e and suppress the factor through-
out. All z dependence of fields is exp(ik.z). Then any solution of
Mazxwell’s equation may be written as a superposition of two scalar
wave equations (Ref. 1, §11.6). This may be seen as follows. Two of
Mazxwell’s equations are, in rationalized MKS units,

V X E = fwuoH, (1)
V x H = —iweKE. (2)

Applying the curl operator to egs. (1) and (2), and using V.-E = 0 and
V-H = 0, we obtain

V'V + Rk2V =0, (3)
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where Vis any of E., E,, E., H,, H,, or H., and k = w Ve is the wave
number. E., E,, H,, and H, may be expressed in terms of E. and H..
For example, from (1),

oE.

iwuoH, = tk.E, — P (4)
and from (2)
. oH, .
—iweE, = F — ik H,. (5)
Eliminating H, and rearranging,
) oE, oH,
Er=——k.—+ . 6
kz—ks( ax ay) ©
We let k7 = k% — k2. Similarly,
L aEz aHz
= — kz — »
Ey kf ( ay wilo ax ) (7)
i doH. doE.
Hx_k_?(kz Pl U ), (8)
I oH. 108
H, 3 (kz? + weo P ) (9)
From (3), E. obeys the scalar reduced wave equation:
’E. o'E. _,
-7 + o7 + k2E. =0, (10)

as does H..

The boundary conditions do not couple the E wave (E. # 0, H, = 0)
and the H wave (E. = 0, H. # 0). Let n be the unit normal vector
pointing into the scatterer at any point. The scatterer has n, = 0. Since
E and H are zero inside a perfect conductor, the usual boundary
conditions of continuity of tangential E and normal H are

nx E=0, (11)
n-H=0. (12)

The first yields
E.=0 (13)

as the boundary condition for the E wave. Using (8) and (9) we see,
since n, = 0, that

o (p e OB H.,  GE;\ y
x =z ox wWEp 3y ny Z? wWep o = u. ( )
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Since E, = 0 for the H wave, (14) reduces to
oH.

. (15)

as the boundary condition for the H wave. If k. = 0, we obtain (15) by
combining (6), (7), and (11).

Since the equations and boundary conditions separate, we may solve
two scalar scattering problems.

Geometry of the problem

We use standard spherical coordinates, (r, 8, ¢). Incident quantities
are denoted by superscript i and scattered quantities by superscript s.
The incident wave vector is

k' = k(—cos ¢‘ sin #', —sin ¢ sin §*, —cos 6°)

= (k.'t: ky; kz) (16)
Letting r = (x, v, z), we write an incident E wave as
_ ~ [—cos ¢’ cos O
E& = Cze'™ ™| sin ¢'cos & |, (17)
sin &
. k —sin ¢*
Hi=Cr—e™ | cos¢’ |, (18)
and an incident H wave as
sin ¢
E§ = Cye™ ™| —cos ¢' |, (19)
0
_ k —cos d: cos &
Hiy = Cy— e™ ™| —sin qb cos & (20)
Who sin #*

where Cx and Cy are arbitrary complex constants. Any electromagnetic
plane wave is the sum of an E wave and an H wave.

lll. INTEGRAL EQUATION FORMULATION

To find the z components of the scattered fields, from which the
other components may be found, we need to solve two integral equa-
tions. The integral equation for E; is fairly standard. First, suppose
the scatterer is a perfect conductor with finite thickness; its cross
section in the z = 0 plane is a thin rectangle, I, centered at the origin.
Then for r on T, we have [Ref. 2, eq. (4.26)]

Ei ( f oo (kR 2 (S)

(21)
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Here E. = E: + E:, HY" is a Hankel function® representing outgoing
waves, R is the distance from r to any point at arc length s on I, and
n is the unit normal vector at s, pointing info the scatterer. This
formulation ensures that the field obeys Maxwell’s equations and that
the scattered field obeys the radiation condition.
As the thickness of the strip goes to zero, the contributions of the
ends go to zero, and we get
d/2
EL0,y,0) = —i/4 HE (k|y — ¥’ JE(Y') dy, (22)

—d/2

where J%(y’) is the sum of dE;/an on the x > 0 and x < 0 sides at point

We use Ei(r) = Cg sin #¢™~, and define u = ky, v = ky’,
c=kd/2, and y = k,/k:. Then

Cg sin § e = — Ty J H (|u—v|)JE(v/k:) dv. (23)
¢

Finally, let Jz(v) = J% (v/k:)/4kiCk sin 6°, and we have the integral

equation for Jg(v):

e*"=j HY(|u — v|)Je(v) dv.

The usual integral equation for aH./on, eq. (4.27) of Ref. 2, is not
useful for zero-thickness scatterers. A new integral equation, a gener-
alization of one previously derived for thick scatterers,' has been
derived by Morrison.’ His work is directly applicable to thin bodies.

J¥(y) is the difference of H, on the x > 0 and x < 0 sides. Letting

JH(v/k)

= —, 24
Jr(v) 4(kz/ k) Cr(k/wpo) sin 6 (24)
* and letting &, and u; be any values such that
sy <u<lz<ec, (25)
we have the integral equation for Jx(v):
_ “pra) (g, — CHO(p —
o™ = MJH(U) dv + jMJH(U) dv
., u-v by VU
+J H"(|u— v|)Jul(v) dv
‘ (26)

“ ddJ,
+:f: H{"(Ju—v]) sgn(v — u) H!fv)

— Ju(u)H (12 — u) — Ju(w) H" (u — w).
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Here H{" is a Hankel function,’® and sgn is the sign function: sgn(u)
= +1if u > 0, and —1 if u < 0. The final integral in the integral
equation is a Cauchy principal-value integral. The equation simplifies
considerably in form, if #; = —c and u; = ¢, since Ju(—c) = Jg(c) = 0.
For the numerical examples in Section VI, u; and u; are taken to be
close to u. The equation looks more complicated than if u; = —¢ and
uz = ¢, but the integrals are no harder.

Far fields

Once the currents on the strip have been found, the field can be
calculated at points off the strip by the usual formulas:®
. pdf2
Ei(r) = exp(ik.2) -3 HY (kR)JE(Y) dy, 27)
—d/2
d/2

H:(r) = —exp(ik.2) L H{"(k:R) B—;B—R JH(Y) dy', (28)

—ds2

where R is the vector from the point (x, ¥, 0) to the point on the strip
at (0, y’, 0). The other field components can be found from egs. (6)-(9).

For the far fields, R > d, the equations simplify greatly, since the
asymptotic form of the Hankel functions can be used,’

HP(§) = (2/m) e’ E /29 + O(¢7Y). (29)
We let p = (x* + y%)/2. For R > d,
R=[x*+(y—y)T" =p —3%+ o (y—)
]

Only the first two terms need be retained; the second term need be
retained only in the exponential. Thus

9 1/2
HP(kR) = ( )
mkp

-exp[i(kp — kyy'/p — nw/2 — w/4)] + O(d/p). (30)
We use the auxiliary function F,

9 1/2
F(g)=(W—£) e e/, (31

Finally, using the definitions of «/z and Ju, changing variables to v =
k:y’, and using a superscript f to denote far fields, we get

EL(r) = —exp(ik.2) Ck sin 8°F (ki) j e~/ Jg(v) du, (32)

. Ny > <
Hi(r) = —exp(ik.z)Cy sin §' ?EF(ktﬂ) j e " Ju(v) dv. (33)
‘ —-c
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The integrals may be evaluated by the methods described in Sec-
tion IV.

For incident waves with §' = /2 (k, = 0), far-field coefficients may
be defined (Ref. 6, p. 6):

E wave: Pg = EL(r)/C.F(kp),
H wave: Py = H.(r)/CuF (kep).

IV. NUMERICAL SOLUTION OF THE INTEGRAL EQUATIONS

We first give an overview of the problem, and then discuss various
aspects of the solution method.

4.1 Overview

The problem has now been reduced to solving two uncoupled one-
dimensional linear integral equations on the boundary of the scatterer.
The usual method to solve such integral equations approximately is
first to approximate the unknown </ by a sum of basis functions, {f.}:

N
J(v) = ¥ anfa(v). (34)
n=1
The choice of the {f.} will be discussed later. Then the integrals are
done, reducing the integral equation to
N

ei7"= E anIn(u), (35)
n=1
where I,(u) is defined by replacing J(v) by f.(v) in the integral
equation, and performing the integrals. For the E equation, for
example,

I(u) =f H(|u — v])fa(v) du. (36)

If the basis functions are simple piecewise polynomials, the integrals
can be done simply by (say) the trapezoidal rule, or by Gaussian
quadrature. For the basis functions which we will use, the integrals
must be done much more carefully.

For finite N, eq. (35) cannot hold for all u in (—¢, ¢). We choose M
points {u;}, M > N, at which to make (35) hold approximately. For
ease of computation, the M equations in N unknowns are usually
solved in a least-squares sense. Other approximate solutions are also
reasonable, though more difficult to calculate. M = 2N is a common
choice, and it is used for the calculations in Section V.

4.2 Basis functions

In scattering problems where the scatterer is not many wavelengths
wide, a common practice is to let the basis functions {f.} be piecewise
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constant or piecewise linear functions, zero over all but a small part of
the scatterer. Then the integrands of the integrals defining the {I,}
are nonzero over only a small part of the scatterer, and evaluating the
integral is relatively easy. Frequently the integrals are evaluated by a
simple midpoint rule, except for the part of the integral with v near u,
where the integrand is singular. When higher-order piecewise polyno-
mials (splines) are used, the integrals are more difficult, but fewer
basis functions are needed.

We are interested in scatterers whose widths are many wavelengths,
perhaps hundreds. We see shortly that the correct currents J have
some components that vary as e™ and others as e*™. If splines are
used as basis functions, at least two splines per cycle of a sinusoid are
needed, and more if reasonable accuracy is to be obtained.

In addition, the currents near the edges of the scatterer are not well
approximated by polynomials, and many additional basis functions
would be needed there.

Basis functions which closely mimic the true currents are needed, so
that only a few functions will suffice. Of course, for most problems the
true currents are not known. (For the thin strip, the true currents are
known analytically,” but only as an infinite sum of Mathieu functions.
The analytic solution is of less use than a purely numerical solution,
since the individual terms in the sum are hard to evaluate, and since
the sum converges slowly.)

One approximate component of the true current is known, the
physical-optics approximation to the current, or the current that would
flow in an infinitely-wide scatterer. Far from the edges of the scatterer,
the current should be approximately equal to the physical-optics
current, which is proportional to e‘™. Therefore, a reasonable basis
function is e”™. To better approximate the physical-optics-like part of
the current, we may also include a few (u/c)e™, (u/c)’e™, .... These
terms are equivalent to approximating part of the current by J,.(u)e™,
and expanding «/,.(#) in simple smooth basis functions, since Jpo( ) is
not expected to vary rapidly.

Other approximate components of the current can be obtained from
the exact solution to a simpler problem, reflection of a plane wave
from a thin half-plane. Scattering from a half-plane was solved by
Sommerfeld, for a plane wave incident at 8" = 7/2. The solutions are
readily accessible in Ref. 7 and in Chapter 11.5 of Ref. 1. The currents
are conveniently written in terms of the angle a = 7/2 — ¢, the angle
between the incident wave and the positive y axis:

JE(y) = sinae® o=
i(ky—m/4)
- %— (2 sinaG[V2ky cos(a/2)] — iv2/k, sin(a/2)}. (37)
o

1900 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1980



Here G(§) is the Fresnel function,’

G(§)=e ¥ J e™ dp. (38)
3
For large positive £,
_t -3

G(§) = % + O(£7). (39)

For small positive £,
G(%) =% Jme™t — £+ O(8Y). (40)

The H current is
JH(y) = e Peose — —j—_— e' &G V2ky cos(a/2)]. (41)
™

For large y, away from the edge of the reflecting half-plane’
JE(y) = sinae ™ + e®.0O[(ky) 2. (42)

The current is equal to the physical-optics current plus correction
terms which oscillate and decay away from the edge. Note that the
oscillation of the correction term is ¢® rather than e™® °*; the correc-
tion terms correspond to waves propagating along the surface.

Far away from the edge, the H current is

Th(y) = e eoe
_ sec(a/2) .

Vor

The correction to the physical-optics current decays more slowly with
distance from the edge than does the corresponding correction to the
E current.

Near the edge,

/) ((By) ™12 4+ O[(Ry)~]}. (43)

JE(y) = (2/7)?e"® ™ sin(a/2) {(ky) ™"
+ 4 cos’(a/2) (ky)"? + O[(ky)*"]}, (44)

which is infinite at the edge itself. The H current is similar, but it is
not infinite at the edge:

1/2
Jh(y) = 2(;) cos(a/2)e" @ ((ky)'? + O[(ky)**]). (45)

Suitable basis functions for the strip can be obtained by using similar
functions at each edge of the strip. We use different basis functions
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near the edges and away from the edges. Near the left edge, in (—c,
—c + §), we use basis functions

deso) e+ m—1/2
e 5 ) (46)

where m=0,1,2, -.. for Jsand m = 1, 2, ... for Ju The physical
optics current is not used near the edges. Near the right edge, in (¢ —
8, ¢), we use basis functions

i(e—v) c—-v v (47)
e 5 .

Away from the edges, in (8 — ¢, ¢ — §), we use three families of basis
functions: physical optics, decaying from the left edge, and decaying
from the right edge. Withm =0, 1, 2, - .., these are

m
physical optics: (;) e,
5 m+1/2
) ex(c+v),

c+v
m+1/2
) ei(c—v)

The interference between waves scattered at the two edges causes
the coefficients to be different from the corresponding half-plane
coefficients, but the same forms suffice. The solution is made more
complicated by having several different kinds of basis functions, but
only a few of each will be needed.

The same basis functions would be obtained by taking the surface
current calculated by geometrical diffraction theory,” and expanding
the current both near and far from the edges of the strip.

decaying from left edge: (

decaying from right edge: (c >

4.3 Integrals

There are two sources of difficulty in performing any of the integrals
to obtain any I,.(u) for a given point u. [ We assume none of the points
+e¢, +(¢ — §) will be chosen for a u point.] First, there are singularities,
both in the Hankel functions at u = v and in the basis functions at
v = *+c. Second, both the Hankel functions and the basis functions are
oscillatory, with many cycles present in some of the integrals. Many
kinds of integrals must be done; we discuss only a few of them.

We first consider integrals over the basis functions near the edges.
As an example, consider

§—¢

m—1/2
Héll(l Uu—v |)eitc+ul (;su) dU, (48)

—-c
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for u > & — ¢. The Hankel function is not singular in the interval. If w
= (¢ + v)/8, the integral is

1
) J H (u + ¢ — wd)e™w™ ' dw. (49)
0

Since m = 0, this integral is done by Gauss quadrature formulas with
weight function w™"/% A series of Gauss quadrature formulas with
increasing numbers of points is used, until two successive values agree
sufficiently closely. If u is within the interval, the singular part centered
around u = v is handled separately, and the part nearer the edge is
handled similarly to the above method.

As another example, consider

j HY(|u — v|)f(v) dv, (50)

for some u; > u. (In practice we choose u: < u + 1.) We let wl=v
— u, obtaining

—
2 f wHM (wdf(u + w?) dw. (51)
0

The integrand is no more singular than w In(w). We use a complex
version of Patterson’s automatic quadrature program.®
The small argument behaviors of the Hankel functions are’

o
HP(8) = ;‘ In(£) + O(1) + O[£* In(8)], (52)
HP(8) = - fr—fg, + AP (), (53)
AP = ff In(£) + O(£) + O[£* In(8)). (54)

For 0 < £ < 8, H{"(£) and H{"(£) are evaluated using the approxima-
tions in Ref. 9. For example,

2 -~
H{" (£) = Jo(§) + iYo(8) = Jo(§) + i (; Jo(£) In(x) + Yo(E))- (55)

Both Jo(£) and Yo(£) are approximated by rational functions of (£/8)°.
In the example of Section V, numerator and denominator are taken to
be quintic polynomials, giving an absolute error less than 107® in

Jo (£) and Yo(£).
For large values of £, the Hankel functions decay slowly and oscil-
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late.® For ¢ > 8, other approximations from Ref. 9 are used. For
example,

H"(£) = (2/m) [ Po(§) + iQo(£)]e" ™. (56)

Both P, and @, are approximated by polynomial functions of (8/£)% In
the examples of Section V, cubic polynomials are used, giving an
absolute error less than 107°,

Integrals such as

u+8
f H{ (v — u)f(v) dv, (57)

u+1

are computed by the Patterson method.
For scatterers which are many wavelengths wide, ¢ > 1, in integrals
such as

c—8
j HM (v — u)f(v) dv, (58)
u+8

the Hankel function may have many oscillations, as may f(v). If f(v)
is a basis function decaying from the right, the e*™* factor of the
Hankel function just cancels the oscillations of the e‘“™* factor of the
basis function. If f(v) is a basis function decaying from the left, the
oscillations reinforce each other. If f(v) is a physical-optics basis
function, partial cancellation or reinforcement occurs.

If the total oscillation in the exponential part of the integral is small,
the integral is computed by the Patterson method. Any cancellation in
the exponential is done explicitly.

If the total oscillation in the exponential part of the integral is large,
a different method must be used to be economical and to avoid too
much error from accumulation of round-off errors. Many methods
have been suggested for doing integrals of the type

b
f g(v)e™ dv, (59)

where w|b — a|> 1. The most widely known is Filon’s method'’;
(a, b) is divided into an even number of intervals, each of length 4,
and g is evaluated at the endpoints of the intervals. The intervals are
paired, and on each pair the three values of g are interpolated by a
quadratic polynomial. No continuity is imposed on adjacent polyno-
mials. The polynomials times ™" are integrated analytically. Because
no continuity is imposed, the error is proportional to wh; for good
accuracy wh < 1 is needed. Thus the number of sampling points must
increase as w| b — a| increases.
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Methods which do not require the number of sampling points to
increase, involve approximating g(v) on the whole interval. A series of
papers'' ¢ deal with approximating g by a sum of either Legendre or
Chebyshev polynomials orthogonal on (a, b). The polynomials times
€“" are then integrated. For Legendre polynomials, the integration can
be done analytically, but care must be taken in doing the summation
to produce a stable method. For Chebyshev polynomials, the integra-
tion cannot be done analytically, except in terms of infinite series, but
no stability difficulty arises.

Many of the particular types of g(v) that we need, decay away from
one or both ends of the interval towards the middle, and have a
singularity just outside the range of integration. For this type of
function, splines are better suited than polynomials; fewer terms are
needed for a prescribed accuracy of approximation.

Splines have been used before for integrals like (59)'; however, a
uniform spacing of sampling points was used, which is uneconomical
for our usual integrands. Instead of a uniform mesh, we use an
adaptively generated nonuniform mesh.”® The splines times e’ are
integrated analytically. Typical values of wh, where A is a mesh spacing,
range from 1 to 50. For ¢ = 200 and & = 1, typical meshes have 20 to
40 intervals.

4.4 Solving for the coefficients {a,)

By methods like those just described, each I.(uz) may be calculated
for any prescribed u. We choose M points {u;}, M > N, and require
(35) to hold in a least-squares sense at the M points. A standard
subroutine' is used to solve the equations for the {a,}. Continuity of
the J(v) at =(c¢ — 6) is enforced by including extra equations and
weighting them heavily.*

Apparently, no useful theory exists for choosing the {i;}. Each u;
effectively “samples” strongly near u;, and less strongly far from u;. It
is clear that sampling must be done in the region where each of the
basis functions has appreciable magnitude. Some basis functions are
nonzero only within distance & from an edge, and sampling points must
be clustered there. Other basis functions decay away from the edges,
starting at distances larger than §, and need sampling points not too
far from the edges. Finally, the physical-optics basis functions are less
localized; a good distribution of sampling points for the decaying basis
functions should also suffice for the physical-optics basis functions.

For the numerical examples of Section V, the sampling points in
(—e, 8§ — ¢) and (¢ — &, ¢) are evenly spaced. In the left half of the
central region, the distances of the sampling points from u = § — ¢
increase geometrically, starting with u = 36/2 — ¢, and ending with «
= 0. The points in the right half are symmetrically placed. If ¢ is small
enough, uniform spacing is used.
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Table |—RMS and ERR for E and H waves, M varied

E wave H wave
m. me M RMS ERR RMS ERR
4 9 17 1.4 (—3) 5.1 (—4) 3.7 (—4) 3.2 (—4)
5 11 21 1.7 (-3) 14 (-3) 2.1(-3) 7.7 (—4)
7 17 31 2.0 (-3) 9.7 (—4) 3.6 (-3) 5.9 (—4)
9 21 39 2.1(-3) 5.3 (—4) 44 (-3) 2.4 (—4)
11 25 47 2.3 (-3) 1.9 (—4) 4.9 (-3) 2.8 (—4)

V. NUMERICAL RESULTS

In this section we present selected numerical results for scattering
from a thin, infinitely long strip. All programs were run in single
precision on a Honeywell 6000 series computer, whose relative roundoff
error is 1.5 x 1072,

In order to compare our results with previous work, all results are
presented for a plane wave incident at ' = #/2 and ¢' = 7/4.

We let n. by the number of edge basis functions in each edge, ns the
number of decaying basis functions from each edge, and n, the number
of physical-optics basis functions. The total number of unknown coef-
ficients is N = 2n. + 2nq + n,.

For ¢ > 1, the geometric theory of diffraction can be used to
compare far fields. Expansions for the E wave far field are given in
Ref. 7, p. 200, and those for the H wave in Ref. 7, p. 218:

Pg/c = pog + prec™* + O(c™"?), (60)
Pujc = por + prac™* + O(c7?). (61)

We used two terms of the expansion of Py and one term for Pg, for
¢ = 50. The maximum value of P/c is approximately v2/2, at specular
reflection, ¢* = —n/4. We checked values of P at 33 evenly-spaced
angles in the range —7/4 — dn/c < ¢° < —7/4 + 4n/c.

With ¢ =100, 8 = 1, n. = nqg = 4, n, = 1, so that N = 17, we varied
M, the number of sampling points (Table I). Letting m. be the number
of points in each edge, and m. the number in the central region, M =
2m. + m..

In Tables I to V, RMs indicates the root-mean-square error in solving

Table II—RMS and ERR for E and H waves, n, varied

E wave H wave
n, RMS ERR RMS ERR
1 2.1(-3) 7.1 (—4) 4.1 (-3) 3.6 (—4)
2 2.1 (-3) 6.6 (—4) 4.0 (-3) 2.6 (—4)
3 1.8 (—-3) 7.8 (—4) 3.9 (-3) 34 (—4)
4 2.2 (-3) 8.4 (—4) 3.8 (-3) 24 (-3)
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Table Il—RMS and ERR for E and H waves, 8 varied

E wave H wave
8 RMS ERR RMS ERR
0.5 3.6 (-3) 3.5 (-3) 5.3 (—3) 1.5 (-3)
1.0 24 (-3) 2.0 (—4) 3.9 (-3) 29 (—4)
1.5 1.3 (-3) 2.7 (-3) 14 (-2) 2.1 (-3)
2.0 2.4 (-3) 5.2 (-3) 3.3 (-2) 1.3 (-2)

the over-determined linear system of equations. [Because of the two
constraint equations which impose continuity of JJ at (¢ — 8), the
equations are over-determined even for M = N.) ERR indicates the
maximum absolute difference between the calculated far field and the
geometrical theory of diffraction far field, at the 33 angles checked.
We write 1.4 (—3) for 1.4 X 10~%, The errors are not strongly dependent
on M/N.

With ¢ = 100, 8 = 1, n = na = 4, m. = 8, and m. = 17 + 2,, (so that
M = 2N), we varied n, (Table II). Adding additional physical-optics
basis functions beyond the first is essentially useless.

Table IV—RMS and ERR for E and H waves, n, varied

E wave H wave
Ne = Nd RMS ERR RMS ERR
2 2.9 (—2) 5.3 (—3) 14 (-1) 2.1 (-2)
3 5.6 (—3) 1.0 (—-3) 2.9 (-2) 1.3 (—3)
4 24 (—3) 2.0 (—4) 3.9 (—3) 2.9 (—4)
5 1.7 (-3) 1.8 (—4) 7.6 (—4) 2.2 (—4)

With ¢ = 100, n. = nq = 4, n, = 1, m. = 8, and m. = 25, we varied 8§
(Table III). The best value is approximately 1. Similar results are
obtained for ¢ = 50 and ¢ = 200.

With ¢ = 100, § = 1, and n, = 1, we varied n. and nq, keeping m. =
2n, and m. = 4mq + 3, so that M = 2N (Table IV). This illustrates
convergence with increasing N.

Finally, with § = 1, n. = na = 4, n, = 1, m, = 8, and m. = 19, we
varied ¢ (Table V). Convergence is similar for ¢ = 50, 100, and 200.

Table V—RMS and ERR for E and H waves, ¢ varied

E wave H wave
c RMS ERR RMS ERR
50 1.7 (-3) 3.0 (—4) 3.6 (—3) 7.0 (—4)
100 24 (-3) 2.0 (—4) 3.9 (-3) 29 (—4)
200 1.8 (-3) 0.3 (—4) 3.6 (—3) 2.2 (—4)
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