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The FIR (finite impulse response) filter is an essential tool for a
large number of applications in communication. In this paper we
consider the design of linear-phase FIR digital filters with finitely
precise coefficients. Coefficient inaccuracy is known to degrade the
frequency response of band-select FIR filters, especially in the stop-
band region. We derive a bound on the attainable stopband atten-
uation, and we also develop techniques for designing FIR filters with
finitely precise coefficients. Mixed-integer programming algorithms
are presented to select finitely precise coefficients for a filter that best
approximates an arbitrary magnitude characteristic in the minimax
sense. Our method generates a number of possible solutions including
that of simple rounding or truncation and then selects the best finitely
precise coefficients from this set. In this way, significant improvement
in the filter performance is gained over methods that simply round or
truncate the infinitely precise coefficients. We also show how integer
programming can be used to design filters with powers of two coeffi-
cients. Such filters are easier to mechanize since they do not require
multipliers.

. INTRODUCTION AND SUMMARY

In this paper, we develop techniques for designing linear-phase finite
impulse response (FIR) digital filters with finitely precise coefficients.
The FIR filter has wide applications in communications.’ For example,
FIR filters have been used as band-select filters in FDM/TDM translators®
and in Touch-Tone® receivers.’ They have been used as adaptive
equalizers, as matched filters in radar, and as echo cancellers in
satellite communications.” In addition, they are widely used in speech
synthesis and analysis.® Many techniques are available for the design
of infinite-precision FIR filters. Such techniques include (i) the use of
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windows,” (it) the linear programming approach,*® (iii) the Remez

exchange algorithm by Parks and McClellan," (iv) the interpolation

techniques by Hofstetter et al,'? (v) Hamming-Kaiser twicing algo-

rithms'® and (vi) the nonlinear optimization procedure by Herrmann.

The above techniques are appropriate for filters with infinitely precise
coefficients, i.e., for sampled data systems. If a sufficient number of
such coefficients are used, FIR filters can be designed to approximate

virtually any frequency response as closely as desired.

FIR filters are commonly implemented either as charge-coupled
devices (ccps), as surface acoustic wave (Saw) devices, or as digital
filters. The first two allow the realization of FIR filters without the
need for analog-to-digital conversion. However, there are fundamental
limitations on the attainable coefficient accuracy for ccps and saw
devices.”” Current ccp technology can only mechanize FiIR filters with
coefficient accuracies of 10 bits. Finite-precision ccp filters have been
designed using integer programming techniques.’ In digital filtering,*
FIR filters, as depicted in Fig. 1, and other digital signal-processing
algorithms are implemented either with special-purpose hardware or
as programs in digital computers or signal processors. In either case,
the data sequence values {x(n)} and coefficients {h(n)} are usually
stored in finite-length registers or memory elements. Register length
is an important economic factor in hardware implementations. Re-
cently, innovations in hardware have emphasized the importance of
efficiently designing digital filters with finite register length coeffi-
cients. Of particular interests are the advances in microprocessors,”’
bit-slice technology,'® and programmable digital signal processors.'®:*®

In this paper, we discuss only one effect of finite register length in
digital filters, i.e., quantization of the coefficients. Usually the coeffi-
cients of a digital filter are obtained by some theoretical or optimization
design procedures that essentially assume an infinitely precise repre-
sentation of the filter coefficients. As a consequence, the frequency
response of the quantized (or digital) filter can deviate appreciably
from the filter designed with infinitely precise coefficients. In fact, the
quantized filter may in certain cases fail to meet initial specifications
even though the unquantized filter does. As an example, consider the
low-pass filter specification shown in Fig. 2. The desired filter should
have a stopband attenuation of 80 dB, a ripple of 0.01 dB in the
passband, and a transition ratio of 0.6. An optimum filter of length 49
designed with infinite precision coefficients using linear programming
techniques had a stopband attenuation of 98.6 dB and a passband
ripple of 0.002dB (see curve A in Fig. 3). However, rounding the filter
coefficients to 12 bits resulted in a minimum stopband attenuation of

* The coefficient. precision of the FIr filter can be made as accurately as required at
the price of increasing hardware cost.
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Fig. 1—ri1r filter.

62 dB. This indicated a degradation in the stopband of approximately
32 dB. This result is shown as curve B in Fig. 3. We see from this
example that coefficient inaccuracy can degrade the frequency re-
sponse of band-select filters, especially in the band-reject region. The
number of bits would have to be greater than 12 bits to meet the
original specification.

A useful way of finding the appropriate number of bits is to use
formulas that estimate or bound®** the error magnitude in the fre-
quency domain. These bounds are functions of the number of bits and
length of the filter. In Section II we derive an upper bound on the
error magnitude in the frequency domain. For the filter example given
in Fig. 2, known existing bounds and our new bound indicate that 14
to 17 bits of coefficient wordlength would be required to achieve a
stopband attenuation of 80 dB. These bounds only serve as a guide for
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Fig. 2—LPF specification.
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Fig. 3—Spectra of filter with infinitely precise and rounded coefficients.

the design of band-select filters. In an actual implementation, the
frequency response is evaluated for the designed filter using different
coefficient wordlengths to determine the least number of bits needed
to meet the desired specification. The coefficient wordlengths used in
a trial are in the proximity of the wordlength determined by the
bounds. Though these bounds only serve as guides for the design of
fixed FIR filters, they are extremely useful in establishing the coefficient
wordlength requirements for adaptive FIR filters,” because for adaptive
filters it is not possible to know a priori what the exact desired
characteristics are.

For the filter example discussed earlier, an improvement of 2 dB in
the stopband attenuation is achieved by using selected rounding (i.e.,
a mixture of rounding, truncation, or boosting) rather than rounding
off the coefficients to 12 bits. Other quantization schemes such as pure
truncation in either two’s complement or sign-magnitude format sim-
ilarly degraded filter performance (see Table I for comparison of the
various rounding schemes). We display in Table II the filter coefficients
for the infinitely precise filter, rounded filter, truncated filter, and a
random-rounded filter where we show only half of the coefficients
starting from the center coefficient. In Table III we find that truncation
can produce a better result than rounding.

We develop, in Section III, techniques that include the effects of
coefficient quantization in the design of FIR filters. We use mixed-
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Table I—Rounded and truncated stopband ripples

Infinite Truncation  Truncation  Selected
Precision = Bounding 2'sC S/M Rounding
Passband 0.0 0.01 0.01 0.01 0.005
8, in dB
Stopband 98 62 57 58 66
8z in dB

integer linear programming algorithms to select finitely precise coef-
ficients for a FIR filter that approximates a given magnitude charac-
teristic. These mixed integer routines allow the unknown coefficients
to take on integer values while the stopband and passband ripples are
allowed to be noninteger. The approximation is optimal in the given
design sense, i.e., minimum absolute-weighted value of the error in the
filter response. The errors in the approximation cannot be both equi-
ripple and minimax, as in the case of infinite precision designs using
linear programming, because of the finite precision wordlength con-
straints. However, other desired properties of FIR filters such as linear
phase can still be preserved by constraining the resultant finitely
precise coefficients to be even and symmetric.

The two mixed-integer programming optimization methods we use
are the well-known branch and bound algorithm® and the zero-one
algorithm® using decomposition methods. We introduce several con-

Table Il—Coefficient values

(Length of Filter = 49, Sampling Frequency = 1.0,
Passband Frequency = 0.16875, Stopband Frequency = 0. 28125)

Infinite Truncation Truncation Selected
Precision Rounding 2'C S/M Rounding
1826.28288 1826 1826 1826 1826
1276.55037 1277 1276 1276 1277

211.53000 212 211 211 212

—3568.04334 —358 —359 —358 —358
—184.68103 —185 —185 —184 —185

146.50082 147 146 146 147

146.54836 147 146 146 147
—50.25278 —50 —51 —50 —51

—104.77742 -105 —105 —104 —105
3.250562 3 ‘3 3 4
66.47289 66 66 66 67
15.85331 16 15 15 : 15
—-36.39718 —36 -37 -36 —37
—19.16569 -19 —20 —-19 -19
16.23998 16 16 16 17
15.11741 15 15 15 15
—5.01737 -5 —6 -5 —6
—9.24632 -9 -10 -9 =9
0.20740 0 0 0 1
4.45473 4 4 4 5
0.98694 1 0 0 1
—1.59912 -2 -2 -1 -2
—0.73767 -1 -1 0 -1
0.35331 0 0 0 0
0.28114 0 0 0 0

LINEAR-PHASE FIR FILTER DESIGN 1579



Table lll—Stopband ripples for rounding and

truncation
(Length of Filter = 33, Sampling Frequency = 1.0,
Passband Frequency = 0.15, Stopband Frequency = 0.3,
Infinitely Precise Coefficients Stopband Ripple = —79.12 dB)

Rounding Truncation
No. of bits (dB) (dB)
12 -62.4 —62.7
10 —49.4 —47.0
8 —38.5 —38.9
6 —26.5 —-29.6
4 —14.5 —-14.8

straints to speed the convergence time of the optimization. These
constraint techniques allow the designer to round the infinitely precise
coefficients to the nearest M variable neighborhood, where M is the
number of LSB bits which were allowed to vary. We especially con-
centrate on the simplest case of M = 1, i.e., the unit neighborhood. In
addition, the constraints allow the designer the flexibility of fixing
some coefficients while varying others. Although the use of our con-
straints reduced the convergence time of the optimization algorithm,
the approximation error increased. The error (i.e., the deviation be-
tween the magnitude response of the ideal and quantized filters) in the
approximation using either the unconstrained or constrained mixed-
integer programming techniques is compared to the error introduced
by either straight rounding or truncation of the coefficients. In some
design examples, we obtained improvements of 7 dB in the stopband
attenuation between the amplitude response of the optimized filter
with finitely precise coefficients and that of the filter obtained by
rounding the infinitely precise coefficients.

Section IV shows how to use zero-one integer formulation to design
FIR filters. We compare the results of a zero-one integer design with
the mixed-integer design discussed in Section III. Finally, we show
how to design filters with powers of two coefficients.

Il. THE TRANSFER FUNCTION

The transfer function of a linear-phase FIR filter of length N has the
general form
(N-1)/2

H.(z) = y h.27", (1)

n=—(N-1)/2

where the length N is odd and k., = A-,. The coefficients 4, are real
and can take on any value. The frequency response, H.(e’*™) is
obtained by evaluating H.(z) along the unit circle, z = e/*”/,

] ] (N-1)/2
Ha(eﬂ"f) = e—j27rf(N—1)/2' |:h0 +9 2 hkcos(zﬂfk)jl’ (2)

k=1
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where fis the normalized frequency variable and (N — 1)/2 is the delay
of the filter. The magnitude function, H(e’?™), is given by

(N-1)/2
H(e”»)=ho+2 Y hrcos(2nfk), for N odd 3
k=1
] N/2
H(e’>') =2 ¥ hycos(2nfk), for N even. (4)
k=1

The distinction between N odd and N even is of considerable impor-
tance in the design and mechanization of Fir filters.”” However, for the
sake of simplicity, we assume hereafter that the length N is odd. We
use the symbol &} to represent the infinitely precise coefficients.

In an actual implementation, the infinitely precise coefficients {A}}
are quantized to take on values {h;} which are integer multiples of the
smallest quantizing step size, 272, where B is the number of bits used
for the implementation. The difference between the quantized and
infinitely precise coefficient is defined by

8hy = h}i — hs. (5)
If the quantizing scheme is rounding, then
|8k | = 1/2-275 (6)
and, for truncation,
|8hs| =275, (7

If the relationship between changes in the desired frequency response
H(e’*") and the coefficients {h}} are known, the degradation in
performance of the quantized filter can be bounded. Such a relationship
has the general form:

j2nf (N—1)/2
M= i . [hé +2 ¥ hicos(2nfk) (8)
She Sh. k=1
=1 ifk=0 9)
=2cos2nfk)  if k0. (10)

Using eq. (8), we obtain the frequency sensitivity function, A H(e/*™),
which is expressed in the following form:
(N—-1)/2

AH(e”® ) =8ho+2 Y O6hkcos(2nfk). 11)
k=1

Assuming the la;'gest change occurs in each coefficient, a worst case
bound on A H(e’?™) is given by
(N-1)/2

AH(e”?) < 2‘”’*“-[1 +2 ¥ |cos 2'rrfk|}. (12)
o
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The above equation is the Chan and Rabiner deterministic bound.”
We can improve this bound if we regard A% as a variable which can
take on a maximum value of 2~*2*? rather than assume it is a constant.
Then a bound on the frequency sensitivity function is obtained in the
appendix as

AH(eﬂwf) < 2—(E+1}_ \ ,Nz + %T _ _;_ . WN(f) (13)

(N — 1) + [sin(N2xf)/sin(2nf)]"
(2N -1) )

where

Wn(f) = (14)

The weighting function, Wx(f), takes on a value of 1 at f=0and f=
%, i.e.,

Wn(0) = Wr(%e) =1
and
Wn(f) =1 for all other values of f.

Therefore, a frequency-independent upper bound on AH (e’?") is given

by
AH(e/?) < 2B+, /N2 + g - % (15)

In the limit as N — o
1

. 1
1\111_12 WN(f)—TE-, 0<f<§

and an approximate bound on the frequency sensitivity function for
large N becomes

. 1 N 1
Jj2nf L9 —(B+1) 2 —_——
AH(e )5\@ 2 N*+ 5”3
1
=—.27BN (16)
V2

We refer to the above bound as the L-2 norm bound, and, in comparison
to the Chan-Rabiner deterministic bound, the L-2 norm bound is
tighter by a factor of 1/ V2, or 3 dB. However, this deterministic bound
is not as tight as the statistical bounds of Gersho et al* and Chan-
Rabiner.?® The basic assumptions of the statistical bounds is that the
quantizing error in each coefficient is randomly distributed. In Fig. 4,
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Fig. 4—Bounds on frequency sensitivity function.

we compare the stopband attenuation derived from these bounds, for
a filter of length 33 with passband and stopband normalized frequencies
of 0.15 and 0.3, respectively. We also display in Table IV the appro-
priate number of bits required for such a filter to have a stopband
attenuation of at least 45 dB.

In Table IV, we find by using our technique that an optimized filter
would require only 8 bits, while the bounds suggest wordlengths of 10
to 13 bits. This indicates that significant improvements can be achieved
in filter performance if the filter coefficients are optimized; that is, by
including the effects of quantization in the direct design of FIR filters.
In the next section we present various techniques for designing FIR
filters with finitely precise coefficients.

lll. FORMULATION OF THE DESIGN PROBLEM

We now address the problem of finding an optimum set of coeffi-
cients that give the best approximation of H(e/*™)) to a desired
magnitude function D(e’*")) in the minimax sense. We denote the
error in the approximation by

E(e’*) = D(e’*"") — H(e”*™), a7
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where 0 < f < %. The desired magnitude function D(e’*™)) is a real-
valued function which for our purposes will be defined only at discrete
set of frequencies {fi} where 2 = 1, 2, ---, K. The choice of the
discrete set of points { f3} is of considerable importance. Equation (17)
can be written in vector form as:

E=D-H. (18)

Rabiner showed that an optimal set of infinitely precise coefficients
{(h!} that best approximates H to D in the minimax sense is obtained
by formulating the problem as a linear programming problem."

3.1 Linear programming formulation

For simplicity of exposition, the linear programming problem is
formulated for a low-pass filter that best approximates the desired
magnitude characteristics shown in Fig. 2. The passband and stopband
frequencies are f, and f;, respectively. The desired magnitude function
D(e’?™) is represented mathematically as

D(e”*)y =1 forO=<fi=<f
=0 forf,=fi < %. (19)
From Fig. 2, the constraints on the low-pass filter are:

1-&h=H(e”)=<1+8  for0O<fi<f, passband

H(e?) <8, forf, < frx <% stopband. (20)
The linear programming problem is to minimize
f(8, 62) = C'X (21)
subject to
AX < Dy (22)
L=X=T, (23)
where
C'=[e,c,0,0-..0] (24)

is the transpose of an [(N — 1)/2] + 3 vector. The coefficients ¢, and

Table IV—Number of bits required to
achieve a stopband attenuation of 45 dB
for the filter specified in Fig. 2

Chan-Rabiner Deterministic Bound 13 bits
L-2 Norm 12 bits
Chan-Rabiner Statistical Bound 10 bits
Gersho, Gopinath, and Odlyzko 10 bits
Actual Rounded Filter 10 bits
Empirical 6-dB Estimate 9 bits
Optimized Filter 8 bits
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c» are the weights of 6, and 8., the passband and stopband ripples,
respectively.

. 5,
82

’
1

x = [k (25)

hi

[hiv-12 |

is an [(V — 1)/2] + 3 vector whose third to [(N — 1)/2] + 3 elements
are the filter coefficients. The first and second elements are the
passband and stopband ripples. All the elements of X are real numbers
with infinite precision. The matrix A is a 2K by [[(N — 1)/2] + 3]
constraint matrix whose elements are either —1, 0, or %+ {2 cos 271},
where i runs from 1 to (N — 1)/2. Dy is a 2K vector whose elements are
either 1, 0, or — 1. U and L are ([(N — 1)/2] + 3) vectors that specify
the upper and lower bounds on the vector X. For a low-pass filter
whose passband magnitude is normalized to unity, the magnitude of
the elements of U and L are all less than unity.

3.2 Formulation of mixed integer linear programming problem

The decision variables, A{, obtained from the linear programming
formulation above are the infinitely precise filter coefficients. When
these variables are quantized to a fixed number of bits, the resulting
solution is no longer optimal. To obtain an optimal solution, the effects
of coefficient quantization should be included in the formulation of the
problem. This is done by formulating the problem as a mixed-integer
linear programming problem. In formulating a mixed-integer program-
ming problem, the symbol B represents the number of bits, including
the sign bit. We also scale the vectors Dy, U and L by 22!, Substituting
the scaled vectors into (22) and (23) results in the following mixed-
integer linear programming formulation shown in summation notation:

minimize (3161 + 0262 (26)
subject to N-1
2
—1.8, —0.82 + ho £2 ¥, hicos 27f;i < +27°*!

i=1

0 < f; < f» (i.e., passband) (27)
0.8, —1.82 £ ho £2 ¥ hicos 27f;1 <0

fs = fi = fi2(i.e., stopband)
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a; <68, =, (28)

Og = 82 = ﬁz, (29)
bshisuw,  i=0.. 0 L (30)
The decision variables 8, and 8. are real variables bounded by a1, £,
az, B2. The rest of the decision variables Ais are integer variables
bounded by integer constants less than or equal to 22~*. The problem
as formulated in (26) through (30) is a mixed-integer linear program-
ming problem. Commercial software packages are available for solving
mixed-integer linear programming problems.”® A particular software
package we found useful was written by Kochman.*® This program’s
interfaces are straightforward and can easily be integrated with other
software packages to provide a complete system that is efficient in
computation time and storage requirements. The additional software
needed for efficient computation time and storage requirements are
discussed later.

The integer variables that result from the mixed-integer linear
programming problem defined above are the coefficients of a linear
phase FIR filter. These coefficients are integers which lie in the range
—28-1 t0 2871 The actual binary bits used in the mechanization of the
filter are the binary representation of the integer variables. We plot, in
Fig. 5, the stopband attenuation for a filter of length 33 with passband
and stopband frequencies of 0.15 and 0.3, respectively, using 12, 10, 8,
6, and 4 bits. These results were obtained using mixed-integer program-
ming design. Also plotted in Fig. 5 are the stopband attenuation
derived using the Gersho et al. bound,”* the rounded solution, and
the 6 dB/bit heuristic estimate. For all the number of bits considered,
the optimized filter increased the stopband attenuation by 5-7 dB.
Improvements were also observed in the passband ripples. The differ-
ence in stopband attenuation between the optimized filter and the
Gersho et al. bound for quantized coefficients is approximately 10 dB.
These results clearly show the advantage of the optimized filter com-
pared with direct quantization of the infinite-precision filter.

3.3 Computational efficiency

A mixed-integer linear programming problem is solved in two stages.
First, the problem is optimized by considering all the integer variables
as being continuous variables. The optimal solution obtained is called
an optimal continuous solution. These are the infinitely precise filter
coefficients {A!}. Second, a search is started from the optimal contin-

* We used the Gersho et al. bound because in our experience it is the tightest bound.
The Gersho et al. bound predicts performance for quantization of conventional filter
designs and not for the mixed-integer optimized filter.
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Fig. 5—Comparison of bounds, rounded and optimized solution.

uous solution obtained at the end of the first stage. The integer
variables are then forced to take integer values using a “branch and
bound” technique with heuristic rules. An optimal integer solution
satisfying all the constraints and giving the best possible value to the
objective function is searched for. Using an ordinary commercial
mixed-integer programming software package on a filter design prob-
lem results in long computation times,* unless several improvements
are added to the software package. The reasons for this are twofold.
First, the constraint matrix A is unusually large and dense.t Second,
simple commercial software packages employ simple, straightforward
strategies. A straightforward strategy leads to a series of integer
solutions tending toward the optimal integer solution. When an integer
solution is found, it is not immediately known whether it is optimal.
The search continues either until a better solution is found or until all
the set of possible solutions is exhausted. For problems with many
integer variables and relatively loose constraints, good solutions are

* This severely limits the length of filters than can be designed.

T The constraint matrix A is very sparse for problems found in the fields of investment,
capital budgeting, and production planning. Most commercially available, mixed-integer
programming packages were designed for these types of problems.
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quickly found, but a long computation is necessary either to improve
them slightly or to prove their optimality.

To alleviate the above problems, we introduced several improve-
ments in our software package to enhance the computational efficiency
of the algorithm. For example, the designer can interrupt the search
after an integer solution has been found and change the bounds on the
passband and stopband ripples. This decreases the computation time
and storage requirements. Another important consideration is the
order in which integer variables are processed during the search for
integer solutions. This order is called “priority order” of integer vari-
ables. Solution times vary significantly with the priority order chosen.
Integer variables should be processed according to their importance in
the model, the most important ones being processed first. Usually the
integer variables are processed in the order* in which they appear in
the decision vector X. We found in most filter design examples that
the smaller coefficients are the most sensitive. Slight changes in their
least significant bits produced correspondingly larger changes in the
stopband ripple. In a particular example, (see Table II), a change in
the 23rd coefficient for the rounded filter from one to zero produced a
5-dB change in the stopband ripple. A change from one to zero
represents just a change in the least significant bit. The 23rd coefficient
is shown in a rectangular box in Table II. Therefore, egs. (26) through
(30) are rearranged so that the smaller coefficients appear in the
leading rows of the decision vector X. Another facility in the software
package is the option to freeze some integer variables. This fixes the
activities of the integer variables to their current integer values in the
matrix, thus allowing for post-optimal studies of the solution. This
facility is essential for very long length filters, in particular, filters of
length greater than 63. The computation time required to obtain either
an optimal or a good solution increases with the length of the filter.
For very long length filters, a good solution is obtained by dividing the
original integer programming problem into suboptimal integer prob-
lems using the following algorithm.

Step 1: (Initialization) Divide the integer coefficients into two sets,
S; and S;. Fix the coefficients in S, at their rounded values.
Vary the coefficients in S; for a suboptimal integer solution.
Go to Step 2.

Step 2: Fix the coefficients in S; obtained from the suboptimal
integer solution. Vary the coefficients in S, for a new sub-
optimal solution. Go to Step 3.

Step 3: Fix the coefficients in S; obtained from the current subop-

* This is the case except when other priority capabilities have been included in the
software package.
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timal integer solution in Step 2. Vary the integer coefficients
in S; for a new suboptimal solution. Go to Step 4.
Step 4: Test whether the current suboptimal solution is desirable.
If not, go to Step 2, or else terminate.
Such a heuristic procedure eventually produces a fairly good integer
solution. This solution is only a local optimum.

3.4 M variable neighborhood

For the mixed-integer linear programming problem formulated in
(26) through (30), the decision variables take on values ranging from
—278+1¢9 27B*! Such a large range represents loose constraints which
generally requires long computation times for filter optimization prob-
lems. The computation time can be shortened by tightening the
constraints or bounds on the decision variables. This restricts the
decision variables within the neighborhood of the global continuous
solution. This concept is referred to as the M-variable neighborhood.
The integer solution obtained using this technique is a local optimum.
The elements of U,, and L, define the M-variable neighborhood:

Um=[h£+M.i=0,“'¥}r (31)

Lm={hE—M,i=0,---¥}, (32)
where h;, is the ith infinitely precise filter coefficient obtained from
the first part of the optimization (h; is the scaled coefficient). Thus,
the decision variables {A;} can only take on values that are M units or
less from the infinitely precise coefficient i;. The special case when M
= 1 is referred to as the unit neighborhood. The local optimal solution
produced by the unit neighborhood is equivalent to the best quantiz-
ing* scheme for the continuous solution. We plot in Figure 6 the
stopband attenuation for a filter designed using the unit neighborhood
technique. This curve is labeled in Fig. 6 as best rounding. The length
of the filter used was 33 and the passband and stopband frequencies
were 0.15 and 0.3, respectively. In these cases, 12, 10, 8, 6, and 4 bits
were used. Also plotted in Fig. 6 are the stopband attenuation curves
for the rounded filter and the global optimized filter.t We find in Fig.
6 an improvement of approximately 3 dB in stopband attenuation for
the best rounded filter compared to the stopband attenuation of the
simple rounded filter. The optimized filter has at least 5 to 7 dB

* The quantizing scheme used in this context includes a mixture of rounding, trun-
cation or boosting, where boosting is the opposite of truncation. In using this scheme,
each coefficient is rounded up or down in the optunal way.

t For the global optimized filter, M = 25~
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Fig. 6—Stopband attenuation for rounded, best rounded and optimized filters.

improvement in stopband attenuation compared to the simple rounded
filter. Improvements were also observed in the passband ripples for
the optimized and best rounded filters. Table V displays the filter
coefficients for the best rounded, simple rounded, and optimized filters.

One can select any neighborhood; the larger the value of M, the
closer the local optimal solution approaches the global optimal solu-
tion. A global optimum is also a local optimum with respect to any
neighborhood containing the global optimum. Thus, enumeration of
all local optima, with respect to all neighborhoods, may produce an
acceptable solution. Sometimes iterations over a few neighborhoods
would be sufficient to obtain a good solution. The neighborhood
technique reduces the computation time, search space and storage
requirements.

The unit neighborhood technique is extremely useful for very long
length filters. These filters are extremely difficult to design using
integer programming in a reasonable amount of computer time. For
example, a 12-bit filter of length 63 was designed using the unit
neighborhood technique. An improvement of 3 dB was observed in the
stopband attenuation compared to the simple rounded filter. Improve-
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ments were also observed in the passband. These results are displayed
in Table VI.

IV. ZERO-ONE FORMULATION

Zero-one integer programming is a special case of the integer linear
programming problem formulated in (26) through (30). The decision
variables for zero-one programming are restricted to two values, 0 or
1. In our experience, zero-one integer programming packages exhibit
faster run time for digital filter design applications. The decision
variables are the actual binary bits of the filter coefficients. The
decision variables in eqs. (26) through (30) can be either positive or
negative integers. To formulate a zero-one problem, the decision
variables are transformed to take on values in the range 0 — 2%, thus
eliminating the sign variable. The new variables are:

hi=h;+ 257" (33)
A is expressed in terms of binary values as: )
hi= B}_,:l hig2°. (34)
g=0
Substituting egs. (33) and (34) into egs. (26) through (30), we have
minimize f(8,, 82) = 181 + c282 (35)

subject to

B-1 B-1
=8t Y ho27£2 7Y ( ¥ h,-q2“') cos 2nfii <+ 2571 £ g(f))
q

i=1 q

0=fi=f, (36)

B-1 B—-1
8ot Y hog29£2 Y ( 3 hiqz") cos 2nf;i < = g(f;), (37)
q q

i=1

fi<fi<hr, dn=<8i<pn, (38)

where n = 1, or 2 and &, and 3, are the bounds on the stopband and
passband ripples.

hig =0o0r 1. (39)‘
In eqs. (36) and (37), g(f;) is given by
. (N+1 )
sin af;
—2cos(MFLop ’ 1 0<j<K (40)
8(f)) =2 cos\ ==l | — g7, J
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Table V—Coefficients for rounded, best rounded, and

optimized filters
(Length of Filter = 33, Sampling Frequency = 1.0,
Passband Frequency = 0.15, Stopband Frequency = 0.3)

Infinite Best
Precision Rounding Rounding Optimized
117.03603 117 118 105
79.50871 80 80 77
9.84019 10 9 20
—22.41649 —22 ) —23 -17
—8.16686 -8 -8 -15
9.50543 10 10 3
5.94591 6 6 9
—3.88934 -4 -4 2
—3.75361 -4 —4 - -4
1.31050 1 1 -2
2.01544 2 2 1
—0.28597 0 0 1
—0.89044 -1 -1 0
-0.00239 0 0 0
0.30452 0 0 0
0.02607 0 0 0
—0.07076 0 0 0
and :
g(fi=0=N+2. (41)

By using relationship (40) and (41), we ensure that the coefficients are
positive. Equations (35) through (39) are solved using a zero-one,
mixed-integer, linear programming software package.

Equations (35) to (39) are written in matrix form as:

min C’'X (42)

subject to:
AX=Dy, (43)
0=X=1 (44)

The constraint matrix A is very large and dense. Furthermore, it has
no structure. For a 12-bit filter of length 49, the number of columns of
A is (25 X 12 + 2). Allowing for at least one degree of freedom for
each coefficient, there must be twice as many rows (frequency points)
as columns. Hence, for this example the A. matrix is a 604-by-302
matrix. Inverting this large dense matrix several times, as is often done
in integer linear programming, is costly and very sensitive to numerical
errors. To alleviate this difficulty, we implemented the following
scheme. First we solved the problem as a linear programming problem
and then rounded each coefficient to its nearest binary value. We
partitioned the vector X into two parts. One part of X contained the
least (B — q) bits. The idea was to fix the g most significant bits and
allow only the least B — ¢ bits to vary. Second, we separated the
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matrix A, into A, and Ap, accordingly, so that the resulting integer
minimization problem is:

min C'X (45)
subject to
ApeXpg < (Do — AgXy). (46)

The new constraint matrix Apg, is smaller. For the example discussed
earlier, by varying only the last five bits, the constraint matrix Ag,
becomes a 254-by-127 matrix. The constraint matrix Ap, can be
reduced further in size since the vector Xp, need not contain all the
(B — q) least significant bits of each coefficient, hi. The larger coeffi-
cients may be (B — g) bits while the smaller end coefficients have only
one or two bits contained in the modified X 5, matrix.

4.1 Filters with powers of two coefficients

Usually filters with powers of two coefficients can be mechanized
easily in hardware by simple shift operations, since the binary repre-
sentation of such coefficients has only one nonzero bit. The filter
coefficients are constrained to be zero or powers of two by adding the
following constraint to (36) through (39):

B-1

Y hig=1 (47)
qg=0

for all i = 0...(N-1)/2. FIR linear phase filter with powers of two
coefficients can be designed using eqs. (35) through (39) and eq. (47),
together with a zero-one integer optimization software package.

V. SUMMARY OF COMPUTATIONAL RESULTS

To illustrate the effectiveness of integer optimization, we considered
a 33-tap low-pass filter. The passband and stopband frequencies were
0.15 and 0.30, respectively, and the normalized sampling frequency was
1.0. The filter with infinitely precise coefficients designed using linear

Table VI—Stopband and passband ripples
(Length of Filter = 63, Sampling Frequency = 1.0,
Passband Frequency = 0.1875, Stopband Frequency = 0.2625,
Infinitely Precise Coefficients Stopband Ripple = —79.17 dB,
Infinitely Precise Coefficients Passband Ripple = 0.001 dB)

Best
Rounding Truncation Rounding
No. of bits (dB) (dB) (dB)
Stopband Ripple
12 —56.9 —54.4 —60.4
Passband Ripple
12 0.01 0.01 0.004
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Table VIl—Stopband ripples
(Length of Filter = 33, Sampling Frequency = 1.0,
Passband Frequency = 0.15, Stopband Frequency = 0.3,
Infinitely Precise Coefficients Stopband Ripple = —79.12 dB)

Optimized
Integer Best Varying 5
Rounding Truncation Solution Rounding Last bits
No. of bits (dB) (dB) (dB) (dB) (dB)
12 —62.4 —62.7 —66.2 —66.3 —66.2
10 —49.4 —47.0 —55.9 —b4.4 —55.9
8 —38.5 —38.9 —47.2 —42.1 —47.2
6 —26.5 —29.6 —-33.8 —29.6 —-33.8
4 -14.5 —14.8 —-234 -16.9 —-234

programming had a stopband attenuation of —79 dB, the passband
ripple was 0.001 dB, and the coefficients were represented in sign-
magnitude format. We studied the effect of rounding or truncating the
coefficients to either 12, 10, 8, 6, or 4 bits. The results for the stopband
and passband ripples are shown in columns 2 and 3 of Tables VII and
VIII, respectively. For the 8- and 6-bit filters, truncating the coeffi-
cients was better than rounding.

Optimized filters were designed using the mixed-integer technique
for filter wordlengths of 12, 10, 8, 6, or 4 bits. In each case, we had
improvements in the stopband attenuation of between 5 and 7 dB.
Improvements were observed in the passband. These results are shown
in column 4 of Tables VII and VIII for the stopband and passbhands,
respectively. We also designed filters using the unit neighborhood
scheme (i.e., best rounding) for the different filter wordlengths. Com-
pared to the roundoff filters we found improvements of 3 to 5 dB in
the stopband performance. The zero-one mixed-integer formulation
was used for designing several filters. We used the partitioning-of-
variables technique discussed earlier to reduce computation and stor-
age requirements. Here we found that varying the last two binary bits
produce negligible improvement over roundoff solutions. However, we
found that varying the last five bits of either the 12-, 10-, 8-, or 6-bit
filters in the zero-one integer programming design produced the same

Table VIll—Passband ripples
(Length of Filter = 33, Sampling Frequency = 1.0,
Passband Frequency = 0.15, Stopband Frequency = 0.3,
Infinitely Precise Coefficients Passband Ripple = 0.001 dB)

Optimized
Integer Best Varying 5
Rounding Truncation Solution Rounding Last bits
No. of bits (dB) (dB) (dB) (dB) (dB)
12 0.005 0.005 0.003 0.004 0.003
10 0.02 0.03 0.01 0.02 0.01
8 0.06 0.12 0.06 0.06 0.06
6 0.36 0.33 0.14 0.17 0.14
4 0.39 0.90 0.25 0.30 0.25
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Table IX—Computation time

Infinite precision solution 1.8 seconds

Best rounding 9.6 seconds

Optimized solution 790 seconds

Proof of optimality 1560 seconds

Zero-one optimization 370 seconds
varying 5 bits

stopband attenuation and filter coefficients as the optimized filter
discussed earlier.

5.1 Computation time

We display in Table IX the cPu time used for the design of a 12-bit
FIR filter of length 33. The normalized passband and stopband fre-
quencies were 0.15 and 0.3, respectively. The stopband and passband
frequencies are displayed in Tables VII and VIII, respectively. The
filter was designed on the IBM 370 using mixed-integer optimization
techniques. The cPU time used to obtain the continuous solution (i.e.,
the infinitely precise coefficients) was 1.8 seconds. It took 9.6 seconds
to obtain the best rounded filter and 790 seconds to obtain optimized
integer filter coefficients. It took 1560 seconds, twice as long, to exhaust
all the possible solutions. These long computation times were
shortened using the zero-one mixed-integer optimization technique
and varying only the least five significant bits of the coefficients. The
CPU time used was 370 seconds.

VI. CONCLUSIONS

New techniques for designing minimax linear-phase FIR filters with
finitely precise coefficients have been presented. These techniques
generate a number of possible solutions, including that of simple
rounding or truncation, and select the best finitely precise coefficients
from this set. In this way, significant improvement in filter performance
is gained over methods that simply round off or truncate the infinitely
precise coefficients. In all design examples considered, our techniques
increased the stopband attenuation by at least 7 dB, as well as reduced
the passband ripple, compared to techniques that simply round off the
infinitely precise coefficients.

It is difficult to use integer optimization to design long filters, since
computation time as well as storage requirements are excessive unless _
specialized techniques are employed. The computation time and stor-
age requirements were considerably reduced by using zero-one integer
optimization with constraints on the binary bits. This technique is
recommended for designing optimum FIR filters with limited-precision
coefficients. A simplified version of our method chooses the best
rounding scheme for quantizing infinitely precise coefficients to a fixed
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number of bits. The design of a 63-tap filter using the simplified
scheme improved the stopband attenuation by 3 dB.
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APPENDIX
Derivation of Frequency Sensitivity Function

To prove the upper bound on the frequency sensitivity function
given by (13), we regard 8h, as a variable which can take on a maximum
of 2~B+D_ Therefore, the maximum change in the frequency sensitivity
response, AH(e”*™) is given by:

dH (e”)
2nfy — —_— . 5h
AH(e”™) wg%m an %

(N-1)/2
= max - ’(8h6+ » 26‘h£(0032wfk))|

|8h{|<2—tB+1) k=1

N-1
= max - |(6h6,6h’1,...,8h’ )

[Shyj=2—(B+D) 2

-(1, 2 cos 2nf, ..., 2 cos 2wf(—h—72;1-))) | (49)

The above equation is the magnitude of an inner product which we
denote by

(48)

AH(e"™) = max - | (5H, F(£)] (50)
< 1 (68, F(£) . (51)

= ax
[l VIN+1) /2. 27 (H+D)

Using Schwartz’s inequality, the above expression simplifies to

AH(e”) = V(N +1)/2.27% . | F(f) |, (52)
when
F(f)
"= (N + 1)/2.27@80 53
Sh (N+ 1)/ ||F(f) I (53)

Writing eq. (52) in terms of cosines we obtain
(N=-1)/2

1/2
AH(e”) = V(N + 1)/2-2“”*”-[1 +4 Y cosz(2arfk)j| ,
k=1

1596 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



AH(e”) = V(N + 1)/2.27B+)

(N=-1)/2

1/2
-|:1 +2 ¥ (1+ cos47'rfk):| .
=1

Using the fact that
1 e sin Nuf

- 2 k=_':_—)
2+ El cos 2nf 2 sin wf

AH(e”") = V(N + 1)/2.27

sin N2af]"?
sin 2nf

-[(N—l) +

<2 B, J2N - 1)(N + 1)/2

(N—=1) sin N2nf/sin 2af]"*
1T@eN-1) (2N -1)

/ N 1
—(B+1) 2 20,
=2 N*+ 3 3 Wa(f),

(N—1) sin N2nf/sin 2af]"*
+ .
(2N —1) 2N - 1)

where

Wn(f)=[
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