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Trunk Network Administration
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Administrative control of the Bell System telephone network re-
quires demand-servicing procedures that maintain network service
in a cost-effective manner and an administrative measurement plan
that determines whether the network provisioning process is provid-
ing a proper balance between network service and network utiliza-
tion. The traffic measurements available are busy-season, busy-hour,
trunk-group usage and average blocking. Statistical variation of
these measurements can lead to an incorrect assessment of network
performance and an unstable network provisioning process, resulting
in costly excess reserve capacity in the network. To minimize sensi-
tivity to volatile measurements, administrative measurement bands
have been employed to define a new demand-servicing procedure and
a new trunk service measurement plan for use within the Bell System.
This paper derives the probability distribution function for measured
blocking, which is required to construct the measurement bands, and
outlines the new Bell System administrative procedures. The distri-
bution has a discrete component, the probability of no blocking, and
a continuous component. The last function is well approximated by
a two-parameter beta distribution. The resulting measurement bands
are a strong function of trunk group size and a weak function of
traffic characteristics. Small trunk groups (fewer than 10 circuits) are
much more volatile than large groups. Large groups, properly sized
for 0.01 blocking, should not experience more than a 0.03 average
blocking during the 20-day busy season busy hour (BSBH), although
a properly sized two-circuit group may experience as much as 0.08
average BSBH blocking.

I. INTRODUCTION

The traffic measurements available for network administration are
also used to estimate the number of trunks required to meet the
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network engineering objective: an average blocking of 0.01 on the final
trunk groups and a minimum-cost configuration for the high-usage
trunk groups.

The statistical variation of the traffic measurements during the
20-day busy season causes volatility in the trunks-required estimates.
This can lead to an incorrect assessment of network performance and
an unstable network provisioning process. Such problems eventually
result in unnecessary excess reserve capacity in the trunk and facility
network, which can exceed 10 percent of that actually required. Ac-
cordingly, a stable provisioning process is important to minimize the
reserve capacity while maintaining network service at the objective
level.

To minimize the sensitivity of the provisioning process to volatile
measurements, a concept of administrative measurement bands has
been used recently to define a new demand-servicing procedure and a
new trunk service measurement plan for use within the Bell System.
The demand-servicing procedure provides specific guidelines for de-
tecting and correcting service problems. The trunk service measure-
ment plan provides a measure of the balance between network service
and network utilization.

The probability distribution functions for the measured average
blocking, B, and estimated trunks required, é, are required to define
the administrative measurement bands. The distribution for ¢ is pro-
vided in Refs. 1 and 2. The purpose of this paper is to establish the
distribution of B and outline the new Bell System administrative
procedures.

The distribution for B has a discrete component, the probability of
no blocking, and a continuous component. The continuous component
is well approximated by a two-parameter beta distribution.

The distribution for B and the previously derived distribution for é
were used to obtain probability intervals, called measurement bands,
for both B and é. These bands have been used to establish a new
demand-servicing policy and a new trunk service measurement plan
for the Bell System.

The demand-servicing procedure provides specific guidelines for
detecting and correcting service problems. For the larger final trunk
groups, demand servicing is not initiated unless B exceeds 0.03. For
the smaller groups, the threshold is a function of trunk-group size, and
increases as the number of circuits decreases.

The trunk-service measurement plan is based on a comparison of
the network-sample distribution of B and ¢, with the corresponding
theoretical probability distributions. The deviation between the sam-
ple and theoretical distributions is measured and reduced to a single
performance index which is a balanced measure of both service and
utilization.
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The probability distribution of B is derived in Section IL. Section III
gives numerical results which illustrate the statistical properties of B,
and Section IV discusses the major application of the results for
network administration.

Il. THE DISTRIBUTION FUNCTION FOR AVERAGE BLOCKING

In the Bell System, the trunk-group blocking probability for final
trunk groups is estimated by measuring the fraction of blocked calls in
each of the time-consistent busy hours of the 20 consecutive business
days in the busy season and then averaging the 20 measurements to
obtain the busy-season, busy-hour, average blocking. The average
blocking can be highly variable. The variation is a function of the
length and number of measurement intervals, the traffic characteristics
(load, peakedness, and day-to-day load variation), and trunk group
size. In this section, we establish an approximation for the probability
distribution for average blocking which is adequate for engineering
purposes.

2.1 Mathematical model

We consider a service system with ¢ servers having exponentially
distributed service times and serving traffic under a blocked-calls-
cleared service discipline. The mean service time is the time unit. The
system is observed during n disjoint measurement intervals .4, ...,
S, each of length T'. During .#%, the interarrival times are independent
and identically distributed (i.i.d.) with mean 1/«;. The peakedness z of
the offered traffic is constant over all the intervals.* The system is in
statistical equilibrium during each interval, and the initial point of
each interval is a stationary (random) point for the arrival process.
The loads a;, ---, a, are independent and identically distributed
according to the distribution function I'(a| &, ve) with mean a and
variance vq(the day-to-day source-load variance).

We use A;(T) and O;(T), respectively, to denote the number of
arrivals (call attempts) and the number of calls which were blocked
(the overflows) during .%; the (measured) observed blocking is B; =
O;(T)/A;(T). The sample average of the observed blocking is

B.= B;.

S| =
VR

J=1

In this section, we derive an approximation for the probability distri-
bution function for B,.

* It is known that the peakedness of the traffic overflowing typical high usage trunk
groups is relatively insensitive to fluctuation in the day-to-day loads offered to those
groups (see Ref. 4).

BLOCKING DISTRIBUTIONS 831



The distribution can be expressed as a sum of two components; for
0=b=1,

P{B,<b)}=P{B,=0) + P{B,>0}P{B.<b|B.>0}.

In the next subsection, we derive an approximation for the discrete
component P{B, = 0} and obtain the relations necessary for the
computation of the conditional distribution.

2.1.1 The discrete component
Since ay, - -+ , a, are i.id., By, - -+, B, are also i.i.d. Thus,

P{B,=0} = (P{B,=0})" (1)

Since B, = 0 if and only if there are no overflows in .4, we need to

determine the probability distribution function G. for the length of

time to the first overflow after the initial point of 4. After G. is

determined, we then have (setting a; = « for notational simplicity)
P{B, =0} = j P{B:=0|a})dl'(«| &, va)

(i}

= J [1 - G(T|a)]dl(a| &, va). (2)
0

If H. is the conditional distribution for interoverflow times given the
offered load a, then G. is the corresponding excess-time distribution;’
ie.,

T
Go(T| @) = a0 j [1— H.t|a)]dt, 3)

where a is the mean overflow load corresponding to the offered load
a. Hence we need to specify the interoverflow distribution H..

The Laplace-Stieltjes transform of H. is easily obtained from Ref. 5.
However, the analytical inversion of the transform is not practical. If
necessary, one could do the inversion numerically. However, for tele-
traffic applications, it is more efficient to approximate the interover-
flow distribution as a mixture of exponentials using the Interrupted
Poisson Process (1Pp)¢ with a three-moment match. The approximation
is

Hit|a) =1 — ke — kee™ (4)

where the parameters k., k2, r1 and r; are functions of the load ao and
the peakedness zp of the overflow traffic. The required relations are
given in Ref. 6.
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It now follows from eqs. (3) and (4) that
k k
1-G(T|o) =1— ao{—l l1-—e"N)+=(1- e_"ﬂ)} .
r ra

From Ref. 6, we know that
ki ks 1
— + =

I8t ra Qo

s0
1-GT|a) = ao (i’cl et 4 E e‘rﬂT) . (5)
I8! T2
Combining egs. (1), (2), and (5), we have
_ * [k k "
P{B.=0) = U ao (—’ e T+ 2 e"ﬁT)dF(a | &, vd)} ; (6)
0 r s

where it 1s understood that ag, ki, 1, and r: are functions of «, z,
and c.

The distribution function I'(« | &, ve) of the daily loads is assumed to
be a gamma distribution.” Following Ref. 3, we assume that the source-
load variance vy is of the form

_ os@y - 2

ve = 0.13(a) T (7)
where ¢ is an adjustable parameter. For Bell System applications, the
standard values for ¢ are 1.5 (low day-to-day variation), 1.7 (medium),
and 1.84 (high). To illustrate the results, we assume throughout this
study that the mean holding time is 225 seconds and that the mea-
surement interval is one hour.* Consequently, the relative measure-
ment time is 7' = 16. Results for other cases can be generated easily.
From (6), it follows that the discrete component decreases as T
increases. More generally, the spread of the distribution of B, will
decrease as T increases. The integration in (6) can be carried out
numerically using a 51-point compound Simpson’s rule.

2.1.2 The continuous component

Using a simulation, we found that the conditional distribution
P{B, = b|B, > 0} could be well approximated over the regions of
engineering interest by a beta distribution.t’ We call its mean p; =
E(B.| B, > 0) and its variance ¢} = Var(B, | B, > 0).

* By numerical experimentation, we found that the results were not very sensitive to
moderate deviations in mean holding time. A period of 225 seconds is a Bell System
average holding time.

1 We first tried a lognormal distribution. However, further experimentation indicated
that a beta distribution would provide a better fit, particularly near the origin.
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Parameters. It is straightforward to show that
E(B,)

and, using the analog of (8) for higher moments than the first,
Var(B,)

Var(B,|B. > 0) = — E*B,|B.>0)P{B.=0}. (9

P{B, >0}

Hence, only the ordinary moments of B, need be specified. An ap-
proximation for the mean was given in Ref. 3; namely,

E(R:)=J’ E(B:|a)dT(a|a, va) (10)
0

where

(B[ ) ~ Ble, o 2 {1 , Var A(T) _ Cov[A(T), om]} (11)

E*A(T) E*A(T)

and Blc, a, 2) is the trunk group call-congestion corresponding to the
load « and peakedness z. Algorithms for the computation of the
(conditional) moments of A(T) and O(T') (given « and z) are given in

Ref. 5.
Since B, -, B, are i.i.d.,

Var(B,) = % Var(B,). (12)

Using the methods described in Ref. 2, Var(B,) can be expressed as
Var(By) = E(Var(B, |) + Var(E(B:|a)

=J Var(B: | a) dT(a| &, va)

+ j EXB:|a) dT(a| &, va) — E*(By), (13)

where Var(B | o) is computed using the algorithms derived in Ref. 5.

Computation. As noted above and illustrated below, simulated data
have shown that the conditional distribution P{B, = b|B, > 0} is
well approximated by a beta distribution I,(8, n). That is, for
0=b=1,

b
j x5 1 —x)" ' dx
P{B,<b|B.>0} = I, =% L (14)

x4 1 = x)" M dx
0
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where (see Ref. 7, p. 930) & and 7 are related to pg and o (defined
above) by
_ &n

B+ +n+1)°

pe = and o}

8+

The corresponding inverse relations are

2
8= (1— pp) (E) ) (15)

o}

and

n=(1- ((1 - 1) (f:_%) - 1). (16)

The integral in the denominator of (14) is the beta function % (8, n)
and is related to the gamma function I'(x) as follows (see Ref. 7, page
258):

1
B8, m) = j 25711 — x)" tdx (17)
0
_TOTM
T T+ (18)

To cover the range of engineering interest, it is necessary to use
logarithms to carry out the computation. Standard programs are
available for computing the logarithm of the gamma function.

2.2 Comments
Collecting the preceding results from Section II, we have
P(B,<b)=P(B,=0)+P{B,>0P{B,<b|B,.>0).

The approximations for the individual terms are as follows: From
Section 2.1.1,

P(B.=0) = U a (E ‘f"”%erﬂ) dlle|a, vd)} ’
0 2

r

where aq, k1, k2, r and r; are functions of e, z, and ¢ as given in Ref.
6. From Section 2.1.2,

P{B,=b|B,>0} = I8, 1)
T+

b
- 8=1 _ -1
T o)) L x7(1—x)" dx,
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where 8 and 7 are related to the conditional mean and variance of B,
as given in egs. (15) and (16). The integrations are carried out using a
51-point compound Simpson’s rule.

2.3 Quantiles
The p-quantile of a continuous distribution F is the value £, such
that F(¢,) = p; i.e., £, = F'(p), where F~' denotes the inverse function

for F.
From the preceding section, we have

P{B,<b) = P(B.=0) + P{B,> 0}, 7).

Using this result, the quantiles of the distribution are easily expressed
in terms of the quantiles of the beta distribution. That is, for a given
p between P{B, = 0} and 1, the value £, such that

P{B.=&) =p
is given approximately by
&p = Iglp (8, 7) (19)
where ‘
_pb- P[En =0}

and I;'(8, n) denotes the g-quantile of the beta distribution (of which
I7'is the inverse). Standard programs are available for computing the
beta distribution and its quantiles.®

lll. NUMERICAL RESULTS

In this section we present a few examples of the results which have
been obtained from the approximations developed in Section II. We
consider the discrete component and the cumulative distribution of
B, the corresponding probability density function, and a set of prob-
ability intervals. Applications of the results are described in Section
IV.

3.1 The discrete component

The discrete component, P{B, = 0}, has several potential engineer-
ing applications in addition to being a fundamental part of the distri-
bution of B,. Accordingly, in this subsection we verify the accuracy of
the approximation for P{B, = 0} and illustrate the general character-
istics which should be useful in future applications.

Approximation (6) was computed for a wide range of system param-
eters and compared with estimates obtained from a random-walk
simulation of a trunk group satisfying the assumptions given in Section
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2.1. Typical results are shown in Fig. 1, where a graph of P{B, = 0)
versus trunk group size c is shown for trunk groups engineered at a
mean blocking of 0.01. The three curves correspond to z = 1 and low
day-to-day variation (¢ = 1.5), z = 2 and medium variation (¢ = 1.7),
and z = 4 and high variation (¢ = 1.84).

The agreement between the simulation and the approximation is
quite good for z = 1 and 2. For z = 4, the approximation is a little low,
but even in this case (which is relatively extreme for most traffic
applications), the relative difference is less than 7 percent and should
be adequate for engineering applications. (The approximation was not
tested for z > 4.) Similar accuracy was obtained in the other cases
tested, particularly when P{B, = 0} was on the order of 0.1 or larger
(i.e., low-blocking applications). The accuracy is statistically more
difficult to check for smaller values. However, when P{B, = 0} is
much less than 0.1, it has very little influence on the distribution of
B,. Also, notice that, as n increases, P{B, = 0} decreases rapidly; i.e.,
it has very little engineering significance for n larger than 10.

Figure 2 shows P{B; = 0} versus the load « for ¢ = 40 trunks and
several values of peakedness (no day-to-day variation). As the figure
shows, P{B, = 0} is a monotone decreasing function of both a and z
when no day-to-day variation is present. Similar results were also

e S B B B B N B B B B E E H R
z | smuraTion | ApPROXIMATION
2(m) A —_—
0.7 [
=)
P
3
e
06 |-
0s -
0.4 [ENN Y Y R A S A A Y S Y AN S N N
0 20 40 60 80

TRUNKS (C)

Fig. 1—P{B, = 0} vs trunk-group size.
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Fig. 2—P(B, = 0} vs load for C = 40 trunks.

obtained for any fixed level of variation. Note that the separation of
the curves introduces the possibility of estimating « and z by using
measurements of P{B, = 0} and usage.

The effect of day-to-day variation for the case z = 1 is also illustrated
in Fig. 2. Day-to-day load variation decreases P{B, = 0} at lower loads
and increases it at higher loads. At a high mean load, day-to-day
variation increases the likelihood of a low load and therefore increases
P{B, = 0}. At a low mean load, day-to-day variation increases the
probability of a relatively larger load and thereby decreases
P{B, = 0)}. The difference can be considerable, and day-to-day varia-
tion should be taken into account when computing the discrete com-

ponent.

3.2 The cumulative distribution
The approximation for the cumulative distribution
P(B,<b) = P(B,=0} +P{B.>0}L,(,n, 0=b=<],
(derived in Section II) was computed for several system parameters

and compared with estimates of the distribution obtained from the
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simulation. Typical results are shown in Fig. 3 for ¢ = 40 trunks,
z =1, ¢ = L5 (low variation), and n = 1, 5, and 20 days. The
approximation compares quite well with the simulated data.

A number of additional cases were generated to determine the range
of validity of the approximation. We considered ¢ = 3, 5, 10, 40, and
100, z = 1 with low day-to-day variation and z = 4 with high variation.
For all combinations of load and peakedness, the accuracy of the
approximation increases with ¢ and should be adequate for engineering
applications with ¢ = 10. For the smaller values of ¢, ¢ < 5, the
approximation did not agree as well with the simulated data. In those
cases, a simulation is probably the most appropriate tool to estimate
the distribution.

3.3 The probability density

Since the distribution of B, has a discontinuity at zero, the proba-
bility density function is not defined at zero in the usual sense; i.e., the
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Fig. 3—Distribution of observed blocking.
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density function contains an impulse at & = 0. For b > 0, an approxi-
mation for the probability density is obtained by differentiating the
approximate distribution to obtain

bﬁ—l(l — b)rrl

d _ _
f(b) =EP{B" =b}=P{B.> O]W,

where 8, n and £ were defined in (15) to (17).

The number of hours of data has a strong influence on the shape of
the density function. Figure 4 illustrates the cases n = 1, 5, and 20. For
each case, ¢ = 30, z = 1, the day-to-day variation is low, and the
average blocking is 0.01. Notice that the mode of each density is
located to the left of the mean value 0.01. This is probably caused by
the nonlinear effect on trunk-group blocking of a variable load.

IV. ADMINISTRATIVE MEASUREMENT BANDS

The statistical variation of the traffic measurements during the 20-
day busy season causes volatility in the measured average blocking

100 T T | | T 1 T T T
80 1= n =20 7
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% 50 ,—’/ \’\ -
(=]
| \
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E \ 7
2 |l \
§ aH \\ -
1 AN a
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o ! I ! | i, e Ty =y
0 0.01 0.02 0.03 0.04 0.05

BLOCKING

Fig. 4—Probability density for observed blocking.
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and in the trunks-required estimates. Such volatility can cause unnec-
essary demand servicing which will result in excess reserve trunk
capacity. Unless the provisioning process is stabilized, this excess
capacity can eventually exceed 10 percent of the actual required
trunks.

A concept of administrative measurement bands has been used to
define a stable demand servicing procedure and trunk administrative
measurement plan. In this section, we describe the measurement bands
and summarize their planned use in the Bell System provisioning
process.

4.1 Measured blocking

The numerical results presented in Section III show that when a
trunk group is properly engineered for an average blocking of 0.01, the
observed average blocking may deviate considerably from 0.01. In fact,
the probability density function for B, is skewed to the right suffi-
ciently that the observed blocking will fall below the 0.01 average
about 60 percent of the time. Consequently, if a naive observer took a
single look at a properly engineered network, he might conclude that
many of the probability-engineered trunk groups were overprovided
(observed average blocking somewhat less than 0.01). On the other
hand, nearly 40 percent of the groups would experience blocking in
excess of 0.01 and thereby be of concern to the trunk engineer who
sized the groups for an 0.01 objective.

To account properly for the volatility of measured blocking, intervals
of acceptable and anticipated measured average blocking have been
calculated for Bell System network administration. The resulting
intervals are illustrated in Fig. 5.

The analytical approximation was used to generate the curves for
¢ = 7. A simulation was used to provide the results for 2 =
¢ = 6. For ¢ < 5, the analytical approximation is not adequate for our
purposes. Moreover, a simulation is inexpensive and effective for the
small trunk-group sizes.

The upper and lower curves correspond to the theoretical 0.99- and
0.01-quantiles, respectively. However, simulation results have shown
that these theoretical quantiles are the effective end points of the
distribution. The lower curve vanishes for ¢ < 50 because the smaller
groups can be properly sized and still, with probability greater than
0.01, experience no busy-season, busy-hour blocking. The two central
curves bound an 80-percent probability interval. That is, 80 percent of
all the average-blocking measurements should lie within the interval
if the network is properly sized.

The curves are fairly constant for ¢ > 10. However, they increase
substantially for the smaller groups, illustrating the statistical volatility
of traffic measurements on the smaller groups.
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Fig. 5—Trunk service measurement plan, average blocking measurement bands.

4.2 Trunks required

The distribution function for estimates of trunks-required is pro-
vided in Refs. 1 and 2. It has been used to construct administrative
bands that are analogous to those for average blocking. The results for
low day-to-day variation are given in Fig. 6.

The vertical axis represents acceptable deviations in the estimates.
For example, if a 10-trunk group were properly sized, then the esti-
mates should fall between 9 and 11 about 80 percent of the time. The
results shown must be modified for medium and high day-to-day
variation; the bands increase in width as the level of variation increases.

4.3 Network administration
4.3.1 Demand servicing

Trunk network administration is composed of two major operations,
demand servicing and planned servicing. Planned servicing uses the
forecasts of demand in the next busy season to decide how many and
where circuits are required to insure adequate network service. De-
mand servicing refers to the use of trunk group measurements to
detect and correct current service problems. The measurement bands
for B and é have been used to establish a new demand servicing policy
which is planned to be used in the Bell System."

Based on the new policy, a network cluster is assumed to be
providing adequate service provided the average blocking for the final
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Fig. 6—Trunk service measurement plan, trunks required measurement bands.

trunk group does not exceed the upper curve. If the blocking exceeds
the threshold, then the trunks-required administrative bands are used
to determine cost-effective trunk additions which will restore network
service.

4.3.2 Measurement plan

A new Trunk Administrative Measurement Plan was recently issued
for use within the Bell System. The trunking accuracy component of
the plan, called the Trunk Service Measurement Plan (TsMP), uses the
measurement bands for B and ¢ to measure the balance between
network service and network utilization.

The TsMP compares the network-sample distribution of B and ¢ with
the thearetical distribution; a 5-point comparison is made using the 0-
10-80-10-0 intervals illustrated in Figs. 5 and 6. The deviation between
the sample and theoretical distributions is measured and reduced to a
single performance index which is a measure of the balance between
network service and utilization.
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