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I. INTRODUCTION

A source is encoded into two data streams for transmission to a
receiver over two noiseless (or error-corrected) channels. This receiver
is able to reproduce the source stream without error until there is a
breakdown of one of the channels.

If such a breakdown can be sensed both at the transmitter and the
receiver, then they can prearrange that, in case of breakdown, they
will switch to a different encoder and decoder designed to achieve the
minimum distortion possible for the capacity of the remaining channel.
However, it is assumed that the transmitter will be, at least for some
time, unaware of the breakdown.

If one channel is highly reliable and only breakdowns of the other
need be considered, then one can use an encoding over the reliable
channel as if it were the only one, achieving the rate distortion bound
for the capacity of the reliable channel. The theory of side information
shows that, if the total capacity is sufficient for reconstruction of the
source output, which we assume, then there is an encoding for the
unreliable channel that provides the “complementary” data such that,
when both channels are up, reconstruction is still possible, at least in
the Shannon sense.

However, we assume that both channels are susceptible to break-
downs, and this produces a new type of problem, which is of interest
also in connection with packet transmission schemes.

Il. AN INEQUALITY

Suppose a block of N = N, + N; bits from a memoryless binary
symmetric source is encoded into two signals U and V with respective
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alphabet sizes 9N and 2™:. A receiver of the pair (U, V) is able to
reconstruct the source block X1 without error. There are two other
receivers, one receiving U only and producing a binary block Y} =
F(U), and the other receiving V only and producing the binary block
ZY =G(V).

For each bit position k (1 < k = N), the source bit X is compared
with the decoded bits Y} and Z;. Define the error probabilities

pt=Pr(X,# Ys), pt=Pr{Xs#Z}

Theorem: For all k, the point (p%, pl) lies in the region of the
(Pu, po) plane defined by 0 =p, =1,0=p. =1 and

IEATARATS
Pt \PeT5) =%

To establish this theorem, use is made of the following lemma, of
which we omit the proof, as it is a special case of results that will
appear elsewhere.'

Suppose U, and V, are two independent random variables (their
values could be in any two measurable spaces). Let f(Uo), £(Vo), and
h(Us, Vo) be measurable functions with values in {0, 1}.

Define

pu = Pr{f(Us) # h(Us, Vo)},
pe = Pr{g(Vo) # h(Us, Vu)},

and assume that
Pr{h(U,, Vo) = 0} =%.

Lemma: Under the above assumptions, one has

+1 +1 >1
pu 2 pl‘ 2 —2r

and this inequality is the best possible.

Returning to the discrete situation of the theorem, observe that
there are exactly as many (U, V) pairs, 2¥'2™ = 2", as there are
source blocks X. The condition of exact reconstructibility of X7’ from
(U, V) implies that each pair (U, V) corresponds to one, and only
one, distinct block. As the blocks all have the same probability 277,
the variables U, V are independent and uniformly distributed over
their alphabets.

Consider the kth bit position. Exactly half the blocks, thus half the
(U, V) pairs, have X, = 0. Now we can let h:(U, V) be X,, and take
fr(U), g:(V) to be the kth position in F(U), respectively, G(V). Then
U, V, fi, g h: satisfy the assumptions of the lemma, so that the
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corresponding error probabilities p% and p” lie in the region which was
claimed.
In particular, if p, = p,, then p, = (v2 = 1)/2.

lll. INTERPRETATION

It is important to realize that the above result is derived under the
extremely strong assumptions stated in Section II. It is a lower bound,
generally unachievable, on the resulting Hamming distortion.

One could easily show the same bound as holding within € when the
block reconstruction is correct with probability =1 — 8, and the U, V
alphabet sizes are 2™'(1 + &), 2™(1 + 8;) where the §; are suitably
small. This, however, is still far from the Shannon set-up, for which
one would have to prove that the average Hamming distortions

1 N . 1 N .
Pu= I_V}.Z:l Du, DPe = ﬁfgg]pl‘

(as opposed to each individual pf, p¥ pair) satisfy the inequality within
€, when the expected number of erroneous positions in the reconstruc-
tion of XV is <&, and the U, V alphabet sizes are 2™V ('*%) gN:(148:) ¢,
sufficiently small §,, (i = 0, 1, 2).

Thus, a slightly weaker conclusion has to be derived from a much
weaker assumption.

The best known bound under the Shannon assumptions is defined
by the tangents to the hyperbola at the two points where it cuts the
coordinate axis. This bound was first obtained by Wolf, Wyner, and
Ziv® and gives p, = p. = % in the symmetric case.

On the other hand, work by Cover and El Gamal’ and by Wyner,
Ozarow, and Kaspi (private communication) has shown that, under
the Shannon assumptions, all points above the hyperbola are achiev-
able.

It is an open conjecture that the hyperbola actually is the boundary
of the achievable region, in the Shannon sense. Belief in the validity
of this conjecture is sustained by the fact that, in an analogous situation
for Gaussian sources with square law distortion, Ozarow" has obtained
the corresponding converse.

IV. RELATED PROBLEMS

In a problem of transmission of sampled speech waveforms, A.
Gersho proposed a scheme for graceful breakdown degradation based
on the available redundancy. His scheme does not work for i.i.d.
sources. This writer then proposed the breakdown problem as a source
network with rate distortion, which led to the work and results reported
above. In the general case, a memoryless source is encoded over n
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channels at rates R; (i =1, - - -, n). There are 2" — 1 decoders, one for
each nonvoid subset of channels. For a given distortion measure, the
problem is to find the feasible combinations of distortions and rates.
Above, only the case n = 2 was touched upon. There are several
interesting questions for n > 2. One is the generalization of the key
lemma, which will be taken up in another paper. Another is the
question of the rates required to obtain error-free operation. This is
the subject of the next section.

V. ERROR-FREE OPERATION AND REED-SOLOMON CODES

A discrete memoryless binary symmetric source is encoded over n
channels with equal rates R. Breakdowns can occur and will be sensed
at the receiving end only. It is required that, for a certain value of &,
0 < k < n, if any & (or fewer) channels break down, the source will yet
be reproduced without error. This is to be done with the smallest
possible value of R.

One has R = 1/(n — k), since a unit rate source must be accommo-
dated by the remaining n — k channels each of rate R. For k = 1, it is
obvious that this bound is achievable. One need only take a block of
n — 1 source bits and assign one of them to each of the first n — 1
channels; the last channel carries a parity check bit. This gives a rate
of (n — 1)7' and permits the recipient of any n — 1 channels to
reconstruct the missing channel by the parity condition.

For k > 1, the bound can also be achieved, using (truncated) Reed-
Solomon codes, as follows.

For given n and k, choose r such that n < 2" — 1. Then there exists
a Reed-Solomon code® (a special BcH code), over GF(2") of length
2" — 1 with prescribed minimum Hamming distance d = k + 1. This
code has 2" — d = 2" — k — 1 information symbols; that is, the code
words form a subspace of dimension 2" — d in the (2" — 1)-dimensional
vector space over GF(2"). If n < 2" — 1, take the subset of code words
having their first 2" — n — 1 symbols equal to zero. Dropping the zeros,
one is left with a code of length n with the same minimum distance
d = k + 1. By the group property of BCH codes, the remaining code
words fill a subspace of dimension (2" —d) = (2"—n—1)=n-d +
1 = n — k in the n dimensional vector space over GF(2"). Thus, there
are 2" ® code words.

This code is used as follows. Take a block of r(n — k) binary source
bits and assign to each of the possible blocks a distinct one of the
27n=k code words. The ith symbol in this length n code word is an
element of GF(27); it can be viewed as a block of r binary bits, and
these bits are sent over the ith channel.

The receiver will know the n — k symbols from the surviving
channels, the others being erased. Reconstruction is possible, as the
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code word actually sent is the only one compatible with the received
data, for if a second one were such, the Hamming distance of these
words would be at most k, and this is one less than the minimum
distance d of the code. (See Ref. 5 for decoding algorithms.)

In this way, r bits are sent over each channel to transmit r(n — k)
source bits, which achieves the rate of (n — £)™' as claimed.

Remark that the crucial property of the codes used is that they are
MDs codes.” Note also that Reed-Solomon codes achieve capacity for
the post-office channel,” where truncation is not required because the
formulation is asymptotic so that n can always be increased.
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