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In the study of congestion in complex stochastic server systems, it
is often desirable to have simple techniques available for obtaining
approximations to important quantities of interest. This is particu-
larly true in the early stages of the systems analysis and in cases
where the only “solution” will be via a simulation. In this paper, we
present an extremely simple, but surprisingly useful, technique for the
approximate analysis of some such systems. Beginning with an ap-
proximation for the blocking of overflow traffic that was originally
proposed by W. S. Hayward, we develop a natural extension to the
approximation of blocking in a more general system as well as the
determination of other (than blocking) quantities of interest. For the
special, but important, case of renewal input to exponential servers,
we give an explicit asymptotic (for heavy traffic) representation of the
error introduced by this approximation.

I. INTRODUCTION

The study of many important stochastic server systems often leads
to models that are extremely difficult to treat via exact analysis. An
important example in telephony is the study of a (secondary) trunk
group which is offered the superposition of several overflow streams
[blocked calls from other (primary) trunk groups]. While the traffic
characteristics of this pooled stream are rather complex (the stream is
not even renewal), a useful characterization has been via its peaked-
ness, defined as the variance-to-mean ratio of the number of busy
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servers on an infinite trunk group offered this traffic. This peakedness
concept is the heart of the “equivalent random” method introduced
by Wilkinson' as an approximation technique for this trunking prob-
lem.t Although peakedness is generally not a complete characteriza-
tion of traffic, it has been found to be quite useful in many applications
besides the analysis of trunk groups offered overflow traffic.
Peakedness was used by W. S. Hayward (c. 1959) as the basis for an
especially simple but surprisingly accurate approximation to the block-
ing experienced by the overflow traffic on the secondary trunk group
in this trunking problem. If we are given an overflow stream with
mean arrival rate A offered to N (exponential) servers with rate p, then
Hayward’s approximation for the resulting blocking probability (in
telephony terminology, call congestion), B., is obtained in the following
manner. First compute the peakedness z of the given overflow stream
relative to an infinite group of (exponential, rate ) servers, and then

approximate B. via
N
BczBe(—,f), (H)
z'z

where a = A/p is the offered load in erlangs and B.(N, a) is the Erlang
loss function, which, for integral N, is defined by the well-known
relation (e.g., see Ref. 2):
N/NY
BN, a) =N

¥ (a'/il)

=0
(For the nonintegral number of servers, N/z, generally needed to apply
(H), one can use interpolation—we discuss this further in Section 2.3.)
One main purpose of this paper is to make this approximation more
widely known (and appreciated) and to stimulate interest in the study
of a general class of approximations of this type.

After some preliminaries in Section II, in Section III we consider a
finite system of servers with given service time distribution and an
arrival process for which the peakedness concept is defined and then
we develop a new class of systems in each of which the blocking
probability is the same as for the original system. We refer to this as
the equivalent congestion model. Our investigation of this model leads
naturally to Hayward’s original approximation as well as to extensions
to more general systems. The implications on the applicability of these
approximations as provided by this model are explored via several
numerical examples.

+ Note that, for Poisson traffic, z = 1, while, for the overflow traffic in this trunking
problem, z > 1; hence, the term “peaked” traffic, i.e., more variable than Poisson (see
Refs. 2 and 3).
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In Section IV we show that this equivalent congestion model can be
used to obtain other (than blocking) quantities of interest. In particu-
lar, we obtain an approximation for the variance of the number of busy
servers (carried process) in a G/G/N blocking system as well as for
the peakedness of the resulting overflow process, i.e., attempts offered
to this system which are blocked (lost). For the classical case where
we are considering a (secondary) server group offered overflow traffic
from a (primary) server group offered Poisson traffic, we find that the
expression for the variance of the busy servers is exact, with the only
error resulting from the appearance of the approximate call congestion
for the exact value. For this case, we also find that, if we fix the
peakedness z4 of the arrival process to the secondary server group
while letting the offered load, a, tend to zero, then the peakedness of
the resulting overflow process from the secondary group, z,, tends to
za. This disproves a well-known conjecture due to Wilkinson (c. 1967)
that

20— 1
a—0
2, fixed

In Section V, we derive an explicit asymptotic (for large offered
load) expression for the error introduced by Hayward's approximation
for the special (but important) case of renewal input to exponential
servers. This expression exhibits, in a more quantitative manner, many
qualitative statements that result from our equivalent congestion
model. In particular, it shows that the approximation will tend to
overestimate blocking for “smooth” traffic (z < 1) and underestimate
blocking for “peaked” traffic (z > 1). It also shows that the quantity
(a/z) is an important accuracy parameter.

Il. PRELIMINARIES

In this section, we briefly discuss some concepts concerning peaked-
ness and its use that will be relevant to our discussion.

2.1 Definition of a simple overflow process

In our discussion, we will often refer to a class of renewal processes
that are of particular interest in telephony, namely, the overflow
process from a (finite) server group offered Poisson traffic. We will
refer to this as a simple overflow process, or sop. Thus, Wilkinson's
equivalent random method consists of approximating the superposition
of several (independent) sops by a single sop. Note that while an sop
is a renewal process, the superposition of (independent) soPs is not.
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2.2 Generalizations and limitations of the peakedness concept

For a system in which the input stream is renewal and the service
times are exponential, it is well known (e.g., see Ref. 4) that the
peakedness, z, is given by*

L A
T=gal)

where p is the (exponential) service rate, A is the interarrival time
distribution, ¢4 is the Laplace Stieltjes (L.S.) transform of A, and A is
the mean arrival rate. Thus, for this class of systems, characterization
of a stream by its peakedness is equivalent to characterization by the
value of the L.S. transform of its interarrival time distribution function
evaluated at the mean service rate of its servers. While this dependence
on the value of the mean service rate, g, is well known, as noted in Ref.
4 2(0+) is often used as a convenient approximation. We show later
that this can not only lead to large errors, but in some cases to
meaningless results (negative probabilities). An important fact to note
here is that, even for this class of systems, the resulting blocking can
vary (relatively) greatly for a fixed value of peakedness,® a fact one
should keep in mind when assessing the accuracy of any approximation
that only uses a stream’s mean arrival rate and peakedness for char-
acterization.

The peakedness concept has been used to characterize state-depen-
dent processes (e.g., see Ref. 7) as well as to analyze systems with
constant service times.! In Ref. 4, an expression is given for the
peakedness of a batched renewal process offered to exponential servers.
Although early applications of peakedness were to systems with
“peaked” traffic, i.e., z > 1, “smooth” traffic, i.e, 2 <1, has also been
considered.®'® Eckberg (unpublished work) has generalized these con-
cepts to systems where the input is any stationary point process with
a finite, second-order characterization and the service time is an
arbitrary, finite, mean distribution. He has given explicit representa-
tions for the resulting peakedness functional z(B; Ap) which depends
on the service time distribution B for a given arrival process Ap.
Similar results have also been obtained in studies of the infinite server
queuing system. For example, in Ref. 11, Franken obtains the bino-
mial moments for the same class of systems as studied by Eckberg.
For other related work on infinite server queues, see also Refs. 12
and 13.

In this paper, we consider systems with input processes Ap and
service time distributions B for which the peakedness concept is

z(y; A) = (1)

' 'I;hia formula can also be readily obtained from the discussion of the G/M /oo system
in Ref. 5.

808 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1980



defined. Hence we require the existence of an equilibrium distribution
for the number of busy servers on the infinite server group with finite
first and second moments. In particular, we may assume that our input
process Ap is any of those noted above.

2.3 Nonintegral number of servers

Direct application of the equivalent random method (as well as
Hayward’s approximation) leads to the computation of the Erlang loss
function for a nonintegral number of servers. In his calculation of
blocking tables for peaked traffic,'* Wilkinson made further approxi-
mations to avoid this apparent difficulty. Since then, it has been
shown'® that analytic continuation via the integral representation of
the Erlang loss function provides an excellent interpolation procedure
for nonintegral servers. (Another method of interpolation is given in
Ref. 16.) In the discussion that follows, we tacitly assume integer
values whenever it seems necessary, it being understood that the final
results obtained are well defined for nonintegral values via analytic
continuation or other interpolation procedures.

2.4 Hayward'’s approximation: An exact solution for an approximate
problem

This section provides some motivation for the development of our
basic equivalent congestion model as well as the approximations the
model leads to. We consider a triple (Ar; N, B), where Ap denotes the
arrival process, N the number of servers, and B (¢) their service time
distribution. We denote the mean arrival rate (mean number of arrivals
per unit time) of the arrival processes by A and the mean service time
by 1/p.

Note that, by Little's law,'” the mean number of servers that would
be busy on an infinite trunk group [with service distribution B (t)] is
just given gy a = A/p, ie., the offered load in erlangs. The basic
problem we address is that of finding an approximation to the blocking
probability (fraction of lost attempts) B. for the system (Ap; N, B).
For this purpose, we consider arrival processes that are (partially)
characterized by the first two moments of the distribution of the
number busy on an infinite server group offered this traffic, i.e., Ap =
(a, z) and hence (Ap; N, B) = (a, z; N, B). Thus, in analogy with (H)
of Section I, we can “write down” a generalized Hayward type approx-
imation for this system as

BC(AP;N;B);BH(Q,Z;N,B)=Be(g,g)- (2)

It is possible to construct other systems (Ap; N, B’) for which (a’,
2’} = (a, 2), 1.e., which have the same peakedness characterization and
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for which the application of Hayward’s approximation to these systems
is exact. One such system can be obtained by using a batched Poisson
input with constant batch size k£ = z and a constant service time for
the trunk group (both distributions have the same means as the
respective original distributions). To see this, note that, if we divide an
infinite trunk group (with constant service times) into k£ subgroups and
offer one arrival from each batch to each subgroup, then the input to
each subgroup is Poisson. Since the stochastic processes recording the
number of busy servers in each subgroup are identical (with probability
1), i.e., the subgroups are “perfectly” correlated, the variance-to-mean
ratio of the total number busy is simply % (which we have taken to be
2z). Thus, if we choose k = z, the peakedness of our original system,
then for N a multiple of z, a new system consisting of this batched
Poisson input into constant holding time servers will have the same
peakedness characterization. Moreover, the calls lost from the server
group in the second system will be given exactly by Hayward’s “ap-
proximation,” i.e., eq. (2). The problem with this development is that
it gives little insight into the applicability of Hayward’s approximation
in other, more interesting situations.

. AN EQUIVALENT CONGESTION MODEL FOR BLOCKING SYSTEMS
(A DEVELOPMENT OF HAYWARD’S APPROXIMATION)

The basic problem we are concerned with is studying the congestion
in a system (partially) characterized by (a, z; N, B). We begin by
considering the case of “peaked” traffic (z > 1). A system of m
subgroups is constructed which is equivalent to the original system in
that each of these subgroups (as well as the total system) has the same
blocking probability as the original system. We then show how an
approximation to this blocking probability leads naturally to Hay-
ward’s approximation and to a similar Hayward-type approximation
for “smooth” traffic (z < 1). Finally, we note that we can thus apply a
Hayward-type approximation to a rather wide variety of systems.

3.1 An equivalent congestion system for peaked traffic (z > 1)

We begin by constructing an equivalent congestion model, which is
essentially a generalization of the concepts introduced in Section 2.4.
We assume we are given a server group of N servers offered traffic
with peakedness z > 1. This server group is divided into m subgroups,
each with N/m servers.t The underlying traffic is first offered to a
distributor, which will allocate the arrivals to one of the m groups

t Recall from Section 2.3 that we assume integer values where needed in our
development, the final results applying for noninteger values via analytic continuation.
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Fig. 1—Equivalent congestion model.

according to rules to be given. We also consider each of the m groups
of N/m servers to be embedded in its own set of infinite servers, i.e.,
we have m groups of infinite servers each containing N/m servers from
the original group of N servers (see Fig. 1).

We specify shortly exactly how the traffic might be allocated to each
of the m groups, but for now we make three basic requirements for the
class of rules we will consider.

(z) The rule must result in the groups being stochastically equivalent
(in a sense that will be clear, shortly).

(&t) No arrival is offered to a group with the first N/m servers busy
unless all groups have the first N/m servers busy.

(zzz) If an arrival is offered to a group with the first N/m servers
busy, it is put on the infinite set of servers associated with this group.

Clearly, (i) implies that the arrivals lost by the m groups of N/m
first servers will be exactly those that would have been lost in the
original system. Moreover, because of (i) the blocking probability on
any group will be exactly what the original server group of N servers
would have experienced if offered (a, z).T

Now the mean number of servers busy in this system (including the
infinite overflow groups) must be a, the offered load. Moreover, be-
cause of (i) the mean number of servers busy on the ith group, a;, will
all be the same and equal to ¢ = a/m. If we compute the variance of

T If the lost load in the original (and hence equivalent) system is /, then each group
will share equally in the loss, i.e., have loss {/m. Since each group is offered a/m, the
blocking probability on any group will be //a, i.e., that of the original system.
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the number of servers busy on this total system, we have

v="Y v+ 3 psVoivy,
=1 i)
i=1l,m
Jj=1m
which must equal az, where here v; is the variance of the number of
servers busy on group i and p;; is the correlation coefficient between
the i and j server groups. Now because of (i) all the v/’s must be equal
to, say, U and also all the p;; must be equal to, say, p. Thus we have

mv + m(m — 1)0p = az

or
P az
O mEmm—1Dp) @

And, finally, the peakedness of the traffic offered to each of these
groups is given by

z
= (4)
(1+ (m—1)p)
Thus, an individual group in this equivalent congestion model is
characterized by

imo(®t___ = N
(a’z:n)B)—(m:(1+(m_1)p):m)B) (5)

and the blocking this group sees will be the desired blocking for any
distribution rule employing rules (i) to (iii). While an exact result, this
does not help us much as it stands since, for one thing, computation of
p can be extremely difficult for a given distribution rule and, moreover,
we still need to compute the blocking for peaked traffic when we are
done. We could, in principle, eliminate the second problem by choosing
m so that zZ = 1, i.e., take

_z—1+p
P

and then make the (admittedly wrong) assumption that Z = 1 implies
Poisson traffic and hence use the Erlang loss function (as an approxi-
mation). Even with this approximation, we would still need p. However,
motivated by Section 3.4, we note that, if we choose m = z in (4) and
approximate p by 1, we get Z = 1, ie, (@, & 1, B) = (a/z, 1; N/z, B)
and hence we are led to Hayward'’s approximation, i.e., eq. (2), for the
desired blocking. To obtain some insight into what is involved in this
approximation, we consider a specific distribution rule satisfying (i) to
(iii). Of all the groups where one of the first N/m servers has at least

(6)

m
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Table 1—Blocking for simple overflow
processes

Hayward’s Improved
Exact* from Approxima- Approxima-

Ref. 14 tion tion afz
0.005 0.002 0.004 0.905
0.01 0.005 0.009 1.160
0.02 0.014 0.018 1.485
0.03 0.022 0.027 1.715
0.05 0.041 0.047 2.080
0.07 0.061 0.066 2.375
0.10 0.090 0.096 2.765
0.20 0.192 0.196 3.920
0.40 0.396 0.398 6.535

z=2,N=10

* See footnote on this page.

one idle server, we offer the arrival to the group with the least number
of busy servers on its entire infinite server group—ties are broken by
random selection. In this case, the call is said to be carried. If no such
group exists, we offer the arrival to the group with the least number of
busy servers and consider it lost to the finite (N/m) subgroup em-
bedded in this infinite group. It is clear that this will tend to maximize
p (make p near 1)—within the constraint of equivalent congestion.
Thus, it is not unreasonable to approximate p by 1, an upper bound.
We emphasize that two approximations were made in this development
of Hayward’s approximation. First, for m = z, the traffic offered to
each subsystem, (d, 2), is still peaked, i.e., 2 > 1. Intuitively, this leads
one to suspect that the resulting Hayward approximation would tend
to underestimate blocking. Moreover, intuitively one would expect
that if the load per subgroup, a/z, were small, it would be difficult to
maintain a high correlation with the given distribution rules, i.e., keep
p near 1. Second and perhaps more important, even if 2 = 1, as noted
earlier, the blocking still may not be given by the Erlang loss function.
Indeed, the stream (4, 2) is a rather odd process where the arrivals to
a subsystem depend not only on the state of the subsystem, but the
state of other subsystems.

Section V develops some explicit quantification of the behavior of
Hayward’s approximation for an important class of systems. Here we
give some numerical results which demonstrate the surprising accuracy
of Hayward's approximation and also support the intuitive statements
made above. For this purpose, we first compare Hayward’s approxi-
mation with exact results for a simple overflow stream.}

Table I gives blocking values for z = 2, N = 10, and various load

t The “exact” results are from Ref. 14 and hence contain the approximations noted
earlier. The impact on the accuracy is at most a + 1 for the next digit (not shown) for
values greater than 0.01, but can be greater for smaller blocking values.
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Table ll—Blocking for simple
overflow processes

Hayward’s
Exact* from Approxima-

Ref. 14 tion a/z
0.001 0.0013 13.245
0.005 0.00567 15.205
0.01 0.011 16.295
0.02 0.021 17.640
0.03 0.031 18.600
0.05 0.061 20.075
0.07 0.071 21.285
0.10 0.101 22.885
0.20 0.200 27.740
0.40 0.400 39.435

z=2 N=50

* See footnote on p. 813.

levels. (The column marked “Improved Approximation” is discussed
in Section IV.) As anticipated, for a/z small we see somewhat poor
agreement and, in fact, an underestimation of blocking by Hayward’s
approximation, while the agreement becomes quite good as a/z in-
creases. Table II shows data for z = 2, N = 50 and increasing load.
Here we see excellent agreement throughout, but unlike case 1, a/z is
(relatively) large throughout. As a last case, we consider an extremely
large value of peakedness, z = 10. Table III shows data for this case
but in a different way. The exact blocking is fixed at 0.40, and the
offered load is increased with a corresponding increase in /N to maintain
this blocking level. We again see improved accuracy with increasing
a/z and, moreover, a comparison of Tables I and III also shows that
accuracy appears to be more related to a/z than simply to a.

We note before proceeding that if one is truly analyzing a simple
overflow stream, then the above comparisons show relative errors for

Table lll—Blocking for simple
overflow processes

Hayward’s
Approxima-

tion alz

20 0.358 1.754

30 0.382 3.308

40 0.390 4.892

50 0.394 6.495

60 0.396 8.110

70 0.397 9.733

80 0.398 11.364

z =10, B = 0.40%

* Exact from Ref. 14; see footnote
on p. 813.
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Table IV—Blocking for batched Poisson
(batch size = 3)

Hayward’s
Approxima-  P(N) (Time
Exact tion Congestion) a/z
0.0244 0.0184 0.0094 5
0.2264 0.2146 0.1124 10
0.4186 0.4103 0.2366 15
0.5437 0.5380 0.3339 20
0.6265 0.6224 0.4083 25
z=2,N=20

Hayward’s approximation. However, if one is using this type of traffic
to approximate a more complicated system, e.g., the superposition of
several such streams, then it is not clear that the equivalent random
method is preferable to Hayward’s approximation—particularly in
light of the latter’s ease of use.

As a second numerical example, we consider a nonrenewal input,
namely, batched Poisson arrivals with constant batch size (i.e., the
input process discussed in Section 2.4) offered to an (exponential)
server group. Note for this process, the peakedness z is given by* z =
(2 + 1)/2. Table IV shows blocking values for z = 2 (k = 3), N = 20
servers, and the load ranging from 5 to 50 erlangs, while Table V is for
z2=>5(k=29), N=20servers and the load ranging from 1 to 10 erlangs.
We have also included P(N), the (exact) probability that all servers
are busy at an arbitrary time point (time congestion), for comparison.
Again we see improved accuracy for larger values of a/z.

3.2 Hayward's approximation for smooth traffic (z < 1)

The above development can readily be inverted to derive a Hayward-
type approximation for systems with smooth traffic, (z < 1). What we
need to do is assume the system (a, z; N, B), z < 1, is the result of
splitting a larger system (ma, zn; mN, B)z, > z, into m groups. We

Table V—BIlocking for batched Poisson
(batch size = 9)

Hayward's

Approxima-  P(N) (Time
Exact tion Congestion) ajz
0.03991 0.0154 0.0034 1
0.1424 0.0952 0.0189 2
0.3542 0.3107 0.0691 4
0.5003 0.4696 0.1208 6
0.5966 0.5746 0.1670 8
0.6630 0.6467 0.2075 10

z=5,N=20
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then have [analogous to (3)]:
Vi = mazm = mV + m(m — 1) Vp, (7
and hence
Zm =2z + (m — 1)zp. (8)

Thus, again assuming p = 1, we see from (8) that for 2z, = 1 we need
m = 1/z. The blocking probability we seek is then given (approxi-
mately) by

Bc(AP; N, B) = BH(G, 2, Nn B) é Be(g; g)$ (9)

i.e., we again have a Hayward-type approximation. Now, however, we
see from (8) that, for m = 1/z, z» < 1, and hence we would expect this
type of approximation to overestimate blocking for smooth traffic. We
briefly discuss an example that illustrates this and will also allow us to
introduce some concepts that we will build on in Section V.

For a single (exponential) server with renewal input, the blocking
probability, B., is given by ¢4(u), the L.S. transform of the interarrival
time distribution evaluated at the mean service rate (e.g., see Ref. 5).
With the aid of eq. (1), this can be written as

B.(a; p) = (a + z(p) — 1)/(a + z(p), (10)

where @ = A/u. We have written z(u) for z(p; A) supressing the
dependence on the interarrival time distribution—which, for this dis-
cussion, we assume is fixed.

Equation (10) reveals an interesting fact. As noted in Section II,
although peakedness is known to depend on the mean service rate
(1), 2(0+) is often used as an approximation since it is generally much
easier to obtain. However, we note from (10) that since B. must be
nonnegative, we must have a > 1 — z(p). Hence, the use of z(0+) not
only can lead to erroneous results but, in particular, for smooth traffic,
can lead to meaningless results. For example, the peakedness zp of a
system with deterministic interarrival times and exponential service
times is given by [from eq. (1)]

1
T-go() ~ 1-e’

zp(p) = a.
However, for this system the peakedness is often taken to be ‘%, the
value of z(0") (note
ZD(P-) — 1/2)!
0+

>

(a—)
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Table VI—Blocking for D/M /1

Hayward's
Offered Exact Approxima-
Load, A Blocking tion*
0.2 0.0067 0.054
0.5 0.1353 0.200
1. 0.3678 0.400
2. 0.607 0.615
5. 0.819 0.819
* Uses z(0+) = %%
while we see that clearly
zp(p) — 1§

p—x

(a—0+)

Thus extreme caution should be taken in the use of z(0+) to approxi-
mate z(p). Keeping this in mind, we assume for the moment that z(p)
= %, This gives, for our Hayward approximation to the blocking in a
D/M/1 system,

1 a’
Br.'(AP; N: B) = BH a, En 1: B = BE(2) 2a) =1—' (11)
(5 +a+ az)
while the true blocking is given by
B.Ap; N, B) = B.(a) = exp(—1/a). (12)
It is easy to see that, for a sufficiently large,
1 1
BH(G) = Bt-(a) + - 3 +0 (-i)‘ (13)
6a a

Thus, as anticipated, this Hayward-type approximation improves with
increasing load and over estimates blocking. What about “light” loads?
Table VI compares By(a) and B.(a) for various load levels. We see
that the accuracy degrades quite rapidly as ¢ — 0 and, moreover, we
note that this is not due to using z(0+) rather than z(u), since this
improved z would, in fact, make things worse. Indeed, since z(p) — 1
as @ — o (@ — 0), a Hayward-type approximation using z(p) would
result in

N a a
Bul(a) = Be(z(u} , z(m) et (14)

T It is easy to show from eq. (1) that z(u) I-l:"""’ 1 for any orderly renewal process.
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Comparison of (14) and (12) shows that the (relative) error is of
exponential order. The main conclusion to be drawn here is that
peakedness may not be a good characterization of blocking systems
for extremely light loads—a fact that is clearly demonstrated in (6).

IV. OTHER APPLICATIONS OF THE EQUIVALENT CONGESTION MODEL
FOR LOSS SYSTEMS
In this section, we show that the equivalent congestion model used
above to develop and extend Hayward’s approximation can be used to
obtain similar approximations to other quantities of interest in traffic
systems as well as to improve the approximations already obtained.

4.1 Carried calls process

In many systems, it is important to determine the variance of the
number of busy servers. For example, these busy servers may serve as
sources to other systems. The equivalent congestion model used in the
above development of Hayward’s approximation can readily be used
to estimate this quantity. Indeed, if we assume that Z2 =1 (p = 1) for
each subsystem in the model (and that this input traffic is Poisson),
then the variance of the number of busy servers, v,, on this finite
subgroup of N/z trunks is given by (Ref. 2, p. 97)

v = a’'(1 = lit(d, n)), (15)

where d’ is the load carried (mean number of busy servers) by the
finite subgroup of 7i = N/z servers offered d = a/z erlangs of (Poisson)
traffic and llt(d, r) is the load carried by the last server in this group
if it is considered as an ordered hunt group, i.e.,

Ut(d, n) = @(B.(ri — 1, d) — Be(ni, d)).

Using the assumed value of 1 for the correlation, p, between groups we
find that the variance of the number busy on all z groups is given by
V, = 2%u, = 2%d’(1 — Ilt(a, n)). (16)
Using the fact that
. nB'(i—-1d
B -G 1)

3

we find that (16) can be written as

pN=a) “r)), (17)

Vo= za’(l — aB.(n, @) ;

zZa

where @’ = zd’ is the total carried load, thus providing us with an
approximation for the variance of the carried load. Now for the case

where the input stream (a, 2) is a simple overflow process, by using
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the results of Brockmeyer™ for the joint state probabilities for the
total system (primary plus secondary group), one can readily derive
the following expression for the exact variance, V§, of the number of
busy servers on the secondary group®

Vi= za(l — a'Be(a, z; N) M)
za
where all parameters are as above and B.(a, z; N) is the exact blocking
probability. Thus, comparing this result with (17) we see that the only
error in the use of (17) to approximate V} is the appearance of
Hayward’s approximation By for the true blocking probability, B
Besides giving more credence to Hayward’s approximation for block-
ing, this consistency also indicates that this approach might prove
useful in developing approximations for other quantities of interest in

traffic systems.

4.2 Overflow process

Our equivalent congestion model can also be used to obtain an
approximation to the peakedness, zq, of the calls lost from the N-server
group which is offered a erlangs with peakedness z. This quantity is of
interest in designing hierarchical networks, since it then characterizes
the traffic offered to the next level in the hierarchy. Under the
assumption that Z = 1, we can use the well-known result (e.g., see Ref.
2) that the peakedness of the overflow from the n server subgroup is
given by

éu=1+ti'—ci+——a— (18)

FYE]

A+l—a

where @’ is the load carried by this group. Again, with perfect corre-
lation (p = 1), the peakedness of the total overflow process is found to
be zZ,. Expressing the variables in (18) in terms of the original (a, z;
N), we obtain the approximation

N a a
20—2(1‘23(2- )*ﬁ) (19)

where @’ is the total carried load. Now for large a, B. has the
asymptotic behavior [e.g., see Section V, eq. (26) and following discus-
sion]:

N NN-1)

_l(NCE)_'1+ T*‘O(%),

from which we find that (19) readily yields the limit

20 — 2,

a—s oo
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as might be expected. However, we see from (19) that

20 — 2,
a—0

a fact that seems to contradict a well-known conjecture by Wilkinson
(c. 1967) that, for a simple overflow process (soP) offered to exponential
servers,

Zp —> 1.

a—0

We now show that for such a system (sop offered to exponential
servers) the correct limit is

Z0 — 2.
a—0

If a stream (a, 2) is an sop, then A., N, exists such that (see Fig. 2)
(for a detailed discussion, see Ref. 2, Section 4.3 as well as Section 4.7)

a = A:B.(N., A.) (20)
A

(Ne+1+a—-A)" 21)

z=1l—-a+

We assume z is fixed and consider A., N. as determined by eqgs. (20)
and (21) to be functions of a. Solving (21) for A, yields

_(z+a-1Ne+A+1)

(z+ a) (22)

A.

Now if this stream (a, 2) is offered to N (exponential) servers, then the
exact peakedness of the overflow, z§, is given from (18) as
A,

(Ne+ N+1-A4AJ)° 23)

26=14+A,—A.+

OVERFLOW = (Ae—Ae’, Z5)

Ae' = TOTAL CARRIED LOAD — (a,2)

Ne

Ae,z=1

Fig. 2—Equivalent random representation for simple overflow streams.
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where A, is the load carried by the combined N. + N server group,
ie.,
AL =A.(1— Be(N.+ N, A.)).
Substituting (22) in (23), we obtain
_ (z+a—1)(Ne+a+1)

zp=
0 (z + a)

(z+a-1)

B N.+ N,
( (z+a)

(Ne+a+ 1))

+(z+a—1)(Ne+a+1)/

(z+a—1)
(z+ a)

.(1 - Be(Ne wnEre ) v 1)))) ] (24)
(z + a)

Substituting (22) in (20) yields the following implicit function for N.:

[(z+a)(Ne+N+1— (Noe+a+1)

=Eﬂ;1_)(Ne +a+ 1)B.
(z + a)
.(NE,M(NE ta+ 1,)_ (25)
(z + a)

Now for a — 0, the right-hand side of (25) will tend to a finite (nonzero)
limit for fixed N.. On the other hand, for fixed a, the right-hand side
can be written in the form (C, N, + C:)B.(N., C1N. + C:) where C, and
C, are constants and C, < 1. Thus, for fixed a, the right-hand side of
(25) tends to 0 as N. — ®.'” Thus the solution, N,, of (25) must satisfy

N.(a) — =

a—0

(z>1, fixed)

Using this asymptotic result in (24) yields the desired result, i.e.,

(Ne — o).
It should be pointed out that this behavior was not detected in the

numerical studies of Wilkinson since it requires (for the cases consid-
ered by him) extremely small values of a. Figure 3 reproduces one of
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(N =40 TRUNKS)

Zo, PREAKEDNESS OF OVERFLOW

Z INPUT __¥F_

\

EXTENSION OF WILKINSON'S CURVE

1 I | I | l
0.0001 0.001 0.01 0.1 10 100 200
OFFERED LOAD ERLANGS

Fig. 3—Peakedness of overflow.

Wilkinson’s curves. Our approximation is also shown for comparison.
(Note that the true peakedness of the overflow is still only 1.75 for
a = 0.0001.) To provide some intuitive understanding of this phenom-
enon, we note that fixing 2 means fixing the variance-to-mean ratio of
the number busy on an infinite server group offered this traffic and
hence, as a — 0, the coefficient of variation of this process (number
busy) will tend to infinity. That is, by fixing z and letting a — 0, we are
changing the “structure” of the process to one that is “infinitely
bunchy.”

4.3 Improved approximations

One method to improve the approximations given here would be to
obtain a better estimate for p, i.e., better than 1. We give a simple
illustration of how this might be done. Assume we have an input
stream characterized by (a, z) = (a, 2). Assuming p = 1 yields m = z
= 2 from eq. (6). Given that we have two subgroups, we now attempt
to estimate the actual correlation between the two busy processes.

Let n; represent the number busy on the ith infinite subgroup (i =
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1, 2) and let P, be the probability that n; + n. = n. Note that assuming
p = 1 is equivalent to assuming n, = n: for all n. We can then obtain
an improved upper bound on p by assuming that, when n is even, n,
= n, and that, when n is odd, | n, — nz| = 1.

We then havet

En) n a
E(n) = E(nz) =T=§=§,
2
n
End) =E(nd) = 3 (2 ' n even
n o n =
l ’ n=0 |1 n+12+1 n—]_2 n odd
2\ 2 2\ 2 J°
13 ., 1
=— 3 n'P,+- P,
4"20 4n—§ojdd
n) (n
- 2/\2/ n even
E(nin) = Y 3
no | (n—1)(n+1) n odd
2 2 '
_1o 1
——anonPn 4n2vnddpn
Thus
Cov( ) = E(n — m)( _ﬁ-)——_z—l y p_l—z
oL I ‘ —4n 4,%m40 " 4n.
and
1 1
var(n) = E(n: — 7)* = % n+ Z,,_Eodd P, — 1 2
Hence

_cov(m, na) 67— Yo
var(n;) on+ Yo

where ¥ = Y-oda Ps and o7 is the variance of n, which is just given by
az. Thus

_az— Yo
P az+ Yo

T In what follows, E(x) denotes the expected value of x.
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Hence, given an estimate of Y, we can use the resulting p in eq. (6) to
obtain an improved value for m, the number of subgroups to be formed
in the equivalent congestion model of Section III. As a very rough
estimate, we could assume that ) equals % (at least if Py < 0.5). This
already gives a reasonable improvement as indicated on Table I (data
marked “Improved Approximation”). This method can readily be
extended to z > 2 and results in an estimate of p that also depends
only on a, z, and P,. Thus, with some estimates of P, (e.g., Ref. 7 or
other techniques) and a reasonable interpolation procedure for non-
integral m, we can determine an improved relation for m via (6).

V. ASYMPTOTIC BEHAVIOR OF THE GENERALIZED HAYWARD'S
APPROXIMATION
In Section IV we saw that, for the D/M/1 blocking system, the error
made in using the generalized Hayward’s approximation was asymp-
totic (for @ — =) to 1/6a® [eq. (13)]. Note that, if B. is the Erlang loss
function, then we have analogous to (13) for a D/M/1 loss system

1 1
Bg(l, a) = Bc-(l, (1) + 2_(12 + 0(?)(0.—) m).

That is, the generalized Hayward’s approximation picks up one more
term in the asymptotic behavior of the true blocking than does Erlang’s
loss function. This provides an interesting view of this type of approx-
imation, and we are naturally led to ask if this is a more general
property. We show that this is the case.

For renewal input to N exponential servers, the blocking is given by
(e.g., see Ref. 5, p. 179):

-1 o (N) L1 —g(jp)

BN, a) Ea i ;'I-:Il o(jp) (26)
where ¢ is the L.S. transform of the interarrival time distribution, p is
the mean (exponential) service rate, a = A/p is the offered load, and 1/
A is the mean interarrival time (the empty product is taken to be 1).
Using (1) to replace ¢ by z in (26), we have

N i .
B:'N,a)= Y (N) I Jh

S\t ) S A+uz(p) - 1)

or
N
gl(N: {1) = E Ci
i<0

where ¢; = 1 and, denoting z(ju) by z;,
(N—-it+1)

Ci-yz———/——— .
zi—=1)+a

Ci =
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Now for large a (small ) we also have the asymptotic expansion®

2(p+) = 2o + kp + O(p®) (27)
where
2y 2
2= 2(0+) = (_6_{\.-'-_1),
2
_ Z(0+)2 2 Qa3
k= ) A 5

o> is the variance of the interarrival time, and a3 is its third moment.
Thus, for a large (u small), we have the asymptotic expansions

- _ 2
c1=§(1—“’"‘ D, (a 2”)+o(i4)
a a a a

=N (1—2(22—1))+O(i4)
a a a

N -2 1
C3=C2 ( ) + O(—4)
a a

1
=0z
ci= o(id), [>4.
a

Thus, for a — o,

B:'(N,a) =1 +§+$(N(N— 1) = N(z,— 1))
+% (N(zy = 1)) = N(N—-1)(z1— 1) =2N(N = 1)(22— 1)

+ N(N-1)(N—-2)) + O(%). (28)

Now
N N
B#' (N, a) = B;‘(—, 5) -y d
21 21 i=0
where
do=1
and

(N/z)) —i+1) (N —izi +2))
a/z - a ’

dr‘= i1
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Hence, for a — o,

N N(N-
B#(N, a)=1+;+#

a
+N(N""1)(N_231)+0(i4)_ 29)

aﬂ

Subtracting (28) from (29), we obtain

B3 (N, a) - B:'(N, a)
_NGi-2z+2+2N@-2) o(i)- (30)

a3

Now, since z; = z0 + O(1/a), we see from (30) that

B# (N, a) - B:'(N, @) =222 =D o(l,)
a a
or
_ Bu(N, a) 1
B:(N, a) = 1 — [Bu(N, a)Nzo(zo — 1)/a’] + O(?)' (31)

In addition to providing an analytic representation of the asymptotic
error, eq. (31) shows explicitly some of the qualitative properties that
evolved from our somewhat heuristic development of Hayward's ap-
proximation in Section IV. Specifically, we see that for peaked traffic
(z > 1) Hayward’s approximation will underestimate blocking while
for smooth traffic (z < 1) it will tend to overestimate blocking—at
least in the asymptotic region for large a. Moreover, we note that a/z
is, indeed, a reasonable accuracy parameter.

VI. CONCLUDING REMARKS

Hayward-type approximations have proved extremely useful in ob-
taining simple (but often accurate) approximations to various quanti-
ties of interest in a multitude of applications. We have given a quali-
tative development of the original approximation of Hayward for the
blocking seen by overflow traffic and shown how the model used for
this purpose could be used to obtain extensions and enhancements. In
particular, we have shown how to apply Hayward’s approximation to
more general systems, determine similar types of approximations for
other quantities of interest in stochastic server systems, and improve
the accuracy of these approximations. For the special case of renewal
input to exponential servers, we have given an explicit asymptotic
expression for the error introduced by the generalized Hayward ap-
proximation which exhibits, in a quantitative manner, the qualitative
statements that evolved in our development.
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It is hoped that this paper will generate research into this apparently
fruitful area of approximation techniques.
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