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The optical and electronic characteristics of devices based on GaAs
(LEDs, laser diodes, etc.) are adversely affected by the dislocations
originating in the substrates. We demonstrate by means of thermoe-
lastic analysis that the primary cause for the observed dislocation
density patterns in Czochralski-pulled GaAs single crystals, which
serve as a source for substrates, is crystallographic glide, induced by
the excessive thermal stresses arising during the growth process.
First, we formulate a tractable model for crystal growth. We obtain
the temperature distribution in the crystal by solving the quasi-
steady-state partial differential equation for heat conduction subject
to appropriate boundary conditions. The closed-form solution in-
cludes time, pull rate, axial location, radius, convective and radiative
heat transfer coefficients (h. + h.), and a fixed ambient temperature
(T.) among the variables. Next, from the temperature profiles we
determine the radial, tangential, and axial stress components acting
on the GaAs boule. These stresses permit the evaluation of the 12
resolved shear stress components for the {111}, (110) slip system. We
postulate the sum of the absolute values of the 12 components (0,,,) to
be proportional to the dislocation density within an additive constant.
Employing o.x as a parameter, we have constructed dislocation
distribution contour maps for {100} GaAs wafers which are in good
accord with the dislocation patterns observed on KoH-etched wafers
cut from near the top end of Cr and Te-doped GaAs boules. A detailed
examination of the effect of the numerous parameters on the dislo-
cation density of Czochralski-pulled GaAs is also given. Only by a
drastic increase of T, and a substantial decrease of h, + h. would
one be able to overcome the natural limitations imposed by the
thermal and mechanical properties on dislocation density. Finally,
we pay attention to the effects of elastic anisotropy and interfacial
heat flux, discuss the philosophical and mathematical difficulties
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associated with finding a true transient solution, and provide some
practical suggestions.

l. INTRODUCTION

A number of recent papers have shown that the performance of
GaAs-based devices is adversely affected by dislocations. For example,
Brantley and Harrison' have observed that the degradation rate in
diffused electroluminescent diodes increased by an order of magnitude,
and was accompanied by dislocation generation, during forward bias
aging when a compressive load was also applied. Subsequently, Zaes-
chner? has found that external stress alone is sufficient to cause diode
degradation and gave a quantitative account of the change in light
output with time in terms of the kinetic properties (multiplication and
velocity) of dislocations, considered to be nonradiative recombination
centers.

Even in the absence of deliberately imposed forces, a large enough
density of grown-in dislocations in GaAs alters device behavior. In
particular, very recently Roedel et al® have correlated the reduction in
external quantum efficiency of Si-doped GaAlAs LEDs with increasing
dislocation density and established that these defects act as nonradia-
tive recombination centers. Moreover, the dislocation density in the
GaAlAs epitaxial layer essentially duplicated that of the GaAs sub-
strate. Therefore, in view of its importance, we have undertaken an
investigation of the primary cause for the generation of dislocations in
GaAs substrates grown by the Czochralski technique and then attempt
to employ this knowledge in suggesting growth conditions which
facilitate the elimination or at least reduction of these defects.

Some plausible mechanisms by means of which dislocations can be
incorporated into growing GaAs boules are (i) dislocation propagation
and multiplication from an imperfect seed, (i) vacancy condensation
into dislocation loops, and (iii) crystallographic glide relieving exces-
sive thermal stresses. It has been recognized relatively early in the
course of semiconductor crystal growth that thermal stresses may lead
to slip and dislocation generation. In 1955, Billig* discovered that the
etch pit density of Ge wafers, obtained from pulled ingots, increased
with the magnitude of the imposed temperature gradient. Further-
more, the pits (representing the dislocations) were distributed in a
definite pattern and slip bands were also observed. On the basis of
these experiments, Billig concluded that high thermal stresses* gave
rise to slipping and dislocation generation. He also made an order-of-
magnitude estimate of the thermal stress to offer a more quantitative

* The stress was given by the product of the thermal expansion coefficient, Young’s
modulus, and the radial temperature drop.
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underpinning to the postulated mechanism. The required temperature
difference between the core and the edge of the crystal was obtained
from a standard heat transfer calculation for a semi-infinite cylinder in
the steady state. The base of the cylinder is at the melting point, 77,
while the sides are dissipating the heat by convection.

Almost simultaneously with Billig, Bennett and Sawyers® of Bell
Laboratories found a hexagonal “star pattern” of pits along definite
lines on etched Ge slices cut from (111) pulled ingots and gave the
following qualitative description of the thermal stress effect: The heat
enters the growing Ge crystal at the solid-liquid interface and leaves
through the other surfaces by radiation and convection. Hence, each
cross section of the crystal must have a cooler periphery than core
and, consequently, on account of thermal contraction, the periphery
must be in tension and the core in compression. If the resolved shear
stress components of the {111}, (110) slip system resulting from this
tension are sufficiently high, then the resulting plastic deformation
would exhibit the symmetry of the observed dislocation pattern.

In 1958, Penning® reported that etch pit arrays in germanium can
also be introduced by radial heat flow during slow cooling from 850°C.
The patterns show a crystallographic orientation-dependent symmetry
and the dislocation density is highest at the edge, intermediate in the
center, and lowest along an internal annulus. Following the earlier
work, Penning also interpreted his results in terms of thermal stresses
and formulated a semiquantitative model. In his view, it is reasonable
to assume that two alternative avenues of stress relief are open to the
crystal. In one case, the strain is entirely plastic and is completely
relieved by the generation and motion of dislocations. In the other
case, the thermal stress is mostly elastic, but a small constant fraction
is released by plastic flow; hence, the dislocation density corresponding
to one of the 12 {111}, (110) slip systems is proportional to the amount
of slip, governed by the appropriate shear strain component. A com-
parison of the observed and estimated etch patterns favors the path of
incomplete stress relief.

Unfortunately, Penning® withheld the details of his assumptions and
treatment for a promised forthcoming paper. To the best of our
knowledge, that paper has not been published in the intervening 20
years. However, it seems clear from the brief account given in Ref. 6
that his calculations employed a simple parabolic temperature distri-
bution in the crystal and the predicted etch figures were based on the
shear components of the thermal stresses. In our view, even today,
Penning’s conceptual framework presents the most fruitful starting
point in crystal-growth related thermal stress analysis.

A strong confirmation of plastic deformation taking place in semi-
conductors during the growth cycle was provided by the work of
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Lederhandler,” who correlated infrared birefringence with etch pit
density in (111) Si. This investigation shows that the source of
birefringence is the elastic-plastic deformation occurring under the
influence of a radial temperature gradient. The frozen-in stress seen
by birefringence is acquired by the crystal near room temperature and
is equal and opposite to the thermal stress relieved by dislocations and
plastic flow during growth. According to a more recent study, similar
to germanium, the dislocation density in silicon exhibits a minimum at
a location intermediate between the core and the lateral surface.’

Although the dislocation density in III-V compounds is occasionally
orders of magnitude greater than in germanium and silicon, there is a
paucity of information on the source of grown-in dislocations in the
semiconducting compounds. In the case of liquid-encapsulation Czo-
chralski-(LEc) grown GaP, Nygren® has found that, consistent with the
thermal stress mechanism of dislocation generation, their density
increases toward the periphery of the ingot; he also observed traces of
slip. Moreover, the “frozen-in” stress was determined on the transpar-
ent crystal by a photoelastic technique showing equal tangential and
radial stresses at the core and a disappearance of the radial stress at
the periphery.

However, there is a lack of consensus with respect to the genesis of
dislocations in GaAs. Based on their results using a modified Grem-
melmaier-type magnetic puller, Steinemann and Zimmerli" claimed
that thermal strain is inconsequential in causing dislocation generation.
But they admitted that the omission of a heat shield from their
apparatus made the growth of 1-cm diameter, low-dislocation density
GaAs impossible even when a long neck was employed to eliminate
the dislocations arising from the seed. Under these unfavorable con-
ditions, the dislocation density increases toward the external surface.

Subsequently, Brice'"'? has identified the partial pressure of arsenic
(Asy) as an important contributing factor to the observed dislocation
densities in GaAs. Crystals grown by the horizontal Bridgman
method,"" and in a syringe puller'” at pressures between 0.8 and 1.3
atm, show a corresponding monotonic increase in their dislocation
densities, probably as a result of gallium-vacancy condensation into
dislocation loops." Nonetheless, Brice has also suggested'” that the
radial temperature gradient via the thermal stress mechanism is re-
sponsible for the enhanced dislocation density near the edge of his
crystals and surmised that, at lower pressures, the same mechanism
may be responsible for the entire distribution. This latter notion is
supported by Plaskett et al'® who examined, by etching and x-ray
topography, the slip line patterns of GaAs crystals grown by the
horizontal Bridgman method at pressures somewhat below 1 atm.
They concluded that the dislocations were created by plastic defor-
mation arising from thermal stresses.
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Therefore, in view of two decades of accumulated experience in the
area of the melt growth of semiconducting crystals, it is reasonable to
propose that the initial formation of dislocations in GaAs crystal pulled
from stoichiometric melts by the Czochralski technique is primarily
due to the excessive thermal stresses associated with the growth
process. A major objective of this paper is to test this proposition by
the formulation and analysis of a tractable model for growth which
describes the dislocation distribution in terms of material and growth
system parameters, thus permitting a direct comparison with experi-
mentally derived dislocation patterns. As a first step, we require
realistic temperature profiles for a growing ingot. A simple steady-
state heat transfer model introduced by Brice' has given the experi-
mental temperature distribution in germanium' and ZnWO,,"® ob-
tained by a thermocouple embedding technique, in a consistent man-
ner. He assumed that the growing crystal can be represented by a
stationary cylinder, the base of which is held at 7Y, while its lateral
surface and top dissipate the heat into a medium at a constant
temperature by convection and found the solution in the classic
monograph of Carslaw and Jaeger.'” However, this solution is only
valid for a fixed ambient temperature and excludes growth rate as a
parameter. In the present work, we have been able to include growth
rate in the solution because a moving boundary quasi-steady-state,
partial differential equation for heat conduction is considered instead
of a steady-state one. In a future paper, we shall report the exact
solution of the steady-state partial differential equation subject to
convective heat transfer from the sides of the cylinder into an ambient
with a linear temperature profile which abruptly changes slope at some
height. Obviously, that result closely corresponds to the thermal ge-
ometry of LEC growth wherein a sharp break in temperature occurs at
the B:0s-gaseous ambient interface.

The quasi-steady-state temperature profiles are used in deducing
the radial, tangential, and axial thermal stress components for a
growing cylinder in a closed form. Then these stresses are employed in
evaluating the 12 resolved shear stress components of the {111}, (110)
slip system causing glide. Invoking Penning’s hypothesis,® the dislo-
cation density is taken to be proportional to the sum of these shear
stresses. Computer simulation of the theoretical results is facilitated
by some numerical techniques. Among these, we concentrate on the
inversion of the formula for shear stress as a function of radius and
angle into a polar plot of dislocation density contour lines.

Next, model calculations for the dislocation density patterns are
presented, which show the effect of a realistic variation in the heat
transfer coefficient, radius, pull rate, and time. Furthermore, the
theoretical contours are compared to the dislocation density patterns
exhibited by KoH-etched wafers. To ascertain that the GaAs crystal

DISLOCATION GENERATION IN GaAs CRYSTALS 597



encountered plastic flow above the critical resolved shear stress, con-
sideration is given to the actual magnitude of the resolved shear stress
in terms of the best estimates of the physical and geometrical param-
eters appropriate in the growth system. In addition, we discuss the
possible effect of elastic anisotropy, the magnitude of the axial heat
flux, and the philosophical difficulty of finding a true transient as
opposed to a quasi-steady-state solution. Finally, some important
conclusions are enumerated and practical suggestions are given to aid
in the lowering of the dislocation density in GaAs.

Il. THEORY

2.1 Quasi-steady-state partial differential equation for heat conduction
during Czochralski growth

In general, severe mathematical problems are encountered in per-
forming heat transfer calculations involving a change of state.'®"
However, by an idealization of the Czochralski growth process, we can
formulate a realistic but tractable model which permits the relatively
uncomplicated determination of the time- and growth-rate-dependent
temperature profiles prevailing during crystal growth. The following
set of simplifying assumptions are introduced:

(i) Initially, at ¢ < 0, the semi-infinite space between z = 0 and —
is completely filled by a stoichiometric liquid solution of gallium and
arsenic (melt) contained in a crucible and held at the melting point of
GaAs, Ty (see Fig. 1).

¥4 | 5
"o
I R N
|
I
——Z = t
Pt GaAs
CRYSTAL
Ta
|_Tr |
= _pt,+ —-5=
CRUCIBLE 2=-pt 0
CONTAINING
Ga/As MELT

Fig. 1—Stationary (2) and moving (s) coordinate systems for Czochralski growth. The
stationary and moving systems are anchored at the top (seed)-end and the solid-liquid
interface, respectively. Above the interface, the temperature of the surroundings is
uniformly 7.
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(if) The crystal is grown by the removal of the crucible in the —z
direction at rate p, and its shape is cylindrical from top (seed) to
bottom (tail).

(zi1) The growing boule is surrounded by an ambient fluid at tem-
perature T, = constant < T}, while the Ga/As melt is continuously
maintained at 7.

(tv) The planarity of the solid-liquid interface at 7T is essentially
unchanged by the dissipation of the heat of fusion of GaAs.

(v) As the top of the crystal always remains stationary at z = 0 and
the solid-liquid interface moves to z = —pt, the sense of growth is
opposite that of the practical situation. This choice of direction is
dictated by mathematical convenience, and it leaves the heat transfer
unaffected as long as T, is a constant.

(vi) The temperature distribution is not significantly influenced by
crucible or crystal rotation.

(vii) At the top and on the lateral surface of the boule, the heat loss
(flux) is proportional to the temperature difference between the surface
and the ambient fluid. This is otherwise known as convection boundary
condition governed by Newton's law of cooling.

Figure 1 sketches the coordinate system relevant to our Czochralski
growth model. In the interest of clarity, the vertical axes (z and s) have
been displaced from the crystal axes. In a cylindrical coordinate system
(r, 8, z; t) with the origin at the center of the stationary crystal top, the
partial differential equation for heat conduction takes the form

aT (62T 10T azT)

= =5z (1)

at " ror 92t
where k(cm?®/s) is the thermal diffusivity. The diffusion equation is
independent of # on account of the cylindrical symmetry of the
boundary conditions.

It is convenient to transform eq. (1) into a coordinate system (r, 6,
s, 7) embedded in and moving with the solid-liquid interface to facili-
tate the application of the boundary condition T = T} at that location.
This can be readily accomplished' by observing (Fig. 1) that

s=z+pt (2a)
T=t (2b)

Noting that, from egs. (2), ds/8z = 1, ds/at = p, 07/8z = 0, and ar/ot
= 1, the rules of partial differentiation yield'®
*T _9°T g 9T _ 9T of

— = p— + —.
9zF 9z 1 ot ds  ar (3)

Substituting eqs. (3) into eq. (1), we have the partial differential
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equation with respect to moving coordinate axes
o2T 1aT+ 3*T poT 14T

— ===+

-— . 4
ol rar 0s° Kkds ko @
According to Rosenthal’s theory for moving heat sources,'® an observer
moving with the coordinate system fails to detect any change in
temperature with time in his surroundings. Accordingly, T/dr = 0 and
eq. (4) reduces to
*T 18T *T paT
A e e (5)
ar raor 0s K 08

The preceding equation is called the partial differential equation for
the quasi-steady state (gss)'® ™ and is expected to be valid after a
crystal of some length has grown. The solution of the boundary value
problem can be written in a simpler form by introducing the following

dimensionless parameters:

p=l, =2, y=— (6)

Then eq. (5) becomes
*T 18T  a*T  aT
W o W P @
where
p1= Pro/k.

We attempt to separate the variables by substituting the product
function

T = &V’R(p)¥({) (8)

into eq. (7). The exponential factor in eq. (3) is based on Smolu-
chowski's solution for field-enhanced diffusion” wherein the differen-
tial equation is formally similar to eq. (7). Using eq. (8), eq. (7)
separates into

2 2
'R | 1dR_pt_1d%¥__, ©)
Rdp* pRdp 4 V¥ dy

where a is the separation constant.
It can be readily seen that the R differential equation, describing
the radical variation in temperature, is given by
d’R + dR
d(ap)® ap dap

+R =0, (10)

600 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1980



which is Bessel’s differential equation of order zero.?! Bessel functions
of the first kind and order zero, Jo(ap) satisfy eq. (10) so that

R(p) = Jo(ap). (11)
The differential equation for the axial temperature distribution is
d*¥
2 —_ =
BY —— 7 0, (12a)
where
2
pr=at+E1. (12b)

Obviously, the exponential function is a solution of eq. (12a). Hence,
we can write, in general,

¥ = A sinh B(Yx — ) + B cosh B(y» — {), (13a)
where
Y= pt _ length (13b)
ro radius

and A and B are constants.

Since the value of the separation constant « is so far unrestricted,
the complete solution of the @ss problem is obtained by means of eqs.
(8), (11), and (13) in the form of the infinite sum

T=T,+ er¥? E Jo(pan)[Ansinh Ba(yfe — )

n=1

+ Bncosh Ba(yr — ¢)].  (14)

2.2 Boundary conditions

According to the previously outlined Czochralski growth model, at
the top of the growing ingot and along the lateral surface, the heat is
dissipated by Newtonian cooling. Expressed mathematically, this
means that, at the cylindrical boundary,'®

aT
-— t h(T'_ Ta)|r=ro=0 (158)
ar
or
oT
5 + h(T = Ta) -1 =0, (15b)

where h = h,/ro is the heat transfer coefficient. On the stationary top
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surface of the cylinder,

T
T W(T = T =0 (16a)
das
or
aT
ﬁ + h[(T— Ta) [¢=\‘,‘ = 0. (16b)
Applying eq. (15b) to eq. (14) leads to
deJ.
gp—" (anp) + hrJoltnp) |p=1 = O. (17)

An important property of the Bessel functions of the first kind is the
recursion formula'®*

deJo(x)

T —Ji(x), (18)

where o, is the Bessel function of order one. Rewriting eq. (17) in
terms of eq. (18) provides the n characteristic equations

"_anJl(an) + hiJolan) = 0 (19)

for the eigenvalues a,. A combination of egs. (16b) and (14) results in
a relationship between A, and B, of the form

B,
An = hp 'B_n ’ (208.)
where
hy = % + A (20b)

Substituting eqs. (20a) into eq. (14), we obtain for the temperature
profile of the growing ingot

T=Tot e Y dofcup) 20 [hosinh Bulte — ¥)

n=1 n

+ Brcosh B — ¢)], (21)

where the a,s are the eigenvalues of eq. (19).
We determine the remaining constant B, from the boundary condi-

tion
T=1T; (22)
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at the planar solid-liquid interface (y = 0). Then eq. (21) reduces to

> B, .
Ti—Ta= §=_‘,1 Jolamp) E; [Apsinh By, + B.cosh B.yy]. (23)

To find B,, we must expand the constant Ty — T, as a series in Jq.
Based on the orthogonality properties of Bessel functions, subject to
the characteristic eq. (19), it can be shown that an arbitrary function
f(p) can be expanded by means of the Bessel series'®

flo) = 3 Kudolaup), (24a)
n=1

where

1

of (p)Jo(anp) dp. (24b)

2a2

K= e ),

Putting f(p) = Ty — T, and in view of another recursive property of
Bessel functions, %%

dx Ji(x)

e xJo(x), (25)

eq. (24b) integrates to

_ 2anedi(an)(Ty— Ta) _ 2h(Ty— Ta)

K=y e R+ Do) (26)

Term-by-term evaluation of B, is accomplished by a combination of
egs. (23), (24a), and (26). Then we find
_ 2hl(Tf_ Tn)Bn x 1

(h% + ai)JO(an) h,t.v&"in-h BM‘P! + BnCOSh Bu'ﬁbt ’

Finally, substituting eq. (27) into eq. (21), the Qss temperature
distribution for Czochralski growth becomes

27

n

T - Tﬂ o > Jﬂ(ﬂ'np)
=9 Py/2 . .-,
Tf - Trz hle ngl (hi + aE)JD(an)

. hpsinh B,(r — ¢) + Bncosh B.(: — )
hpsinh By + Brcosh By

where the summation is over the n eigenvalues of eq. (19). It is
convenient to repeat here the previously given definitions of the

(28)
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variables and parameters occurring in eq. (28). These are

h1=hro,p1=l?,hp=%+h1

p¥ 1/2
2

n = nt—

oo (2 +)

+ pt t
TP and v =2, (29)

To ro

_r l‘b_
Iy r()’ -

2.3 Thermal stress

The temperature distribution induces a thermal stress field in the
growing cylindrical ingot as a result of spatially inhomogeneous ther-
mal contraction. The appropriate stress components can be obtained
from classical thermoelastic theory.” In essence, in this theory an
additivity hypothesis of elastic and thermal strains is superimposed on
Hooke’s Law. There are only few exact solutions of the thermoelastic
equations. However, for a long isotropic cylinder with axisymmetrical
temperature distribution, an exact description of the stress components
is possible if the displacement is only radial, the center suffers no
displacement, and the lateral surface is free of traction.” This set of
assumptions provides the so-called “plane strain” solution which is
subsequently adjusted by means of Saint-Venant’s principle to take
into account the absence of traction at the top and bottom ends.
Consequently, the following final expressions have been derived for
the radial, o,, tangential, gy, stress components:

E (1 (" 1 ("
or = ‘ (——2 f Trdr—-— J Tr dr) (30a)
1—=w\ro 0 r "
1 r 1 r
o =L (_ZJ Trdr+-—2j Trdr—T) (30b)
1—v\ro 0 r o
alk (2 ("
o:=7_, (?OL Trdr— T), (30c)

where E, », and a are Young’s modulus, Poisson’s ratio, and the linear
thermal expansion coefficient, respectively.”

To calculate the components explicitly, it is convenient to rewrite
egs. (30) in terms of the dimensionless variable p and integrate with
respect to a,p. Then we have
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or ok —}—[ f Tanpd(anp) -% j Tanpd(amo)} (31a)

= )
1—=rvan o

aE 1[ (™ 1 (™ 9
oy = . Tanpd(anp) + — Ta.pd(anp) — axT | (31b)
l=van| ), e~ J,
0, = ak iz {2 f Ta,pd(anp) — aﬁT}. (31c)
l1—van 0

All the integrals in egs. (31) can be readily performed by applying eq.
(25) to eq. (28). Hence, the stress components become

ak

i

o, = 2h,e”V? 7 (Ty— Ta)

« E hpSi-n-h Bnly: — ) + BnCOSh Bn(‘,’f - \b)
noh (BT + al)o(an) (hpsinh Bae + Bacosh By
% [J](an) _ Jl(aﬂp)
anp

Qn

] (32a)

Og = 2h1ep1¢'/2 iE_‘ (Tf_ Ta)
1—v
x i hpsinh B.(yx — ) + Bncosh B.(: — ¢)
a1 (R + ai)Jo(an) (hpsinh Bnf: + Bncosh Bad)

» [Jl(an) ;. ilaap)
an anp

- Jo(anp)] (32b)

ak
1—v»

x 3 hysinh B8,.(y: — ¥) + Bacosh B.(y: — )
n1 (R + ai)Jo(an) (hpsinh By, + B.cosh By

y [M(an)

n

0. = 2hePV? (Ty— Ta)

— Jol(anp) :[ (32¢)

It should be noted that eqs. (31) are not changed by an additive
constant (T%).
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2.4 Resolved shear stress

The major mechanism by means of which dislocations are first
introduced during the Czochralski growth of GaAs is crystallographic
glide caused by the excessive thermal stress. According to Schmid’s
Law,? glide occurs when the resolved shear stress (ors) exceeds a
certain critical value, the so-called critical resolved shear stress. Since
the dislocation density, d., is proportional to the glide strain, we may
also take it to be proportional to the ors within an additive constant.

It has been previously shown that slip in GaAs is associated with
the {111}, (110) slip system.> This is also the case for other semicon-
ductors crystallizing in the diamond or zinc blende structure.” The
{111}, (110) slip system represents 12 permissible glide operations,
that is, four {111} slip planes, each containing three possible (110) slip
directions. In this section, we give ags for each of the 12 distinct slip
systems, obtained from the principal thermal stresses o, 0, and o..
The calculation is shown in detail for one system; the remaining 11
can be derived by analogous procedures and only the final results will
be quoted.

The coordinate system appropriate to perform the stress transfor-
mations is presented in Fig. 2. To begin, it is necessary to determine
the stress components acting on the xy, xz, and yz coordinate planes.

2,7
[001]

-y

X

Fig. 2—Coordinate system for thermal stress transformations. For a crystal growing
in the [001] orientation, the direction of the radial (o,), tangential (gs), and axial (o)
components of the thermal stresses are shown. One of the 12 resolved shear stresses
(ge») is illustrated, which acts on the (111) slip plane in the [110] slip direction.
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By standard tensor transformation,” we find
0x = 0,c08°8 + 0gsin’f (33a)
o, = o,8in’f + ogcos’d (33b)
0xy = (0, — gg)sin 0 cos @ (33c)
0. = 0.. (33d)

As an illustrative example of the procedure followed, we calculate the
ors acting on the (111) plane in the [110] slip direction. The coordinate
system of the ogs is the x’, y’, 2" system wherein 2’ and x’ are parallel
with the [111] normal and [110], respectively. Then ors becomes

Ors = Oy> = 0.€08[x'x]cos[z'x] + oycos[x’y]cos[z"y]

+ o.cos[x’'z]cos[z'2] + o.(cos[x'x]cos[z"y]
+ cos[x'y]cos[z'x]), (34)

where the extended notation has been used and the bracket signifies
the angle between the indicated axes. In the [001] crystal growth

direction, it is easy to evaluate the direction cosines; they are sum-
marized as follows:

cos[ ] x y z
x’ —v2/2 V272 0
yf

2’ v3/3  V3/3 V3/3

A combination of egs. (33), (34) and the table provides

(111), [110] ors = — ? (0, — ag)(cos®@ — sin*f). (35)

In a like manner, all the ogs can be evaluated. Introducing the
abbreviation

or =0, — 0g (36a)
and

0., = 0:— 0y (36b)

and taking advantage of some standard trigonometric identities, the
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following complete set of ors is obtained:

Slip

Plane

(111)

(111)

(111)

(111)

(111)

(111)

(111)

(111)

Slip

Direction

[110]

[011]

[011]

[110]

[011]

[110]

ORS

o.cos 20

V6 [Ez —g,sin® 8§ — % sin 20:|

6

V6 . G

?6 - cos” § —a. + %s’m 26
6 arcos 26

ﬁ 5, —a,sin® 6 + 9" sin 20
6 2

V6 [a,cosF 0 -5, — % sin 29}

v6 (37)

6 arcos 26.

Inspection of eqs. (37) shows that only five of the 12 stress equations
are independent. Therefore, we define five ors functions differentiated
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by Roman numeral subscripts I through V and transform egs. (37) into
Slip Slip

Plane Direction ORS

(111)  [110]

T -

(1f1)  [iio]

g%i; Egzﬂ on = ? 5, =3, 35 sin 0 sin (0 + w/4)]

g%}; {g}g — ? G, G, —2—2 sin @ sin (6 — 'rr/4)]

g%i; Eg% oy =— %E [52 -, jﬁ cos § sin (8 + 'n'/4)]

g%}; Eg% o =8 [a, +5, -% cos 0 sin (4 — 1r/4)} (38)

where we have also employed trigonometric angle-sum relations.

Finally, since slip occurs regardless of the sign of ozs, we take the
dislocation density to be proportional within an additive constant to
the quantity oy, which is defined as the sum of the absolute values of
the 120gs’s acting in the {111}, (110) slip system. Such correlation
clearly implies that the stresses are mostly elastic which are not
completely relieved by plastic flow.® Therefore, we have the propor-
tionality .

d.LOCGwLE4|01| +2[|01|| + IUm| + |Urv| +1Uv|]. (39)

Of course, o« can be explicitly obtained by sequential substitutions
from egs. (38), (36), and (32) into eq. (39).

. COMPUTING METHODS

To investigate the effect of material and growth system parameters
on the dislocation distribution in GaAs ingots grown by the Czochralski
technique, the closed form solutions for the temperature profile [eq.
(28)], thermal stress components [egs. (32)], and the sum of the
resolved shear stresses [eq. (39)] must be evaluated and displayed in
suitable graphical forms. An essential function in these equations is
the Bessel function of the first kind orders zero (J;) and one (7). In
principle, they can be obtained from Taylor series representations;?'
however, for large arguments the convergence of the series is very
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slow. Fortunately, Abramowitz and Stegun® provide useful algorithms
for both </, (their egs. 9.4.1 and 9.4.3) and <J; (their egs. 9.4.4 and 9.4.6)
with an accuracy of better than 107"

Summation of the Bessel functions over the complete spectra of the
eigenvalues «, is required by all our results of interest. The character-
istic equation [eq. (19)] immediately suggests not only that a. is a
function of £; but also that if A, — 0, a, is the root of Ji(a.) = 0, while
as h, — o, a, is the root of Jo(an) = 0. Therefore, the characteristic
equation has as many roots as the Bessel functions themselves, i.e.,
their number increases to infinity. Since the first root a; at Ay — 0
occurs at Ji(ay) = 0, @y — 0, it is necessary to derive the limiting
expression for a; for small A; from a Taylor series expansion of eq.
(19). Then we find

2h,

—_— 40
4+ h (40)

o) = 2
which is very accurate up to A, = 0.1. For larger values of 4, and «; up
to i = 6, a numerical table for the roots of the characteristic equation
is given by Carslaw and Jaeger.'” These results can be adapted for
computer use by parabolic least-square fits in 2:* which we find to be
accurate within better than 100 parts per million up to 4, <3.

In view of the inverse ai dependence observed in our key expres-
sions, typically six terms were judged to be adequate to obtain conver-
gent sums in a,. If, however, functional values very near the solid-
liquid interface are of interest, a certain caution is warranted. It can be
readily shown with reference to eq. (28) that, if . is large (long boule),
the radial part of the function is multiplied by the approximate
quantity e ?¥. At the top of the crystal  is sizable; hence, as S,
increases with n, e ¥ readily tends to zero. In contrast, if ¥ is small
(near the solid-liquid interface), many additional e ¥ terms are
needed to achieve convergence.

The preceding considerations permit the evaluation of the temper-
ature profiles in the growing ingot according to eq. (28). Since Tyis a
constant value while 7T, is an adjustable parameter, it is more conven-
ient to present the complement of T'— To/ Ty — Ta, i.e.,

T-T. _T;=T

Tf - Ta Tf - Tn
so that the temperature is always referred to a true constant. In Fig.
3, Ty — T/T; — T. is shown as a function of the dimensionless radius

p = r/ro and distance —z/ro = s — { from the top of the crystal at A
= 0.3 and 0.6 cm . It is advantageous to employ —z/ro for the axial

1 (41)

* A sixth power for a; and a second power fit for a» through as were used.
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h=06em™'
——=—h=03cm""

RELATIVE TEMPERATURE T —T/Tf— T,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
RELATIVE RADIAL DISTANCE, p

Fig. 3—Relative temperature drop (T; — T/T; — T.) versus relative radial distance
(p = r/ro) for GaAs at A = 0.3 and 0.6 cm™' [eq. (28)]. The labels are the distances in
centimeters from the top of the crystal. Other relevant parameters are t = 3600 s, p =
0.001 cm/s, length = 3.6 cm, ro = 2 cm, and « = 0.04 cm®/s. Multiplication by T, — T,
provides the temperature decrease with respect to the melting point (1238°C) of GaAs.

coordinate since it designates at all times an invariant location in the
ingot. It can be seen in Fig. 3 that increasing A leads to enhanced
cooling at the same position and also to a sharper radial temperature
gradient toward the periphery of the crystal.

The radial, tangential, and axial thermal stresses, obtained from eqs.
(32), normalized to (aE/1 — »)[(T; — T.)/200] are presented in Fig. 4,
as functions of p and —z/r; at A = 0.6. In accord with the qualitative
observations in Section I, the stress components are compressive at
the core, while the outer surface is in tension(os = 0. > 0, 0, = 0). The
stress components in Fig. 4 give rise to o the sum of the absolute
values of ors acting in the {111}, (110) slip system, which is taken to
be proportional to the dislocation density of a (100) crystal. In Fig. 5,
we show the radial and axial variation of g, normalized to (aE/1 —
v)[(Ty— Ta.)/200] at A = 0.6 in the (100) as well as (110) directions. It
should be noted that in consonance with experimental results for Si®
and Ge,’ there is a density minimum at p = 0.6 and the core is more
perfect than the periphery. Moreover, apart from the core, the dislo-
cation density is always higher along the (100) than the (110) direc-
tion.

Although Fig. 5 provides an acceptable graphical representation of
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STRESS LEVEL, 0;

-20 | 1 | | 1 1 | 1 1
0 0.1 02 03 04 05 0.6 0.7 0.8 0.9 1.0

RELATIVE RADIAL DISTANCE, p

. Fig. ——Radial (o,), tangential (0s), and axial (.} stress levels versus relative radial
distance (p = r/ro) for GaAs at A = 0.6 em™' [egs. (32)]. Multiplication of the levels
by (aE/1 — »)[(T; — T.)/200] yields the stresses in absolute units. The labels are the
distances in centimeters from the top of the crystal. Other relevant parameters are ¢ =
3600 s, p = 0.001 cm/s, length = 3.6 cm, ro = 2 cm, and « = 0.04 cm®/s.

the thermal stress effect on dislocation distribution in some directions,
it does not allow a ready visualization of the distribution over an entire
wafer surface. Obviously, an explicit plot based on eq. (39) can either
illustrate o:wo; as a function of p at a constant angle @ (as in Fig. 5) or as
a function of # at a series of fixed ps.* What one thus needs to serve as
a ready standard of comparison with experimental information on
etched wafers is a polar plot of p versus § at constant levels of gio.
Since an exact inversion of eq. (39) in this manner is impossible, a
numerical formulation to give p as a function of oy at a constant
must be attempted. The inversion method adopted takes into account
the fact that any curve in Fig. 5 possesses a slowly descending lower
branch up to p = 0.6 and a more rapidly increasing upper branch to p
= 1. Along the upper branch p = f(ow; ¥, 8, h, p, t = constant) can be
represented by a parabolic least-square fit of degree four. The excel-

* § = 0 and 45 degrees correspond to the (100} and (110) directions, respectively.
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Fig. 5—Sum of the absolute values of the 12 resolved shear stress levels (0tot) O
dislocation density versus relative radial distance (p = r/ry). The variation in oy is
shown in the (100) and (110) directions of an (001) wafer. Multiplication of the levels
by (aE/1 — »)[(T; — T,)/200] yields the stress in absolute units. Relevant parameters
are h = 0.6 cm™', ¢ = 3600 s, p = 0.001 em/s, length = 3.6 cm, ry = 2 cm, and k = 0.04

cm?/s.

lence of the fit is shown by the superimposed dots along the explicitly
evaluated curves in Fig. 5. The same type of numerical procedure is
unsatisfactory along the lower branch due to the very slow change in
0wt With p up to p = 0.2. Therefore, in the lower segment, the p value
* corresponding to a set oy, was obtained by linear interpolation within

p intervals of 0.025.
In practice, p versus g was evaluated at up to 20 equally spaced

stress levels in 2.5-degree intervals. By interconnecting the points
corresponding to the same constant oy, a polar plot (p versus #) of the
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stress or dislocation density contours was constructed. Without dwell-
ing in detail on the cumbersome logical choices demanded by the
development of the plotting routine, at the very least, it should be
pointed out that when occasionally near the minimum (p = 0.6), at a
given owt, the parabolic fit to the upper branch yielded a p value
smaller than the extrapolated one from the lower branch, the point
corresponding to the lower branch was utilized.

In Fig. 6, we present the polar plot of the dislocation distribution for
the top wafer of a (100) GaAs crystal pulled by the Czochralski
technique. The growth conditions and the temperature and stress
profiles are identical with those for —z/ro =0 and A = 0.6 in Figs. 3, 4,
and 5. The contour lines shown are equally spaced and normalized to
(aE/1 — »)[(T; — Ta)/200]. As an artifact of the stress profile compu-
tation in @ = 2.5-degree intervals, the upper and lower branches of the
closed contours near the center of a quadrant do not intersect in a
point as they theoretically should, but are interconnected by brief
straight-line segments.

It can be seen that the dislocation distribution exhibits fourfold
symmetry and that the (110) (6 = 45 degrees) is a mirror direction. In

<110>
TOP, 3.6 cm
LONG
3600 sec
6 678910[12)14 e <100>

( @

-

I
e S

~

Fig. 6—Constant oy, or dislocation density contour lines for the top wafer of a (001)
GaAs boule at 2 = 0.6 cm™'. The oy levels are labeled, which can be converted into
absolute stresses when multiplied by (aE/1 — »)[(T; — T.)/200]. The appropriate
parzamet.ers are ¢t = 3600 s, p = 0.001 cm/s, length = 3.6 cm, ro = 2 cm, and k = 0.04
cm®/s.
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all directions, there is a density minimum at p = 0.6. Moreover, an
absolute minimum in the pattern prevails along (110). In moving from
the (110) to the (100) direction (# = 0), an increase in the density is
observed. The crowding of the contours near the periphery of the
crystal implies a sharp gradient in dislocation density, in accord with
the previous experimental work summarized in the Introduction.

IV. RESULTS AND DISCUSSION
4.1 Estimation of the input parameters

Inspecting eqgs. (28), (29), and (32), one can immediately realize that
0w and the resulting dislocation density pattern are affected by a
number of parameters and independent variables. Consequently, it is
necessary to obtain reasonable estimates for the values of these input
parameters, in advance of a detailed examination with respect to their
effect on 6. In Table I, the range and/or value of these sundry
quantities of interest are summarized, except for the heat transfer
coefficient. Fortunately, the thermal and elastic properties are rela-
tively insensitive to temperature change in the range near T;. The data
sources for Table I and the methods of evaluation and extrapolation
will be given elsewhere.?®

Perhaps the most important parameter is h, which is the constant of
proportionality for Newtonian cooling on the cylindrical boundary and
at the top of the crystal [egs. (15a) and (16a)]. Since the crystal may
lose heat by natural convection and/or thermal radiation, one has to
resort to theoretical relations in fluid dynamics® and radiative trans-
fer,' respectively, for guidance in the selection of 4. For the purposes
of this paper, the coefficient for heat transfer by a gas from a vertical

Table I—A summary of input parameters

Lower Upper
Property Limit Limit Fixed
Radius, ro(cm) 2 4
Length, ! = pt(cm) 0.2 7.2
Pull rate, p(cm/s) 0.0005 0.003
Time, £(s) 200 7200
Melting point, T;(°C) 1238
Average ambient temperature 100 300
drop, Ty — Tu(°C)
Thermal conductivity, 0.08*
H{watts/cm°K) )
Thermal diffusivity, «(cm®/s) 0.04
'I‘hermall expansion coefficient, 1.0 x 1078
a(°K™)
Elastic stiffnesses, Cii(dynes/cm?) 10 x 10]:l
C)2(dynes/cm’®) 46 x 10
Cis(dynes/cm?) 5.1 x 10"

* Values in column are near T}.
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wall can be written in the condensed form

1/4
hlem™'] = h'(T—IE) P (42)

where [ is the length of the wall, P is the total pressure, and A is a
function of the thermal and transport properties of the gaseous am-
bient and the solid wall. The expression for a liquid medium is similar
to eq. (42) with the single exception of taking P = 1. A critical
evaluation of the constants required to estimate A’ will be given
elsewhere.”

Based on the Stefan-Boltzmann equation for thermal radiation, the
coefficient for heat transfer by radiation can be obtained from '*'®

(T* - T3)

hlem™]=5.672x 107 ¢

where ¢ and # are the total emittance and thermal conductivity of
GaAs, respectively. We have recently evaluated ¢ of n-type GaAs as a
function of temperature, doping level, and thickness by an analysis of
the absorption spectra. For a crystal of 2-cm radius containing 10
em? n-type impurities, ¢ increases from 0.52 to 0.57 in the temperature
range between 1200° and 1400°K.™ If (T’ — T.) is not very large, the
temperature-dependent term in eq (43) can be given within a good
approximation by 47" to yield for A'®

i T. \
h[cm ] = 00227(m) E/-)r (44)

In Table II, the convective and radiative heat transfer coefficients
are summarized at three ambient temperatures. To perform the cal-
culations according to eqs. (42), (43), and (44), we assumed that (7 —
T)/(T; — T.) = 0.7 and 0.4 for gaseous and liquid or radiative heat
transfer, respectively. We can immediately conclude from Table II
that in the case of LEC growth for Ty — T, = 100, natural convection
via the B;0s(l) competes with radiative transfer in dissipating the heat
from the crystal’s external boundaries. This unexpected result is due
to the relatively low viscosity of B,O; at these temperatures (100 poise
at 1000°C).*' Hence, convective transfer via the gas phase is nearly
negligible in comparison with that by the encapsulating liquid. Fur-
thermore, we find that the approximate eq. (44) for A yields the value
of the radiative heat transfer coefficient with adequate precision. Since
the convective and radiative heat transfer coefficients are additive, A
= 0.6 is an appropriate approximate value for LEC growth if Ty — Ta
= 200°K.
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4.2 The effect of the variables on the dislocation density
4.2.1 Location and heat transfer coefficient

The effects of axial position and % on the 0w pattern are illustrated
in Figs. 7 and 8, respectively. In view of the fourfold symmetry of the
pattern demonstrated in Fig. 6, a polar plot may represent one axial
location per quadrant. In Fig. 7, four positions between the top of the
crystal and 0.2 cm from the solid-liquid interface are shown, assuming
that A = 0.6 cm™', r, = 2 cm, and p = 0.001 cm/s and that 5400 seconds
have elapsed since the beginning of growth. The numerical labels on
all the contours translate immediately into absolute o values if
multiplied by (aE/1 — »)[(T; — T.)/200]. Since this convention is
observed throughout the paper, the effect of a change in ambient
temperature is essentially reflected by a change in Ty — T..

One can readily conclude from Fig. 7 that at a given time the stress
rises from a low value at the top to a maximum at about 0.6 cm from
the solid-liquid interface and then diminishes as the interface is ap-

—
<110>
1.6 cm FROM TOP, 6.4 cm
Top LONG
5400 sec 5400 sec
4
12 8 <100>
111 T T
48 9224 20 24
56 ——
64 32
2 S :
80
16 56
M
(=
4.8 cm FROM 5.2 cm FROM
ToP TOP
5400 sec & 5400 sec

Fig. 7—The axial location dependence of oi or dislocation density contour lines for
an (001) GaAs boule at ¢ = 5400 s and 2 = 0.3 cm'. The ot levels are labeled, which
can be converted into absolute stresses when multiplied by (aE/1 — »)[(T; — T.)/200].
Each successive quadrant in a counterclockwise direction illustrates the dislocation
distribution in a wafer at a progressively shorter distance from the solid-liquid interface.
Thg relevant parameters are p = 0.001 em/s, length = 5.4 cm, ro = 2 cm, and x = 0.04
cm /8.
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STRESS LEVEL, 0 101

HEAT TRANSFER COEFFICIENT, h[cm™')

Fig. 8—The dependence of o or dislocation density on the heat transfer coefficient
(h) and location (—z) for a (001) GaAs crystal at the center and {100) edge of a wafer.
Absolute stress values can be obtained by multiplying the ordinate with (aE/1 — »)[(T;
— T.)/200]. The labels correspond to the distance in centimeters from the top of the
crystal. Other key parameters are ¢ = 5400 s, length = 5.4 cm, 7, = 2 ¢m, and « = 0.04
cm?/s. The curves for the center at the top and 1.6 cm from the top, which should be
shown merging with the 3.2-cm line at low A values, were terminated at 4 =~ 0.06 cm™! to

reduce crowding,

proached. Moreover, it can be seen that the most severe stress gradient
is at the periphery.

In Fig. 8 we show the dependence of o on A at the center as well
as at the (100) edge (r = 2 cm, ro = 2 cm) of a {100} wafer. Except for
the additional slice at 3.2 cm from the top, the other four locations are
the same as in Fig. 7. On the whole, 6 monotonically rises with 4 at
both the center and edge of the wafer. However, locations in the upper
part of the ingot (seed-end) exhibit a maximum at an A value which
increases with increasing distance from the top. The simplest mathe-
matical explanation of this result follows from the properties of the
term e, which plays a prominent role in the limit of large y; and
moderate 8, in the expressions for T'— T, /T; — T. [eq. (28)] and 0.0
[eq. (39) via eq. (32)]. As h becomes larger, so does f8,; hence, for any
 eventually e #** — 0. The smaller the value of ¢ (the closer the cut
to the interface), the bigger the & at which the downturn occurs.

A more physical interpretation of the maximum in the 6. versus A
curves is as follows: The crystal growth model we have been investi-
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gating includes two extreme cases. On the one hand, when A is very
small, T — T/ T;— Ta—> 1, because the crystal temperature uniformly
approaches that of the molten GaAs(7y). On the other hand, when A
is extremely large T' — T /Ty — Ta — 0 because the ingot reaches the
ambient temperature (7,) almost instantly. Regardless of the limiting
case [(T — Ta)/(Ty— Ta) = 0 or 1], the thermal stresses must diminish
if the crystal temperature is uniform and thus possesses a maximum at
an intermediate value of h. Moreover, the temperature at the top of
the crystal is closer to 7', than that of the middle. This explains for the
same A the tendency of the stress at the top to decrease while at the
middle it is still increasing.

Similar to Fig. 7, Fig. 8 also shows the maximum oy, at 0.6 cm from
the solid-liquid interface for both the center and edge of the wafer. At
this location, ot is a monotonically increasing function of 4 in a range
between 0.01 and 1. Thus the maximum dislocation density is attained
at a relatively short distance (say, <1 cm) from the interface. Conse-
quently, by lowering A near the interface, a reduction in dislocation
density can be accomplished.

4.2.2 Radius

In Fig. 9, the o contour lines for a crystal with 2-cm radius are
superimposed over the lines for one with a 4-cm radius. The other
parameters are A = 0.6 cm™, ¢t = 4500 s, p = 0.001 cm/s, and four
locations between the top and 0.5 cm from the interface are given. In
general, considering identical locations, the edge of the crystal with a
larger radius is more highly stressed than the one with a smaller
radius. Comparing equivalent points with the same p = r/ro, the effect
of increasing the crystal diameter on o« appears to be superlinear.
However, for cuts near the interface (0.5 cm) the stresses at equivalent
points are almost the same. This is a consequence of the fact that, at
Y = 0.5 cm, the 0w of a small diameter crystal just reached its
maximum, whereas that of a large diameter crystal is already over its
maximum.

To a great extent, the variation of o with ro mimics the variation
with A (Fig. 8) because the dimensionless quantity h, = roh occurs in
the key equations. But r, also appears implicitly in ¢ = (z + pt)/r.
Hence, any A curve family such as Fig. 8 can be used to visualize the
effect of increasing the radius provided that appropriate adjustments
are made in the &, and y coordinates. A key finding which is consistent
with Fig. 9 is that the larger the diameter of the crystal the farther
from the interface is its location of maximum stress.

Although crystals with a larger ro are exposed to higher stresses,
there is an inherent advantage in growing such crystals if discarding a
portion is an acceptable production practice. For example, in the third
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Fig. 9—The dependence of ow or dislocation density contours on radius and axial
location at 4500 s and £ = 0.6 cm™'. The inner and outer circles confine the profiles for
ro = 2 and 4 cm, respectively. The labels and labels with bars denote identical stress
levels in the GaAs crystal of 2- and 4-cm radius, respectively. Multiplication of the levels
by (aE/1 — v)[(T; — Ta}/200] yield the absolute stresses. Each successive quadrant in a
counterclockwise direction depicts the dislocation distribution in 2- and 4-cm radius
wafers at a progressively shorter distance from the solid-liquid interface. Additional
parameters are p = 0.001 cm/s, length = 4.5 cm, and k = 0.04 cm?/s.

quadrant of Fig. 9 (3.2 cm from the top), a sizable quasirectangular
area of the 4-cm radius crystal is at 0,. < 56. In the case of the 2-cm
radius crystal, almost the entire area is at a comparable level or less.
If level 56 were below the threshold stress for slip, then there would be
an approximately 2:1 gain in area yield in cutting out a rectangular
portion of the larger diameter wafer over keeping the entire area of
the smaller diameter one. Since we have found that the stresses in the
slender ingot would further increase down to a distance of =0.5 cm
from the interface (fourth quadrant), the choice to cut a sizable area,
low in defect density, from the broader ingot is even more favorable.

4.2.3 Time

Time is an implicit variable in the quasi-steady-state temperature
and stress profile equations. In the preceding parts of this section, the
stress levels were given at various axial locations, subsequent to the
growth of a GaAs ingot for a fixed length of time. In Fig. 10, we present
polar plots of the o+ contours which prevail at the top of the crystal—
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Fig. 10—The time dependence of the o.. or dislocation density contours of a GaAs
boule at A = 0.6 cm™'. Starting in the fourth quadrant and proceeding in a clockwise
direction, the time evolution of the dislocation pattern at the top end of a growing
crystal is shown. The labels correspond to the stress levels and are converted into
absolute values when multiplied by (aE/1 — »)/[(T; — Ta)/200]. Other relevant param-
eters are p = 0.001 cm/s and rp = 2 cm.

a fixed location—after 500, 900, 1800, and 4500 seconds of growth. The
other key parameters are A = 0.6 cem™Y, ro = 2 cm, and p = 0.001 cm/s.
One can readily see that, as crystal growth proceeds, the top is exposed
very early to the maximum stress, namely between 500 and 900
seconds.* Afterwards, the stress levels rapidly decline in magnitude. It
is apparent that the patterns at a fixed location but for different
durations of growth (Fig. 10) parallel the ones at a set time but for
different axial locations (Fig. 7, Fig. 9, ro = 2 cm). Intuitively, this
should not be surprising. For instance, after 4500 s, the top is 4.5 cm
from the solid-liquid interface and a segment of the crystal is at a
distance of, say, 0.5 cm from the interface. Then the pattern at the
latter position may resemble that of the top at 500 s, at which time the
boule was only 0.5 cm long. Formally, the time-location equivalence is
only exact when e #+* is a very good approximation of the axial function
in eq. (28). Otherwise, it indicates a useful trend in correlating time

and position variations.
* Compare Fig. 10, quadrants 3 (900 s) and 4 (500 s) near the center.
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By concentrating on a single point at the top, a more complete
representation of oy, can be provided than has been achieved by the
polar plots alone in Fig. 10. We show in Fig. 11 0. as a function of
time at the top (100) edge of a GaAs ingot. A family of these curves
with k varying between 0.01 and 2 cm™' is given. Each member of the
family exhibits a maximum in o\, at a critical time, .. More effective
heat transfer in the growth system leads to an earlier . and to a larger
and steeper maximum in oi.. As already mentioned with respect to

110
h=2
100}
15
20
1
ot (O8N
06
70
8
5
L o | Y
w
>
w
-
8 5ol 03 \
@
=
(%]
40— 0.2
0.15
30
0.1
20
0.05
10 0.03
0.01
ol—T1
0 1000 2000 3000 4000 5000 6000 7000 8000

TIME IN SECONDS

Fig. 11—The variation of oy, or dislocation density with time and heat transfer
coefficient (k) at the top (100) edge of a GaAs crystal. The labels are the heat transfer
coefficients in cm™'. Multiplication of the stress levels by (aE/1 — w)[(T; — T.)/200]
yields the absolute value of the stresses. The other parameters are p = 0.001 em/s, ro
= 2 cm, and « = 0.04 cm?/s.
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Fig. 8, it can also be seen in Fig. 10 that as h — 0 and 0, ot — 0
because the temperature of the crystal approaches uniformly the
constant values Ty and T, respectively.

If A = 0.6 cm ™}, the maximum in o at the top (100) edge of GaAs
is at ~700 s. As the crystal grows longer, the size of the stress
diminishes. Thus, the time-dependence study confirms the conclusion
that the maximum dislocation density is attained during the early
phase of growth. Of course, it is presupposed here that the dislocations
form instantaneously when the stress is above the critical resolved
shear stress and that the density of dislocations thus frozen-in irre-
versibly will not be reduced by the drop in the stress level as the
crystal grows longer. A downward adjustment of A is the most obvious
method by means of which the dislocation density is reducible.

4.2.4 Pull rate

Figure 12 presents a composite set of polar plots to demonstrate the
effect of pull rate on o:. The left and right halves show the results for

TOP, 3.6 cm

TOP, 1.8 cm

LONG LONG

3600 sec (L} 7200 sec (L)

600 sec {L) 1200 sec (L)
h = 0.6

cm !

4B~
= <100>
15
1 12
h = 0.06 h = 0.06
cm—! cm-1
TOP, 1.8 cm TOP, 3.6 cm
LONG LONG
3600 sec (L) 7200 sec (L)
600 sec (L) 1200 sec (L)

Fig. 12—The effect of pull rate (p) on the o, or dislocation density contours at the
top of a GaAs boule. The labels and labels with bars (space permitting) denote identical
stress levels at p = 0.0005 and 0.003 cm/s, respectively. Multiplication of the levels by
(aE/1 — »)[(T; — Ta)/200] provides the absolute stresses. The two quadrants in the
upper and lower halves show the patterns at h = 0.6 and 0.06 cm™', respectively. The
two quadrants in the left and right halves illustrate the distribution at the top of a 1.8-
and 3.6-cm long crystal, respectively. Since the lengths are constant, the times for
growth are consistent with the selected pull rates. Other parameters of interest are ry
=2 cm and k = 0.04 cm?/s.
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the top of a 1.8- and 3.6-cm long ingot, respectively, while the top and
bottom halves represent the profiles at A = 0.6 and 0.06 cm™’, respec-
tively. The other parameters are r, = 2cmand p = 5 X 107" and 3 x
10~ em/s. The fixed lengths correspond to growth times ¢ = 3600 s
and 600 s for p = 5 % 10" and 3 X 10~ cm/s, respectively, for the 1.8-
cm long ingot. When the length is 3.6 cm, the times are doubled. As
one would expect from the analytical expressions and as also seen in
Fig. 12, the influence of a sixfold increase of pull rate on the dislocation
distribution is more pronounced in the case of a longer boule than that
of a shorter one.

To provide a more precise discussion with reference to the effect of
pull rate on 6., an approximate expression will be derived for the
fractional increase of o, at the top (100) edge as p changes. The
calculation can be performed solely by means of eq. (32b) since at the
(100) edge 0w = (8v6/6)ay. Then, in view of the fact that p1 is more
effective in modifying 4, than £8,,* one finds for the relative change in
Otot, (alor — Olot)/0tor, taking only the leading term in the series of eq.
(32b),

Otot = Otot
G{D[
1 p— B_EE]U’-"
Urdhy + B — (b — Bl)e_z‘ﬂ'ur"]

where the double and single primes refer to faster and slower pull
rates, respectively, and [ is the length of the crystal. At a reasonably
rapid A, eq. (45) reduces to

l
‘—"(p{'—pi)——2 [1 ], (45)
o

" ’
Otot — Otot

) 1
o = (p1 —Pi}Q—m(l _l_) (46)
tot Z(h + Br)
To

since the exponentials approach zero. For very small h,, a Taylor series
expansion of the exponentials yields

" r
Otot = Otot

l 1
p = (p7 —P't)z—rﬂ(l ——l'——) (47)
o 1 +r—0(h,3’ - )

According to eq. (45), the effect of stress can be readily observed for
a long crystal if the difference in pull rates is large. If the heat transfer
coefficient is substantial, the full impact of the growth rate term
e”¥* in eq. (32b) is achieved because the multiplier 1 —[1/1/ro(h) +

* Egs. (29) show that B, is relatively insensitive to a change in p, on account of its
dependence on pj /2.
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B1)]1 — 1 [eq. (46)]. On the other hand, if A is minute the multiplier
approaches zero [eq. (47)] and the dependence of 0w on pull rate,
especially for short /, is negligible. The stress patterns in the top two
quadrants (2 = 0.6) and bottom two quadrants (h = 0.06) of Fig. 12
fully demonstrate the validity of these general remarks.

It is apparent that, of all the parameters here considered, a change
in pull rate is perhaps the least effective method by which one may
influence the stress levels in GaAs. As can be most readily observed in
the first quadrant of Fig. 12, for identical spots the wafer sliced from
an ingot grown at a slower pull rate is under less stress than the one
obtained at a faster pull rate. This can be rationalized by noting that
the key quantity , is the sum of 4, and p: /2. In essence, a more rapid
p: is analogous to an increase in &:; hence, the greater p,, the steeper
the temperature gradient from axis to edge and the larger the thermal
stresses. Although the effect of pull rate on the stress pattern is
relatively small, if on account of other factors the resolved shear stress
happens to be only marginally higher than its critical value, it may
become feasible to reduce the dislocation density by lowering the pull
rate.

4.3 Comparison with experiment

In Fig. 13 a macrophotograph of a {100} wafer cut from the vicinity
of the seed or top-end of a Te-doped GaAs boule is presented. To
reveal the dislocation structure, the wafer was etched in fused KOH at
300°C for 1 hour. It has been previously reported by Angilello et al*
that, on a {100} wafer of GaAs, there is a one-to-one correspondence
between the dislocation density determined by X-ray transmission
topography and the pits decorated by the etchant where the disloca-
tions intersect the surface. The dislocation density in Fig. 13 varies
between 10* and 5 X 10*/cm?.

A microscopic view of the dislocation distribution for a Cr-doped
{100} wafer is given in Fig. 14. This composite picture clearly illustrates
the dislocation density in four critical regions of an etched GaAs slice.
One can readily discern the following key features of the dislocation
distribution:

(i) Fourfold symmetry.

(i) Maximum density at the (100) edge.

(¢2£) Minimum density midway between center and (110) edge.

(iv) Intermediate densities at center and (110) edge, but the edge
density is somewhat higher.

In fact, all the calculated 6. contour lines possess the preceding
characteristics. To make the comparison more convenient, we have
replotted the polar diagram of Fig. 6 in the form of a “gray scale” in
Fig. 15. Accordingly, increasing stress levels in Fig. 6 correspond to
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Fig. 13—Macrophotograph at ~5X magnification of a koH-etched {001} GaAs wafer.
The crystal was cut from the vicinity of the top-end of a Te-doped GaAs boule grown by
the LEC technique.

more darkly shaded areas in Fig. 15, in the manner of a geographic
contour map. The agreement between the experimental results and
the theoretical prediction is very good.

The observed symmetric pattern in Figs. 13 and 14 is not dependent
on the type of dopant incorporated in GaAs in view of the similar
distribution of dislocations found in chromium as well as tellurium-
doped samples. However, the farther away the cut from the top of the
ingot the more diffuse the distribution. This is not surprising if account
is taken of the tendency of dislocations to move out of their slip planes
by climb. Morever, the typical 60-degree dislocations™ generated at
the top by thermal stress-induced glide continue into the next-to-grow
layer of the crystal and add to the glide dislocations arising therein.
Therefore, extra mechanisms notwithstanding, the progenitor of dis-
locations in GaAs is crystallographic glide relieving the severe thermal
stresses associated with the Czochralski growth process.
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CENTER

— <100>

200pum

Fig. 14—Photomicrographs of important regions within a KoH-etched {001} GaAs
wafer, The crystal was cut from the vicinity of the top-end of a Cr-doped GaAs ingot
grown by the LEC technique. The original locations are indicated in a realistic though
schematic fashion.

4.4 Estimation of the critical stress level

Having correlated the empirical dislocation density pattern of a
{100} GaAs wafer with the total resolved shear stress profile, 0w, the
critical value of this quantity at which slip is initiated becomes a topic
of preponderant interest. It has been previously stated that in all
diagrams multiplication of the stress level by (aE/1 — »)[(T; — Ta)/
200] yields the stress in absolute units (dynes/cm®). Although the
original stress equations are those of isotropic thermoelasticity, by a
minor modification of the constant E/1 — v it is possible to take into
account to some degree the anisotropy of the cubic GaAs. According
to Brantley, for stresses acting in directions within {111} planes E/1
— » is an invariant quantity.® Since the GaAs slip system is {111},
(110), it is reasonable to employ (E/1 —») g1y in our estimates. Based

628 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1980



Fig. 15—“Gray scale” representation of the constant o, or dislocation density contour
lines for the top wafer of a (001) GaAs boule. The shading is based on the pattern in
Fig. 6.

on Brantley’s work we can write

i = 1 (48a)
1—» G+ P2 — S/3 a
(111)
or
E C(Cu <+ 4012) - 3C?2
(1 - v) Cnt Gt =150, 89

{111)

depending on whether one uses elastic stiffnesses (C;;) or compliances
(#%). The symbols S and C represent the departures from isotropy and
are given by = %, — Az — %Sy, C = Cyy — %(C1y — Cp). If = C
= 0, the crystal is isotropic.

Table III lists the expansion coefficient, (¢E/1 —v) 1y, (aE/1 —
V)isotropic for GaAs at various temperatures. The data sources and their
critical evaluation will be given elsewhere.”® Obviously, the product of
(Ty — T.)/200 times the tabulated value times the stress level given in
the various figures provides the absolute stress.

The critical resolved shear stress (CRss) of GaAs between 250° and
550°C has been determined by Swaminathan and Copley.* To extrap-
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Table lIl—Some elastic properties of GaAs

Temperature (°K) Ty Ty— 100°K T;— 200°K T;— 300°K 298°K

a x 107%(°K™) 10.4 10.1 9.69 9.31 5.80
( aE ) y

T=v/ 1.55 1.51 148 1.44 1.01

107 (dynes/cm*°K)

aE . 2
(1 — p) X 107(dynes/cm*°K) 1.10 1.07 1.05 1.02 0.72
L

1.32 1.28 1.26 1.22 0.86

iso
10"(dynes/cm*°K) []ania-
tropic coefficient

8 X CRsS X 107(dynes/cm?), 45 5.2 6.2 75

olate their results to elevated temperatures, we assumed, as is usual,”
that the crss is an exponential function of reciprocal temperature.
Table III also lists crss multiplied by 8, which we call the effective
crss. The factor 8 is used to facilitate comparison with oy, because at
the (100) edge of a {100} wafer 8 slips of identical magnitude operate
[0wc = 8v6/604].

Let us compare Fig. 11 with the values in the 7y — 200°C column in
Table IIL It can be seen that even for level 5 ox = 5 X 1.6 X 10" = 7.5
% 107 dynes/cm?® is larger than the effective crss of 6.2 X 107 dynes/
cm?. Therefore, if the plotted level is above 4.1, the (100) edge of the
top will develop dislocations at ~1000 s. This corresponds to a thresh-
old of A = 0.02 in Fig. 11. In other words, if 2 < 0.02 cm™ dislocations
cannot be avoided in GaAs at least at the (100) edge of a 4-cm
diameter {100} wafer. At 2 = 0.6 cm™' which is the heat transfer
coefficient appropriate for LEC growth, the estimated o variation in
the (110) direction is ~21, 12, and 54 X 10" dynes/cm’ from the center
through a midway point, and the periphery, respectively (Fig. 10,
fourth quadrant). At the (100) edge 6wt = 105 X 10’ dynes/cm® (Fig.
11). Although all these values are above the effective cRrss, one should
be aware of the errors involved in the various estimates and realize
that it may be relatively easy to achieve a nearly dislocation-free
material near the (110) midway spot (12 vs 105 X 10" dynes/cm?).
Therefore, by judicious design changes to decrease Ty — T,, A and p
which are associated with the Czochralski growth process of GaAs, at
least the reduction, if not the elimination, of dislocations is a realistic
possibility. Since the dislocation density gradient is the steepest near
the periphery, even improvements in the inner two-thirds of the wafer
area could be of practical benefit.
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4.5 The effect of anisotropy

To calculate o, we adjusted the isotropic thermal stress equation
by using an invariant value of E/1 — » valid for stress directions within
{111} planes.* Strictly speaking, this is not identical with finding a
true anisotropic solution for the thermal stresses arising during Czo-
chralski growth. Even under isothermal conditions, to solve the equa-
tions of elasticity for an anisotropic body is a formidable undertaking.*
Only in the case of a simple temperature profile is there any hope to
obtain in a closed form the thermal stresses acting on an anisotropic
cylinder. This can be most clearly seen by inspecting the partial
differential equation of thermoelasticity for a cubic crystal with a
(100) axis, in the so-called stress formulation. Following the derivation
outlined by Boley and Weiner” for plane strain in an isotropic body,
we find for cubic material

S [0%0x o aV:T
V(o + 0,) = T+ T ) = 9
(0t 0) ~ oo\ o ayz) T+ 9

where V* is the Laplacean operator in Cartesian coordinates. If = 0,
the partial differential equation is that of an isotropic body and the
complication due to the inclusion of the second term on the left-hand
side of eq. (49) disappears. Grechushnikov and Brodovskii® succeeded
in solving eq. (49) for a quenched cubic cylinder with a (100) axis by
assuming a radially parabolic temperature profile taken from the early
heat transfer studies of Adams and Williamson.*

Based on the work of Grechushnikov and Brodovskii,*® we can
evaluate the ratio os(anisotropic)/os(isotropic) in the form

oy(anisotropic) _ 1
oy(isotropic) 1 — [%1.974(F5 — $)]

(50)

and substituting the appropriate values

og(anisotropic) = 1.204(isotropic).

Since at the (100) edge of a crystal 6. = 8(V6/6)a, multiplication of
the values in the values in the third column in Table III [(aE/1 —
P)isa] by 1.20 could serve as a suitable estimate of the effect of
anisotropy on ow.. As shown in Table III, the anisotropic coefficient
lies between the (aE/1 — ») 111y and (aE/1 — »)is results. In practical
terms, this means that the threshold level rises from 4.1 to 4.9 if the
anisotropic coefficient instead of (aE/1 — ») (111 is used. This is indeed
a minor perturbation and the conclusions of this study are not influ-
enced by the anisotropic solution.
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4.6 Additional characteristics of the quasi-steady-state solution

The temperature profiles prevailing during Czochralski growth [eq.
(28)] were based on the quasi-steady differential equation [eq. (5)]
which depends explicitly on pull rate and implicitly on time, via y and
¥ [egs. (29)]. Since T, was taken as a constant, in the limit of p — 0,
the @ss solution reduces to the steady-state result of Brice'!/Carslaw
and Jaeger."® To gain insight into the degree of approximation involved
in using the @ss instead of a true time-dependent solution of eq. (4)
when determining the temperature distribution, we have examined the
departure from equality of eq. (4) by substituting T from eq. (28).
Having performed the indicated operations, we conclude that at the
top-end of the crystal the gss solution satisfies eq. (4) if and only if
exp(p1/2 — Bn)pt/ro approaches zero. Since, in general, p:/2 < B, this
finding suggests that a moderate pull rate, efficient heat transfer into
the ambient medium, and a reasonable passage of time since the
inception of growth are the conditions at which the gss solution is the
most satisfactory.

Not only mathematical but also conceptual difficulties are associated
with a search for a true transient solution to Czochralski growth. In
classical heat transfer (or diffusion) problems, a physical body exists
initially (¢ = 0) with given properties (prescribed temperatures or
fluxes). In contrast, in crystal growth, the initial state is that of a liquid
from which the solid materializes by phase transformation at { > 0.
Hence, the boundary conditions for the crystal [e.g., egs. (15) and (16)]
have no initial relevance.

Strictly speaking, heat transfer during crystal growth belongs to the
group of problems involving a change of state which is often referred
to as “Stefan’s problem.” According to Carslaw and Jaeger,'® the few
existing exact solutions of “Stefan’s problem” pertain to very simple
boundary conditions and semi-infinite geometries. A typical illustrative
example is as follows: Suppose a liquid column at 77 is contained in a
very wide and tall crucible. Then, beginning at ¢ > 0 the temperature
at the bottom is lowered to a fixed value below T} and, consequently,
a freezing front moves upwards. Clearly, each region must satisfy the
one-dimensional partial differential equation of heat conduction and
the temperatures are equal at the solid-liquid interface (7%). In addi-
tion, if the density of the two phases is nearly equal, the heat-flux
balance at the interface demands that
aT. - aT, AH;ds
3s "9 | V, dt
where s is the distance from the bottom and J#;(i = crystal or liquid),
AH;, and V,, denote the thermal conductivity, heat of fusion, and
molar volume, respectively. In spite of the nonlinear boundary condi-

He (51)
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tion [eq. (51)], Neumann succeeded in determining the exact vertical
temperature profile in both phases and the location of the interface as
a function of time in terms of error functions.'®

Currently, more sophisticated situations such as a body of finite
length can be treated by Boley’s “embedding technique” which in-
volves an imaginary extension of the solid and liquid phases into the
space actually occupied by the diminishing liquid and growing solid
fronts, respectively.*’ Although this technique circumvents the conflict
between the boundary and initial conditions, it leads to a complicated
integro-differential equation which is only amenable to a series solu-
tion.

Therefore, it is apparent that only by overcoming the severe con-
ceptual and analytical obstacles can one attain a more realistic descrip-
tion of the Czochralski growth process especially in the vicinity of the
solid-liquid interface and at the beginning of crystallization. In partic-
ular, if the effect of the physical and geometrical conditions on the
interface shape is a matter of preponderant interest, a numerical finite-
difference solution of the appropriate heat transfer equation is likely
to be unavoidable.

As a reasonable approximation for GaAs under the prevailing Czo-
chralski growth conditions, it has been assumed in the Qss model that
at the interface (Y = s/ro = 0)T = T}. Below T} in the crystal the gss
isotherms [y = f(p, T'= constant)] are all concave with a maximum at
p = 0. Essentially, the isotherms mimic the complement of the tem-
perature profiles in Fig. 3 [1 — (T — T)/(Ty — T.)]. Of course, at the
interface a flux balance of the type given in eq. (51) must be obeyed.
In general, depending on whether the temperature of the liquid nutri-
ent is higher or lower than on the axis at T}, a convex or concave
interface, respectively, results.*” However, it can be demonstrated with
respect to the @ss calculations here considered that the assumption of
a planar isotherm at 77 is internally consistent. Let us evaluate the
heat flux according to eq. (51). Then, taking 871/ds = 0 and identifying
ds/dt = p,

Jffa—T‘ =p AH; = —3.7 watts/cm’. (52)

as Vm
Differentiating eq. (28) and substituting the appropriate parametric
values,* we find the fluxes at 0.4 cm from the solid-liquid interface and
at the interface at selected values of & as shown in Table IV. The listed
results clearly indicate that if A = 0.1 or less, nearly planar interface
can be maintained; moreover, the heat of crystallization is readily

* AH; = 25.080 kcal/gmole,"" p = 5.16 g/cm™**, t = 3600 s, length = 3.6 cm, p = 0.001
cm/s, ry = 2 cm, ¥'= 0.08 watts/cm°K, k = 0.04 em®/s, Ty — T = 200°K.
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Table IV

hlem™] He % [watts/cm?]
3.2 cm from top 3.6 cm from top
axis/edge axis/edge (interface)
0.03 -1.8/-22 —1.8/-34
0.10 —4.0/-56.1 —4.1/-9.2
0.30 —6.7/-8.9 -7.1/-20.1

dissipated if & = 0.1. It should be emphasized that irrespective of the
shape of the melting point isotherm, its effect on the temperature
distribution at some distance from the interface—where the maximum
in 0w and the dislocation density occurs—is not expected to be

significant.
An additional feature of the @ss model is that the more effective the

convective heat transfer, the more concave the isotherm. The partial
derivatives of T obey the relationship

as _ —(GT/B,O),_.
(%)T =~ @T/am), ©3)

at any isotherm. Evaluating eq. (53) by means of information such as
given in Fig. 3 and Table IV, we find at 0.4 cm from the interface and

atp=1
0.
hlcm™'] ‘ (52) [em]

—6.9
-9.3

0.1
0.3

Obviously, the more negative tangent at 2 = 0.3 corresponds to a more
concave isotherm.

V. SUMMARY AND RECOMMENDATIONS

We have determined the temperature distribution arising during the
Czochralski growth of GaAs by solving the quasi-steady-state partial
differential equation for heat conduction. The solution includes time,
radius, axial location, pull rate, a constant ambient temperature, and
heat transfer coefficient among the variables and permits the assess-
ment of their effect. The temperature profiles enabled us to calculate
the radial, tangential, and axial thermal stresses in the growing cylin-
drical boule in a closed form. These stresses were required to evaluate
the sum of the absolute values of the 12 resolved shear stress compo-
nents (ow) appropriate for the {111}, (110) slip system. It was postu-

634 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1980



lated that in the case of complete stress relief 0. is proportional to the
dislocation density within an additive constant. To directly relate the
model calculations to actual sample geometry, we have generated
constant o or dislocation density contour lines for a circular {100}
wafer. The dislocation pattern has fourfold symmetry. An absolute
minimum in density is found in the (110) direction at ~0.6x wafer
radius. The center and edge of the wafer are heavily dislocated, the
density being largest at the edge. The calculated patterns are in accord
with KoH-etched dislocation patterns on wafers cut from near the top
end of Cr- and Te-doped GaAs ingots, strongly suggesting that the
original source of dislocations is crystallographic glide induced by the
excessive thermal stresses associated with crystal growth.

By a variation of the parameters, we have reached the following
conclusions:

() Doubling the radius (2 to 4 cm) of the ingot more than doubles
the dislocation density. However, for comparable densities, the larger
diameter wafer has a useful area in excess of the entire area of the
smaller diameter one.

(ii) Reducing the pull rate by a factor of 6 (10.8 cm/h to 1.8 cm/h)
has only a small effect on reducing the dislocation density.

(iif) Dislocations near the top of the ingot are grown-in by the time
the ingot is less than 1 cm long (i.e., 6 is at its time-dependent
maximum).

(iv) The more effective the convective and radiative heat transfer
from the surface of the boule, the larger o..: and the dislocation density.
In the case of LEC growth, natural convection (A = 0.24 cm™') and
radiation (A = 0.34 cm™') through the ~1-cm long B:0; column are the
predominant heat transfer mechanisms. For Czochralski growth with
a gaseous ambient, A is only about 2 to 4 percent of that for B20s.

(v) Using extrapolated values of the measured elastic constants,
thermal expansion coefficient and critical resolved shear stress in
combination with the model calculations, we find that dislocations can
be avoided if the approximate inequality (Ty— T,) A < 4°K/cm holds.
For (T; — T.) = 200°K, h should be less than 0.02 cm™". Therefore, it
is not surprising that the LEc growth of GaAs (h = 0.6) leads to
significant dislocation generation. Although, in practice, A cannot be
readily decreased below 0.02 cm™, any reduction in A and/or Ty — T,
will result in a proportional reduction in dislocation density.

Some of these conclusions appear to be consistent with the experi-
ence of Leung and Allred” who reported on a liquid seal growth
technique for GaAs. In this method, B:O; is located at the growth
chamber pull-rod junction. The chamber is filled with excess As; and
a resistance-wound after-heater over the ingot is employed. That this
technique provides, as reported, low-dislocation density crystals is
reasonable in view of the quasi-steady-state model. Accordingly, based
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on molecular weight considerations A for As; is very small (must be
below that for A in Table II), convection through B:0j; is avoided, and
(Ty— T.) is reduced by means of the after-heater. However, for routine
growth of GaAs, the above method is impractical.

Clearly, there are several areas to focus on in the case of LEC growth.
The thinnest possible B;03 layer consistent with preventing As escape
should help limit the large connective transfer well before the dislo-
cations reach their maximum density. Radiation shields will lower the
radiative heat transfer coefficient and after-heaters may be used to
increase T,. Moreover, on large area wafers, the high dislocation
density periphery may be removed following growth. In any event, an
empirical balance must always be struck between reducing the dislo-
cation density by making the system more isothermal and the antici-
pated difficulty to pull usable crystals in a low temperature gradient
environment.
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