Copyright © 1980 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 59, No. 7, September 1980
Printed in U.S.A.

Saddle-Point Approximation for M-ary
Phase-Shift Keying with Adjacent
Satellite Interference

By O. YUE
(Manuscript received February 15, 1980)

As the geosynchronous orbit for satellite communication becomes
increasingly crowded, the effect of adjacent satellite interference is of
primary concern. We describe here the saddle-point approximation
technique for evaluating the error probability of M-ary PSK systems
with adjacent satellite interference. In comparison with previous
methods, this technique has the advantages of both computational
simplicity and accuracy. Results include a sample calculation to
study the effect of fading on the uplink of a 12/14-GHz quadraphase-
shift-keying system with 3-degree satellite spacings and 3-m earth
stations.

I. INTRODUCTION

The problem of adjacent satellite interference, which is basically one
of co-channel interference, has received extensive attention in terms
of exact computation methods'~ and bounds.® In spite of this, system
designers still often treat the interference as additive Gaussian noise,
even though this has been shown to be very pessimistic* for lower
error rates (<107%). The reason for this is that the exact methods are
too difficult to use and the simple bounds are not tight enough for
large signal-to-noise ratios (i.e., low error rates). As a result, the
communication system is overspecified and the geosynchronous orbit,
a limited natural resource, is not used efficiently.

In this paper, we describe a saddle-point method'*'" which is both
simple to use and accurate for evaluating adjacent satellite interfer-
ence. After defining the problem in Section II, we derive the saddle-
point approximation from the Fourier inversion integral representation
of the error probability in Section III. To illustrate the accuracy of the
approximation, we consider the uplink error performance of a QPSK
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system in the 12/14 GHz band, with 3m earth stations and 10 interfer-
ing satellites spaced 3 degrees apart.

Il. PROBLEM STATEMENT

We consider a M-ary PSK system with coherent detection. The
transmitted signal is one of M possible waveforms:

sm(t) = V28 cos(wot + 0n), 0=<¢<T, (1)

where 6, = 7(2m — 1)/M is the carrier phase angle corresponding to
the mth symbol (m = 1, 2, ..., M). At the receiver, there are K
interfering signals from different PSK transmitters:

K
I(t) = ¥ v2I;cos(wit + ¢; + &), (2
=

where I; and w; are constants, y; is a random variable conveying the
information from the jth interferer (j = 1, 2, ---, K), and ¢, is a
uniformly distributed random variable in [0, 27). Then for s,.(¢) trans-
mitted, the received signal is given by

r(t) = su(t) + I(¢) + n(t), (3)
where the receiver noise, n(t), is a stationary, zero-mean Gaussian

process with variance o®. Rewriting (3) in quadrature components, we
obtain

J=1

K
rit) = ’:\/2_8 cos b + Y \/2_I, cos A;(f) + ne(t):l cos wol

- K
- {J2S sin 6, + Y v2I; sin A(¢) + ns(t)]sin wol.
J=1
The receiver samples the envelopes of the in-phase and quadrature
terms at ¢ = fo, and chooses one of M symbols as the transmitted one.

Without loss of generality, we assume #; was sent. The envelope
samples are given by

K
rf=\/2TScost91+E \/2_1[,-(:05)\,-+1'zc (4)
Jj=1
and
K
rs=\/2TSsin01+E\/2—Ijsin)\,-+ns, (5)
J=1

where the A/s are independent and uniformly distributed in [0, 27),
the n. and n, are zero-mean Gaussian with variance ¢, and the
dependence on £, has been suppressed. If the phase angle of the vector
(rc, rs) lies within [0, 2#/M), the receiver would decide that #, was
transmitted, As shown in Ref, 4, the symbol error probability is
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bounded by
P. < 2Pr[r. <0]. (6)

ll. THE SADDLE-POINT APPROXIMATION

The probability P, & Pr[r, < 0] can be evaluated via the Fourier
inversion integral:'*

1
= —%L{D(u)du/u, (7

where the path of integration C is along the real axis (—o to =) except
for an indentation above the origin, and ®(u) is the characteristic
function of r./v2S:

K
®(u) = expliud — u?/4p®] T Jo(Ru),
=1

with
d = sin(n/M),
p? = S/d? the carrier-to-noise ratio (CNR),
R;= \/m, the jth interference-to-carrier ratio,
and

Jo(x), the zeroth order Bessel function of the first kind.

Define G(u) = In[®(x)]. Then the saddle points of the integrand in
(7) (ignoring the effect of u ') are solutions of G'(u) = 0, i.e,

K
id — u/2p2 - 2 Rle(Rju)/Jo(Rju) = (. (8)

=1

In Appendix A, we show a unique solution of (8) on the positive
imaginary axis, i.e., there is only one saddle point. Denoting this by us
= iy,, we can rewrite the saddle-point equation and define y, as the
solution to

K
H(y) =—d +y/20" + 2_‘,] R,Ii\(Rjy)/I(R;y) = 0, (9)

where Io(x) and I,(x) are the zeroth and first-order modified Bessel
functions, respectively. Since it is observed in Appendix A that
H(0)H”(0) > 0 and H’(y) and H”(y) do not change sign in [0, ¥],
Newton’s root-finding method (Ref. 13, p. 18):

Ye+1 = Yr — H(yk)/H'(.}’k} (10)

would converge monotonically with an initial estimate of yo = 0.
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Since ®(x) is analytic in the entire complex u-plane, we can move
the contour of integration for (7) away from the pole at the origin, to
intersect the imaginary axis at u,. Then expanding G (u) around the

saddle point, we obtain
G(u) = G(u,) + Y%lu — u)*G"(us) + +++

é Gs _%(u - us)2a§ + .-
Substituting this Taylor series expansion of G(u) into (7), we can
integrate term by term to obtain an asymptotic series (as is done in
Appendix B), with the leading term given by

P, = % explG. + yo¥/2]erfe] yo,/ V2. (11)

where erfc(x) is the complementary error function (Ref. 13, p. 297).
We shall refer to P, as the saddle-point approximation of P;. It is
shown in Appendix B that, as y, — o, which corresponds to either
p*(CNR) — o for an open-eye pattern (d >D =YY%, R),orD —d—
0 for a closed one (d < D), the saddle-point approximation is asymp-
totically exact. More precisely,
P, = P, + 7K exp[G;]/ V27 805y% + O(y:%). (12)
Fortran subroutines for determining the saddle point and evaluating
P, are given in Appendix C.
The deformation of the path of integration to pass through the
saddle point provides not only an accurate approximation, but also a

very efficient method of evaluating the inversion integral numerically."
Let # = x + iy,. Then eq. (7) becomes

P, = exp[G.] f exp[—x%/4p® + ix(d — y./2p?)]

K
. HI {Jo[Rj(x + bys) 1/ o[ Riys]} dx/2m(ys — ix). (13)
-

Using the inequality

|Jo(x + iy)| = Io( ), (14)
we immediately obtain a simple upper bound in terms of y,:
P, =< exp[Gilp/ys v & P, (15)

which is tighter than the Chernoff bound™ for y, > p/v7. To truncate
the range of integration in (13) to (—X, X), we first bound the remain-
der:

| Rx| = exp[G:] f exp[—x2/4p\dx/my, = Puerfc[X/2p]
X

< Puexp[—X*/4p%]. (16)
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Then the truncated integral is given by
X

P, — R, = exp[G.] J exp[—x?/4p® + E.(x)]
i}

- { y.cos Ei(x) — x sin Ei(x)}dx/m(x* + y3), (17)
where

exp[E-(x) + iEi(x)]
K
= exp[ix(d — y8/2p2)] l;[l {J()[RJ-(x + lyg)]/Io[R_,y&]}.

Therefore, with (16) and (17), Ps can be determined to any degree of
accuracy desired, and (17) is easier to compute numerically than (7)
because the latter has a singularity at the origin."

IV. EXAMPLE

To illustrate the accuracy of the saddle-point approximation, we
consider the case of a geostationary communication satellite, flanked
on each side by K/2 interfering satellites equally spaced by Af degrees.
According to the model in Ref. 4, if all satellites transmit at the same
power level, the jth interference-to-carrier ratio at the earth station is
given by

hi=K/2
~5J>K/2Z
D./\ is the ratio of diameter to wavelength of the earth station
antenna, and is approximately 100 for 3m stations in the 12/14 GHz
band.

If K + 1 earth stations are transmitting to their respective satellites
with the same ccIR antenna sidelobe characteristic,! the interference-
to-carrier ratios at the desired satellite are also given by (18) (see Fig.
3). We assume that the earth stations are separated far apart geograph-
ically to experience different fading conditions due to precipitation,
but close enough so that the angle subtended by the maximum sepa-
ration at the satellite is small as compared to Af. Then the worst case
condition is when the desired uplink signal is subject to fading while
the interfering signals are not, and (18) is modified as

R;= (kAG) '* 18A/D,, where k= { (18)

R; = ¢R; = ¢ (kA ™"*° 18)\/D,, 19)

with the fading parameter, 1 < ¢ < 0,

Figure 1 shows the uplink performance of a QPSK (M = 4) system
with interfering satellites at A@ = 3° spacings and 3m earth stations,
for 0-, 6-, and 12-dB fading. The two parameters of interest are the
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Fig. 1—Performance of a QPSK system subject to fading, with 10 interfering satellites
at 3-degree spacings. All curves are upper bounds on the actual symbol error rate [eq.
(6)]. The earth station antenna has diameter 3m (D, = 100A). CIR is the total carrier-to-
interference ratio and D/d is the peak distortion.

total carrier-to-interference ratio (CIR):

K K/2
pi=1/ ¥ R} = (86)**(Da/A18¢)" / ¥ 2k%, (20)
J=1 k=1
and the peak distortion ratio
D 1k
a-az

We plot the upper bound (6) on the symbol error probability using P,
and P, from (11) and (15), respectively, and the exact P, using (16)
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and (17). For fading conditions of 0 and 6 dB, the exact and the
approximate curves are indistinguishable. In the 12-dB case, we note
that D/d > 1, which means the eye pattern is closed and the saddle
point location does not approach infinity for large cNr. However, even
though the saddle-point approximation is not exact asymptotically, it
is still quite accurate, deviating from the exact result only in the second
significant figure.

To determine the fade margin against interference at the satellite,
we plot CNR vs CIR for different error rates in Fig. 2. For example, if

SADDLE POINT
— = —— GAUSSIAN

CNR IN DECIBELS

10 15 20 25 30
CIR IN DECIBELS

Fig. 2—Effect of variations in cIR on the required CNR to maintain constant error
rate. The results are applicable to the uplink QPSK system with 10 interfering satellites
equally spaced on both sides of the desired one, regardless of orbital spacing and earth
station antenna size.

SADDLE-POINT APPROXIMATION 1145



]
T¥¥ ¥

Fig. 3—Equally spaced satellites and their earth stations. Earth station E, (£ # 0) is
pointed at satellite S, but its signal would interfere through its sidelobe with the
transmission from Ej to So.

the system is designed for P, = 10~° and a nominal cir of 23 dB, a 6-
dB fade would require an additional increase of 1.7 dB in cNR, which
means a total fade margin of 7.7 dB. For comparison, we also show the
result from the Gaussian approximation in Fig. 2, using

P, = % erfc(dp.),

with the equivalent cNR given by p;2 = p~® + pr°. The required fade
margin in this case is 8.4 dB, which is too high by 0.7 dB; for lower
nominal cIR’s, the discrepancy is even larger. Moreover, the Gaussian
approximation would overestimate the minimum cir for P. = 107% by
at least 3.5 dB.

As seen from (20), given a total CIR, the allocation of interference
power among the 10 interferers is independent of satellite spacing
(A#) and the size of the earth station antenna (D./A), so that Fig. 2 is
applicable to the model in Ref. 4 for all satellite spacings and antenna

sizes.
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V. CONCLUSION

In this paper we have described the saddle-point approximation for
analyzing M-ary PSK systems with co-channel interference and dem-
onstrated its usage and accuracy in an example. Along with the results
for intersymbol interference,'' this method can be extended to analyze
the combined effect of filtering, co-channel and adjacent channel
interference.'®’® It should be noted that the inequality (14) is a
fundamental property of characteristic functions and that the upper
bound (15) in terms of the saddle point is applicable to all types of
additive interference, as long as the receiver noise is Gaussian.
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APPENDIX A
Uniqueness of the Imaginary-Axis Saddle Point

The saddle-point equation (9) is repeated here for easy reference:
H(y) =—d+y/2p" + ,g:, R;Li(R;y)/Io(R,y) = 0. (21)
Define B(x) = I,(x)/Io(x). Then the derivative of H(y) is given by
H() =g+ § RIB'(R,).

Since H(0) = —d and H(x) = o for p < oo, at least one solution to (21)
exists in 0 < y < o. It can be shown that B'(x) > 0 for 0 < x < o, so
that H’(y) > 01in 0 < y < o, which means that only one saddle point
is on the positive imaginary axis.

Figure 4 shows B(x) and its first two derivatives. We note that
B”(x), and therefore H” ( y), is strictly negative for positive arguments.
Using the asymptotic expansion of Iy(x) and I (x), we obtain for large
X,

B(x)~1—-x"2+ ...,
B'(x)~x7%2+ x4+ ...,
and

B"(x) ~—x3—=3x"/4+ ...
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Fig. 4—Behavior of B(x) = I,(x}/I\(x) and its derivatives.
APPENDIX B

Asymptotic Expansion of Ps

Along the path of integration which is parallel to the real axis,
passing through the saddle point u, = iy,, G(u) can be written as

G(x + iy,) = F(y. — ix)

_ N (=i )2
= F(y) + (—ix)F'(y,) +

F"(y,) + 2 —F‘*’( ¥s)
k=

2
A6, - % o? + F,(x) + iFi(x),
with
2k

Fi(x) = 2 (=) F(y,)

k=2 (2k)’
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and
2k—l

. k (2k-1)
Fix) = Z( ) @k = )F (¥s)- 22)

Substituting (22) into the inversion integral (7), we obtain
2

P, = exp[G;] j exp[—% as + Fr(x)} exp[tFi(x)]dx/(ys — ix)2m

el 2
= exp[Gs]ysj exp[—% oi + Fr(x)]

0

. {cos Fi(x) - X sin Ff(x)} dx/(x® + yo)m

A exp[G;]ys J- exp[—%2 oa]{l + Z Crx* } dx/(x* + y2)m,
0 (23
with the first two C,’s given by
C: = F(y.) /4! — F(y,) /33!
and
Cs = FO(3) /.5 — F9 (/61 — (F/3)?/2.

Then, with ¢ = x%0%/2 and z = 02y3/2, term-by-term integration of
(23) gives

P, = vz exp[G;] J’ e_‘[l + i Ck(2/0§)ktk} VL (E + 2)27
P’

—

== exp[G;s + 2] {erfc(f )+ — E Ci(2/02)*

(o)

where I'(a, z) is the incomplete gamma function (Ref. 13, p. 260).
To illustrate the asymptotic behavior of P,, for large y., we have

F"”(y)==K/y’+ O(y™),
Fy) = 3K/y*+ O(y™?),

I:O

and
F®(y)=0(y™", for k=5,

so that
Co = TK/yi4! + O(y:")
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and
Ci=O0(y:*), for k=3.
Then the discrepancy between P; and P, is given by
. p, SBIGI K
2\/'172 32

However, it should be noted that y, may not approach infinity as
p”> — oo. For large y,, the saddle-point equation (9) becomes
H(y.'..) -~ J’s/2p2 +D - K/2y_g —d= 0,

where D = Y X, R), and we have two asymptotic solutions for y,:

2724+ 0(z7Y).

vy, ~20°(d - D)+ K/2(d—- D), for d>D

and
¥s ~ K/2(D — d), for d<D.
Therefore y, would approach infinity either as p* becomes large in the

open eye-pattern case (d > D), or as D — d tends to zero; if the eye
pattern is closed (d < D), y, would approach a finite limit.

APPENDIX C
Fortran Subroutines

The saddle-point approximation is computed to a desired accuracy
using two subroutines. The number of interferers K, the individual
interference-to-carrier ratios {R(j)}, and d = sin(w/M) are specified
via the common statement. Subroutine “ggg” is used to calculate

K
g0 A G(iy) = —yd + y*/4p"* + ¥ In[Io(R;y)],
=1

K
gl & —iG'(iy) = H(y) = —d + y/2p* + ¥ R;L\(R;y)/Is(R;y),
J=1

and
g24-G"(y)=H'(y)
1 L . .
= 592 + Z RI{IN(Ry)(R;y) — II(R;y)} /[ I3(R;y).
J=1

The modified Bessel functions I(y) and I,(y) are evaluated by calling

BESRI, and Ii(y) = I(y) — L()/y.
Subroutine “sadpnt” implements the saddle-point search algorithm

as defined in (10), terminating when the latest relative change in the

1150 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1980



saddle-point estimate is less than eps. It then computes P, according

to (11).

subroutine sadpnt(ps, eps)
common/ggg/y, d, ro2, K, R(20)

¢ ps — saddle point approximation
¢ eps — relative accuracy of saddle point estimate
¢ All other parameters are transmitted via the labelled common.

5]
7

y=0.0 linitial guess

call ggg(g0, g1, £2)

yinc = —gl/g?2

y=y+ yinc

if(abs(yinc/y) > eps) goto 5

call ggg( g0, £1, 82)

ysig = sqri(.5 = g2) » y

ps = (.5 * exp(g@) » erfw(ysig) lerfw(z) = exp(z*z) * erfc(z)
return

end

subroutine ggg( g, g1, g2)

¢ Constant amplitude sinusoidal interferers

19

common/ggg/y, d, ro2, K, R(20)
dimension b(2)

sig2 = .5/ro2
EO=05xy+yxsig2—y=*d
gl=yx*sig2-d

£2 = sig2

dolpj=1K

ri=R(j)

ry=rj*y

nb=2

call besri(ry, nb, b) 'Modified Bessel fcns: Ik, k < nb
bl = b(1)

bl = b(2)

blp=(.5

if(ry.nef.) blp = bl/ry

blp = bl — blp

&9 = g0 + alog(bf)
gl=g1+rj+bl/by
g2=g2+rj~rj*(blp ~ b — bl * b1)/(b@ = b@)
continue

return

end
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