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A common method of insuring the efficient use of resources in a
computer system is to limit the degree of multiprogramming, i.e., the
number of jobs allowed in the system at the same time. Many systems
vary the multiprogramming level dynamically, while others fix the
level a priori. This paper analyzes a transaction-oriented computer
system with a fixed level of multiprogramming. We are primarily
concerned with the performance of such systems as viewed by the
customers submitting the transactions. While the common technique
of approximating such systems with a state-dependent server model
is often adequate, in some situations it can lead to large errors. We
introduce the concept of the mean forward recurrence time of the
output process under saturation and we show that errors that occur
in using a state-dependent server model are directly related to this
mean forward recurrence time. We give an improved approximation
technique using this quantity and show that its accuracy depends on
the dominant time constant (relaxation time) of the computer system.
The variability in the output process of the computer system that is
implied by a large mean forward recurrence time (relative to the
mean interdeparture time) can have broad implications on the anal-
ysis and design of computer systems, particularly with a fixed degree
of multiprogramming. Thus, even though estimation of this mean
forward recurrence time may be difficult (although readily measured)
in complex systems, a knowledge of this quantity may be necessary to
achieve a reasonable degree of confidence in performance models.

I. INTRODUCTION

The analysis of a multiprogramming computer system is greatly
complicated by the requirement of an external queue to limit the level
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of multiprogramming (see Fig. 1a), and one is often led to approxima-
tion techniques. One common method for finding customer-experi-
enced delays (such as the mean access time or mean response time) is
to solve for the mean output rate from a closed (generally Markovian)
model of the computer system with a fixed number of jobs resident
equalton=1,2, --. , M (M is the maximum allowable multiprogram-
ming level—see Fig. 1b) and then approximate the entire system by a
(Markovian) state-dependent server process (see Fig. 1c) which can be
analyzed for the quantities of interest.

The accuracy of this approximation technique has been studied by
Avi-Itzhak and Heyman' for a certain class of models, and some
specific error bounds are given there. Konheim and Reiser also con-
sider briefly the accuracy question in Ref. 2, where they give an exact
solution for a two-resource computer system. The conditions given to
insure the accuracy of the state-dependent server approximation are
essentially the same as those needed for decomposibility in the sense
of Courtois®* as applied to the special class of systems considered in
Refs. 1 and 2. While the state-dependent server model is often appli-
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Fig. 1—Modeling a multiprogrammed computer system. (a) Computer system with
fixed multiprogramming level. (b) Closed (Markovian) network. (c) (Markovian) state-
dependent server model.
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cable, the magnitude of the errors that can result'” is disconcerting
since, as we shall see, the verification of necessary conditions for the
applicability of this method to a complex system can be extremely
difficult.

In this paper, we look in detail at the underlying cause of these
errors and give an improved characterization of the applicability of the
state-dependent server model. We introduce the concept of the mean
forward recurrence time, Ry, of the output process of a multipro-
grammed computer system under saturation, and show that the ac-
curacy of the state-dependent approximation technique is explicitly
related to this quantity. This leads us to a new method of approximat-
ing the behavior of such systems that captures the essence of perform-
ance as viewed by the customer and that can be applied under much
weaker conditions than are needed to insure the accuracy of the state-
dependent model. Our results reduce to those for the state-dependent
server model where the latter is applicable.

The application of the method is illustrated by considering the
system studied in Ref. 2. The accuracy of the method is studied in
detail, including quantitative consideration for its applicability. A
summary of some key results is included ir: the next section, but before
proceeding, we note that the concepts discussed here have more
general implications for the analysis and design of a variety of com-
puter systems. We discuss this point briefly in the last section.

Il. SUMMARY OF KEY RESULTS

In Section IV, the following approximation for the mean waiting
time w2} in the external queue as seen by a (Poisson) arrival is
developed:

RuPy

1—-ASM) M

We = We(lA) =

where

Ry = mean forward recurrence time of the interdeparture process
under saturation (M in the computer system), i.e., the time
from an arbitrary time point (Poisson arrival) until the next
departure.

Py = probability the system is saturated

S(M) = mean interdeparture time under saturation.

This approximation for @, is “derived” under the assumption that the
system is “always” in equilibrium. In general, its applicability depends

* Throughout this paper, the notation Z denotes the expected value of the random
variable z.
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on the rate at which the system approaches equilibrium and the
magnitude of the disturbances from equilibrium. However, it is much
more accurate than the state-dependent server model which, in addi-
tion to the equilibrium condition noted above, essentially assumes that
Ry = S(M). Indeed, we show that

wy(exact) i (exact) _ Ry

i, (state-dependent)  7,(state-dependent) ~ S(M)’

where 7, is the mean number in the external queue; the equality
follows from Little’s law.

This is clearly shown on Table IT where, in addition, we see that the
magnitude of the error is such that the exact value can differ from that
predicted by the state-dependent server model by a factor of 10. Also
shown on Table II, for comparison, is the same ratio for our approxi-
mation. We see generally excellent agreement, particularly as com-
pared to the state-dependent server model. Moreover, a sufficient
condition given for the applicability of our approximation is that the
dominant time constant (7°(2) on the table) of the closed network be
small compared to the interarrival time, A~'. The correlation of the
accuracy of our approximation with 7'(2) is apparent.

It could be argued that, for the parameter values that led to the
large errors, the system clearly violated the conditions given in Refs.
1 to 4 for the applicability of the state-dependent server model.
However, as we note, for more complex systems the violation of these
conditions could be difficult to detect. Hence, the approach taken here
may not only provide an improved approximation method, but may
also be a necessary approach to insure the adequacy of performance
prediction models. These points are discussed further in Section VI.

lll. APPLICABILITY OF THE STATE-DEPENDENT SERVER MODEL

We begin by considering the following simple model of a computer
system (see Fig. 2a). There are two system resources, e.g. a processor
and a disk. Jobs that enter the system consist of a (random) number
of alternating requests for processor and disk. More explicitly, after an
(exponential) service at the processor of mean length s;, the job either
terminates with probability ¢, or it enters the disk queue to be given
an (exponential) service of mean length s;. At the completion of its
disk service, the job reenters the processor queue, etc. If n, is the
number at the processor (queue plus server) and n; the number at the
disk (queue plus server), then we enforce a maximum multiprogram-
ming level of M by requiring that n, + n; < M. If, on arrival, a job
finds n; + n2 = M, then it is queued externally and enters the computer
system (instantaneously) when there is room. We denote the number
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Fig. 2—A simple multiprogrammed computer system. (a) Basic system. (b) Specific
parameter system. (c) Disk only model.

at this external queue by n, and further assume that the arrival process
is Poisson.

This system is studied in Ref. 2 where an algorithm is given for
obtaining the (exact) solution. An interesting interpretation of the
state-dependent server model as a limiting case of this model leads
Konheim and Reiser? to conclude that the important accuracy param-
eter is ¢, i.e., small ¢ implies small errors. This is completely consistent
with the error analysis given in Ref. 1. Moreover, if ¢ is small, then
clearly both p, = 1/s, and p» = 1/s; must be large compared to the
mean arrival rate A, i.e., the conditions for decomposibility in the sense
of Courtois.**

Figure 3 shows the percent error made in using the state-dependent
server model to approximate the mean waiting time for the system of
Fig. 2a for M = 2. (The exact results were taken from Ref. 2.) We see
that, indeed, the error increases with increasing ¢; however, we see
that there is also a very strong dependence on r = pa/(1 — ¢ )1, which
is a measure of the balance in the system. Thus, apparently, neither
¢ nor r alone can totally explain the errors. To obtain some insight
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into the underlying cause, we consider briefly a specific example.
Figure 2b shows the basic system under consideration with the param-
eter values that correspond to the maximum error on Fig. 3. As
indicated, the true mean external queue length (7z;) is about 177, while
the state-dependent model predicts about 18. (Note that, while the
relative error is about —90 percent, the true mean queue size as seen
by arrivals is a factor of 10 greater than predicted—a catastrophic
error for system performance prediction.)

To gain some insight into the underlying cause of this large error,
consider the following example. First, we assume that s; = 0. Second,
we “thin” the stream at arrival epochs to the total system by removing
jobs that will never need the disk; thus, the input to this system is just
(1 — ¢)A and the system consists essentially of just a disk (see Fig. 2c).
The equilibrium state distribution for this new system is equivalent to
that for an M/M/1 queuing system with intensity A = (1 — ¢)A, and
service rate ji = ¢u2 (this can be readily seen by writing the system’s
birth-death equations). The mean number in the total system is then
given by Ns = g/(1 — g), where g = A/ji. Using A = 1, ¢ = 0.9 and p
= 1/s; = 0.118 (the parameter values that lead to the value of 17, = 177
noted above), we find that Ns = 18.9 and also 7, = 17.0. Now for this
same system, with s; = 0, if we retained all customers we would expect
to see the same number of customers in the external queue that needed
disk requests but, on the average, 9 customers that did not need the
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Fig. 3—Accuracy of the state-dependent server model.
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disk (and hence have 0 service time) for each customer that did. Thus
we are led to a value of nf = 170 in the external queue. If s, > 0,
clearly 7z, > nZ. Thus this simple “bottleneck” analysis tells us that 7z,
must be greater than 170, yet the state-dependent server model tells
us it is 18.

The phenomenon not captured by the state-dependent server model
is that, by keeping a maximum value of M = 2 on the number in the
comptuer system, whenever two jobs are at the disk, we have no-
potential for job completions for a relativley long time, and hence the
buildup of a large queue. That is, a relatively small number of heavy
system resource users are delaying a larger number of light system
resource users, i.e., “processor sharing” cannot help small jobs if they
are not let into the computer system.

It is somewhat disconcerting that the state-dependent server model
does so poorly, since the occurrence of this phenomenon may be
masked in a complex computer system. For example, the same phe-
nomenon would occur if we had a multiclass system in which the
majority of the customers belonged to classes which required little
system resources, but a small minority of customers required extensive
use of system resources. The result is that occasionally the heavy
resource users saturate the system causing long delays. This is further
compounded by the well-known length biasing effect familiar in the
analysis of the M/G/1 queue, i.e., customers are more likely to arrive
during long service times—the variability in the service time distri-
bution impacts on customer-viewed delays.

Knowing the cause of the large errors, we now turn our attention to
an approach that does not suffer from the same problem.

IV. AN IMPROVED APPROXIMATION FOR CUSTOMER VIEWED DELAYS

We first consider the case M = 1. Here we note that the total system
is exactly described by an M/G/1 queuing system and hence the mean
number in the “external” queue is just given by the Pollaczek-Khinchin
formula

_ _ ARP

MTTAS”
where P is the probability the server is busy, S is the mean service
time, and R is the mean forward recurrence time of the service time
process.

Now consider the more general multiprogramming system of Fig.

la. Let i, denote the mean delay in the external queue as seen by
arrivals; then, by Little’s law we have

g = A, (2)
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where

A, = mean number in the external queue
A = mean (Poisson) arrival rate.

We develop another relation for w, which, when combined with (2),
will allow us to solve for w,. For this prupose, we define the following:

Py—the probability that an arrival finds M in the computer
system, i.e., the probability that an arrival will be delayed in
the external queue.

S(M)—the mean interdeparture time when there are M in the
computer system.

Ry—the mean forward recurrence time of the interdeparture
process when there are M in the computer system.

Following the derivation for i, in an M/G/1 system (e.g., See Ref.
5), we have

wy = E{w,/w; > 0} P(wy > 0) = E{w,/w, > 0} Py. (3)

If we assumed that the interdeparture process under saturation (i.e.,
M in the computer system) were approximately a renewal process,
then we would also have that

E{w,/wy >0} = By + E{ny/wy > 0}S(M). (4)

Our approximation method is to assume that (4) holds for the system
under consideration.

If the closed computer system can be represented by a Markovian
queuing network, then a sufficient condition for this assumption to
hold is that the system reach equilibrium “instantaneously” when it
becomes saturated, i.e., when an arrival finds M — 1 in the system.
(The Markovian property will ensure that the system can be described
by the equilibrium state distribution for the remainder of the satura-
tion period, i.e., until a departure leaves M — 1 in the system.) We
would expect (4) to be approximately true if the majority of the
customers arriving during saturation saw the system in equilibrium,
i.e., if either the time to reach equilibrium upon saturation were small
compared to the interarrival time, A~?, or if the total number served
during a saturation period were large compared to the number that
are served before equilibrium is reached. Note that these assumptions
are necessary for the applicability of the state-dependent server model,
but clearly not sufficient as evidenced by the M/G/1 example noted
above.

Assuming the validity of (4), (3) now yields

g = RyPy + 7gS(M). (5)
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Combining (2) and (5), we obtain

— - _ RMPM
Wq = wq(A) _m—ﬂl—)) (6)
or
... ARwPx
fig = R,(A) = A -AsaD) (7)

Now, given an arbitrary multiprogramming computer system, we can
compute (or at least approximate) S(M), Py, and Ry, and hence use
(6) or (7) as an approximation. In the next section, we show how to
obtain the quantities needed for this approximation method for the
class of systems given by Fig. 2a and compare the results with the
exact solution obtained from Ref. 2. Before proceeding, we note that
the use of the state-dependent server model is equivalent to making
our equilibrium assumption and assuming that Ry = S(M). Thus, if
we use S(M) and Py as given by the state-dependent server model
and any improved (over S(M)) estimate of Ry, we will most likely
obtain an improved approximation to w,(7,). Indeed, one would expect
the ratio of the exact value of 7, to the state-dependent server model
value to be on the order of Ry/Sy— a quantity which, as we shall see,
can be quite large.

V. ILLUSTRATION OF THE METHOD—AN EXAMPLE

In this section, we study the application of our approximation
method to the system of Fig. 2a. We begin by studying the closed
system, and in particular its transient behavior, to determine the
validity of our assumptions. Next we show how we can approximate
the quantities needed for egs. (6) and (7), in particular, Ry, and finally
we give some numerical results comparing our approximation with the
exact results from Ref. 2 and results obtained via the state dependent
server model.

5.1 Behavior of closed system

We first note that the system under study is equivalent to a single
queuing station with a finite waiting room (see Fig. 4). (Note that this
fact has been used by Reiser and Kobayashi® to study the impact of a
nonexponential server in a closed queuing network.) The equilibrium
state probabilities for our closed system are given by

(1-=rrm™m
Po =gy 71
1
=M1 r=1, (8)
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Fig. 4——Equivalent closed and open systems. (a) Closed system. (b) Open system.
where
M = multiprogramming level

n; = number at processor (n: = M — n, at disk)
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In particular, note that
1
Py=——. 9
xr

=0

For this system, the transition probabilities P;;(t) = P{ j at processor
at time ¢ given i at processor at time 0} are also known’ and are given
by

1- r)r’ 2 M pLF e 1oth
Pij(t) = + 1+(j-i)/2 J
J'( ) 1 _ rM+l M + 1 r kE-:I fk (10)

where
Fi, = sin(i + 1)8; — r~Y2sin i6;

ﬁz=1+r—2\/;cosﬂk
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and
mk
T M+ 1)’k

In particular, the dominant time constant,* T(M), is given by

TM)"' = (1-¢mh
e e— T
= (1 - ¢)p.1 + M2 — 2 (1 - ¢).uv1,u-2 COSM—+T (11}
Thus if T(M) is small compared to A~', one would expect that our
equilibrium conditions would be met and suitable values for S(M), Ru,
and Py could be found.
Note from (11) we have

T(1)™" = (1 — ¢)p + po
T(M)p = (1 — p)pa)/* — p¥?)". (12)

Hence, in general, we see that if either p, or p. is large, we tend to
reach equilibrium rapidly and our approximation method should be
good. However, we also see that the rate at which equilibrium is
approached tends to decrease as M increases and, for M large, a
balanced (closed) system ((1 — ¢)u: = po) can result in a very slow
approach to equilibrium.

Or =12 ..+ M.

5.2 Determination of needed quantities

We assume in this section that (4) holds exactly and, in particular,
that the system has the “instantaneous” equilibrium property noted
above.

5.2.1 Determination of S(M)
Under our equilibrium assumption, S(M) is given by
S(M) = [pm(1 — Po)], (13)
i.e., the value that would be used in the state-dependent model. (Note
P, is given by (9).)
5.2.2 Determination of Ru

First, define Ry, as the mean forward recurrence time given the
(Poisson) arrival found n: at the processor, so that

M
Ry= Y Run, Pn,. (14)

n=0

* By dominant time constant we mean the inverse of the smallest (nonzero) exponent
in the expansion (10). That is, for ¢ equal to this value, all transient terms will have
decreased by at least a factor of e~
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Now for M = 1 we clearly have

+
Rio= 81 5 82
Rl’l = 31¢ + (1 —_ qb) @,

so that
S1 4+ 82

R, = — (52 + (1 — ¢)s1)(1 — Po).

(Recall that our method is exact for M = 1.)
For M > 1, we note that the quantities Ra., satisfy the following
second-order system of difference equations.

1
Ryo=Ruy +—
M2

Hrl{l - ¢)
(1 + p2)

M2

L O<m<M
(pa + p2)

fhld’,ml = RM,nl—l +

(u1 + po)’

1
Rum=(1—¢)Rumy1+ ﬂ-_
1

Writing this in the simpler notational form (with the obvious cor-
respondences):

To=T+ do
T;=an+1+be_1+d,0<i<M
Tu=01—-¢)Tyu1+d1 (15)
and noting that
l—a—p=1-—t2 _BA=) _o or e<1

M+ g M+ e
and
pape(l —¢) _ (w — p2)® + dpaps
(w1 + p2)* (u1 + p2)®

we see that the general solution for this system is given by (e.g., see
Ref. 9)

l1—4ab=1-4 >0,

T;= Ari + Bri + (16)

l=a=-5b’
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where

, _1+ V1 —4ab
! 2a
1—+v1—4ab
rp=-—
2 2a

The constants A, B are readily obtained from the two boundary
conditions of (15). Ry is then given by (14). Thus we can readily solve
for R for the class of systems of Fig. 2a. However, for more general
systems this might pose a difficult problem, although, as noted, any
approximate value, in particular a lower bound for Ru, offers the
potential for improvement over the state dependent server model.

5.2.3 Determination of Py

Rather than obtain a better estimate for Py than that given by the
state-dependent server model, we content ourselves with using the
latter. Thus the difference between the results we will give for our
approximation and those from the state-dependent server model are
due only to the replacement of S(M) by Ru. For completeness, we
give a short derivation of Py assuming we have a (Markovian) state-
dependent server model.

Let By be the mean length of time from an upward entry to M in
the system till a downward entry to M — 1 in the system and let Iy
be the mean length of time from a downward transition to the state M
— 1 till an upward transition to the state M. Then, clearly,

By

Pa = BM+IM_1.

(17)

Under our Markovian assumptions,
S(M)

Bu=T"3san

(18)

while for Iy, we have the recursion

1
Io=-x

1 pM—-1)
Iy = + T2+ In-1), M=2,
M = M = 1) P\+p.(M—1)(M2 M-1) (19)
where again p(k) = 1/S(k).
Thus we have all the quantities needed to compute our approxima-
tion. We are also in a position to compare the accuracy of our
approximation as a function of the dominant time constant, T(M)
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from eq. (11) and the accuracy of the state-dependent model as a
function of Ra.

5.3 Numerical results

Table I shows the quantities needed to compute our approximation
for the parameter values used in Ref. 2 for the case M = 2.

Table II compares the accuracy of our approximation with that of
the state-dependent server model. Shown are the ratio of 77, (exact) to
i, (state-dependent server model) and the ratio of the mean forward
recurrence time R to the mean interdeparture time S(M). As antici-
pated, these ratios compare very closely. Hence, Ry/S(M) appears to
be an excellent measure of the adequacy of the state-dependent server
model. Also shown on Table II is the similar ratio for our approxima-
tion, and the quantity T(M). We see first a significant improvement
over the state-dependent server model (maximum error of 13 percent
vs a factor of 10) and second excellent correlation of the error with the
dominant time constant.

Note that the approximation does quite well even when T(2) >
A~Y, a fact that might be expected when the mean queue lengths are
quite large. However, on comparing, for example, for ¢ = 0.9, S(2) =
0.95238, the cases r = 10 and r = 0.1, we see that the dominant time
constant and the mean queue length do not give the whole story. The
impact of the variability of the queue length and the determination of
the quantity Py on the accuracy of our approximation are currently
being investigated.

Table I—Quantities used in the approximation

Input Parameters

1572

A=1

é h I 5(2) R P,
0.1 10.60 95.36 0.95238 0.9525 0.9106
15.75 14.18 0.9720 0.9180
106.0 9.536 1.054 0.9106
12.61 113.5 0.80000 0.8003 0.6508
18.76 16.88 0.8181 0.6737
126.1 11.35 0.8855 0.6508
0.5 2.119 10.60 0.95238 0.9528 0.9106
3.150 1.575 1.186 0.9180
21.19 1.060 1.834 0.9106
2,523 12.61 0.80000 0.8015 0.6508
3.7650 1.875 0.9900 0.6737
25.23 1.261 1.543 0.6508
0.9 1.177 1.118 095238  0.9582 0.9106
1.750 0.1750 2.952 0.9180
11.77 0.1177 8.668 0.9106
1.402 1.402 0.80000 0.8076 0.6508
2.083 0.2083 2.415 0.6737
14.02 0.1402 7.293 0.6508
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Table ll—Average value of external queue length, A, (E - Exact?;

A - our approximation; SD - State-dependent server model; — Not
available in Ref. 2)
A=1
n,(E) T(2) g(E) R,
@ 5(2) r ng(E) ng(A) Al n4(SD) S(2)
0.1 095238 10 18.21 1.000+ 0.013 1.000+ 1.000+
1 18.93 1.008 0.071 1.030 1.025
0.1 20.17 1.000+ 0.010 1.107 1.107
0.80000 10 2.603 1.000+ 0.011 1.000+ 1.004
— — 0.059 — 1.023
0.1 2.882 1.001 0.011 1.107 1.107
05 095238 10 18.23 1.001 0.120 1.001 1.000+
1 23.45 1.026 0.635 1.278 1.245
0.1 35.81 1.021 0.120 1.967 1.925
0.80000 10 2.606 1.001 0.101 1.001 1.002
1 3.440 1.033 0.533 1.276 1.238
0.1 5.116 1.020 0.101 1.965 1.925
09 095238 10 18.37 1.003 115 1.009 1.006
1 64.26 1.130 5.71 3.500 3.100
01  176.7 1.067 1.08 9.700 9.101
0.8000 10 2.625 1.002 0.909 1.008 1.00
1 9.420 1.132 4.80 3.495 3.081
0.1 25.21 1.064 0.909 9.700 9.117

VI. CONCLUDING REMARKS

We have shown that the errors made in using the state-dependent
server model to characterize multiprogramming computer systems can
be explicitly related to the concept of the mean forward recurrence
time, Ry, of the interdeparture process of the system under saturation.
Moreover, we have shown how this latter quantity can be used to
obtain significantly improved approximations for the mean waiting
time in the external queue.

For a simple system, we have shown how all the needed quantities
can be computed and how the accuracy of our approximations can be
assessed. For more general systems involving multiple chains and
priority classes, the computation of Ry may be extremely difficult.
However, as we have seen, some estimate of Ry may be necessary to
insure that an accurate model has been constructed. That is, without
any knowledge of Ry one cannot determine delays as seen by cus-
tomers, nor size the buffer needed to queue requests, etc.

From a design point of view, the variability in the output process as
evidenced by Ry must also be considered. For example, if there are,
say, two classes of customers with only a minority being heavy service
consumers, then, if possible, it clearly is an advantage to replace the
single value for a multiprogramming level M by one for each class.
That is, form two external queues and limit the number of class i in
the system to M.

Our approach can also be used to obtain approximations to other
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quantities of interest. The basic idea is to treat the computer system
as an M/G/1 queue—when it is saturated. For example, one can match
the mean and variance of the output process by a suitable distribution
for G and obtain approximate external queue delay distributions. One
can also couple this type of analysis with more detailed descriptions of
the time in the computer system—once a job enters. For example,
Mitrani® looks at the total system time of a customer for our simple
computer system and considers the multiprogramming level that min-
imizes this. His approach is to treat in detail the time in the computer
system and to add to this an external delay. His implicit assumption
that Ry = S(M) can readily be removed to obtain more accurate
results. The method given here would also benefit from improved
estimates of Py, particularly for lightly loaded systems with M > 1.
This, as well as extensions and a more detailed characterization of the
accuracy of our approximation, are currently being studied.

Finally, we reemphasize that, while the incorporation of Ry into an
analysis may be difficult, it may very well be necessary. However, to
estimate Ry in a running system, one need only measure the mean
and variance of interdeparture times when the system is saturated.
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