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Design of telephone station equipment requires knowledge of 60 Hz
and lightning disturbances which can appear on the telephone loop.
To obtain useful data on the subject, we have developed a computer-
based monitoring system with capability to acquire transient wave-
forms on a single loop. The system was installed in Cleveland, South
Carolina for the 1978 lightning season. During this season, we re-
corded and analyzed about 8000 disturbances produced by lightning,
power induction, and power system transients. We found that the
lightning environment was in‘most respects less severe than that
previously recorded in Washington, Connecticut, but that several
unexpected types of disturbances were encountered. The results of the
analysis are useful to designers of protectors and station equipment.

I. INTRODUCTION

The design of telephone equipment must accommodate lightning
and 60-Hz disturbances which may be present at the network-terminal
interface. To characterize these disturbances more thoroughly, the
Protection Engineering Group has engaged in a monitoring program
from which results obtained at Washington, Connecticut, are reported
elsewhere in this issue.! As described in that article, the telephone
plant at Washington, Connecticut was aerial, the local power distri-
bution was delta, and minimal exposure to power transmission systems
existed. For the second phase of this program, a computer-based
transient monitoring system (TMs) was developed and installed in
Cleveland, South Carolina during 1978. In contrast to the Washington
location, the cable plant at Cleveland was primarily buried, the local
power distribution was multi-grounded neutral, and the cable route
was exposed to several power transmission systems. It was desired to
determine if different plant characteristics would produce major
changes in the data obtained. The results from Cleveland are presented
in this article and contrasted with previous measurements.
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Il. ROUTE AND SITE CHARACTERISTICS

The monitoring location was Cleveland, South Carolina, a rural
community in hilly terrain about 30 miles northwest of Greenville. As
in the Washington study, the equipment was located at the station
end of a loop and monitored waveforms on that loop only. According
to cable maps, the loop was 4.79 miles in length. It was terminated in
the Cleveland step-by-step office by a main frame protector unit and
250-ohm resistors to ground which approximated the line relay imped-
ance. No battery voltage was applied. The loop resistance was approx-
imately 1000 ohms, exclusive of this termination. Service to the mon-
itoring site was provided by 22 and 24 AWG metallic sheath PIC cable.
Total bridged tap was 600 feet.

The loop was paralleled along most of its length by a 7.2 kV, three-
phase, multigrounded-neutral power line mounted on poles. Earth
resistivity ranged from 300 to 1000 meter-ohms at the monitoring
structure, was 1000 to 2000 meter-ohms at the distribution terminal
serving the structure, and varied from 400 to 11,000 meter-ohms along
the route. Power system capacitor banks were located along the route
at 1.0 and 2.1 miles from the central office, the latter of which exerted
a significant influence on data obtained late in the study. Two aerial
power transmission lines, 115 and 230 kV, crossed the loop 0.35 and 0.7
mile before the monitoring station. A power substation, fed by yet
another line, was located approximately 1.0 mile beyond the monitor-
ing station. Induced longitudinal voltage from the power lines, as
measured by the true rms instrument built into the monitoring system,
was typically 15-25 V rms, frequently exceeded 50 V rms for extended
periods, and on 27 occasions briefly exceeded the system rms trigger
which was set to 100 V rms.

The first half of the loop, which was H-88 loaded, contained aerial
and buried segments while the last half was buried. An aerial drop of
approximately 200 feet of Type F drop wire (four ohms per conductor)
connected the station to the serving cable via a pedestal which con-
tained 6-mil carbon blocks. The monitoring system was housed in a 12
X 12-ft air-conditioned concrete structure located approximately 30
feet from a residence. The grounding system was composed of ground
rods at the corners of the structure which were bonded to the power
system ground rod. Ground resistance between the monitoring system
single-point ground terminal and remote earth was measured at about
3 ohms including the power ground.

The system, described in detail in the next section, was set to trigger
when voltage on the ring conductor exceeded 100 V rms for at least
0.25 second or 250 V peak. The system surge sweep rates were initially
set to 0.1 us per point for the 548 pretrigger points and 2.0 ps per point
for the remaining 1500 points giving a record length of 3055 ps. (The
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last 24 bytes of each record were overwritten by system control
information.) Near the completion of the study, the post-trigger sam-
pling rate was reduced to lengthen the sampling window. In the event
of an rms trigger, both sweep rates were 0.5 ms per point, giving a
record length of just over 1 second. Reducing the sweep rate for 60-Hz
events provided more appropriate recording of long duration data and
also reduced the chance of needlessly filling the system storage due to
extended ac activity.

A second recorder (designated Biomation No. 2 in Fig. 1) was
connected to be internally triggered by, and to measure, current to
ground for currents exceeding 50 A peak. This recorder required
manual reset, and readout was via an oscilloscope. These manual
characteristics were viewed as no handicap since large amplitude
pulses were expected to occur infrequently. No pulses were recorded
by this unit.

lll. TRANSIENT MONITORING SYSTEM OVERVIEW

Experience with the analog system used at Washington' identified
desirable monitoring system characteristics obtainable only with a
digital design. The transient monitoring system (TMs) which resulted
is illustrated schematically in Fig. 1. All system equipment is powered
from an uninterruptible power source which protects the equipment
and prevents loss of data during commercial power failures or tran-
sients. A single-point ground is utilized to prevent ground loops and
extraneous signals within the system. A Biomation 8100 transient
waveform recorder is controlled by a Digital Equipment Corporation
PDP 11/10 computer through a special interface to acquire two channels
of data—voltage on a ring conductor terminated to ground in a 1-
megohm equivalent resistance (the resistance results from probes,
attenuators, etc.) and short-circuit tip current to ground measured
through a magnetic transformer device. The magnetic transformers
used in this study were oriented to produce positive voltage at the
associated recorder when the positive direction of current flow was out
of the monitoring station.

The recorder was utilized in a dual channel, dual time base, pre-
trigger mode resulting in timing such as that illustrated in Fig. 2.
Calibration pulses are automatically injected into the system to pro-
vide checks on zero drift and gain characteristics. The system is
triggered from a wideband, high-impedance, bipolar trigger unit ca-
pable of driving the recorder low-impedance external unipolar trigger.
The overall trigger system is such that pulses exceeding the system
trigger level for less than about 0.5 ps do not cause triggering.

A true rms detector system is used to sense longitudinal voltages
associated with power system abnormalities which last at least 0.25 s
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Fig. 2—Biomation sweep characteristics.

and exceed a predetermined rms value. During the study, this level
was set at 100 V rms. Upon detection of an rms event, the system
sweep rate is reset to a longer sample interval appropriate to power
system events and the recorder is triggered. Data are transferred from
the recorder to computer core memory, to disk storage, and finally to
magnetic tape which is processed on an IBM 370 system. Local and
remote terminals provide the ability to check system status as well as
to alter system characteristics. The system provides for storage of 2400
events on disk and 2000 events on magnetic tape before manual
intervention is required, a capacity which is adequate to record several
severe storms.

IV. TIMING CONSIDERATIONS

The system contains sufficient core memory to allow accumulation
of six records with a 5.0-ms dead period occurring between the end of
each recorder sweep and rearming of the recorder by the computer.
After each third sweep, data are transferred to the computer disk. If a
high input data rate occurs and the six memory buffers are full, data
recording ceases until three sweeps are transferred to disk. Under
these saturation conditions, an average of 26 ms must elapse between
the end of a recorder sweep and beginning of the next sweep. The net
result is that the system can acquire up to six components (strokes) of
a lightning flash if they are separated by at least five ms. Beyond this,
loss of some stroke components may occur. As the median time
between strokes is about 60 ms,” the minimum time between strokes
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is about 10 ms, and the mean number of strokes per flash is about 2.5,
the resulting loss of data is not considered significant.

V. SITE ACTIVITY

The system was activated on June 9, 1978 and was turned off on
December 9, 1978. The Greenville area experiences an average of 40
thunderstorm days (days on which thunder is heard at a specified
location) annually. In 1978, the Greenville weather bureau reported 35
thunderstorm days, 16 of which occurred prior to June 9 and 19 of
which occurred during the monitoring period. After several instances
of high monitoring system activity, calls to the local repair service
bureau verified that there had indeed been lightning activity in the
Cleveland area. A thunderstorm detection device at the site, though
fully operational only during the first few weeks of the study, also
indicated local thunderstorm activity on days when the TMs recorded
large numbers of events. It is believed that from system installation to
the last thunderstorm day reported by the weather bureau on October
13, nearly all the system recordings were caused by lightning. Although
the Greenville weather station is some 30 miles from Cleveland, for
the purpose of calculating strokes per thunderstorm day it is assumed
that the 19 thunderstorms recorded at the weather station are repre-
sentative of activity at the monitoring site. It should be noted that
total thunderstorm days are used only for calculating per-storm quan-
tities.

As discussed above, good correlation between recorded transients
and thunderstorm days continued until mid-October when the number
of recorded surges reached a very low level. Soon, however, activity
began to increase, but the number of events per day, the duration of
the waveforms, and the distribution of hour of occurrence had changed
markedly. Shortly thereafter, Southern Bell received reports of noise
from customers along the cable route used by the monitoring station.
After investigation, Southern Bell personnel located a faulty automatic
oil switch in a power system capacitor bank which, when repaired, led
to a marked decrease in monitoring activity for several days. Activity
then slowly accelerated reaching a peak on December 6, 1978 when
820 pulses were recorded. A visit to the capacitor bank again revealed
a sticking automatic oil switch. This was repaired on December 7, and
the event count per day at the monitoring site dropped to five or less
until site deactivation two days later. Induction in the area was
reported to be 70-80 V rms to ground at the time of the first repair,
and approximately 90 V rms at the latter repair. Such capacitor bank
behavior was said to be common, occurring throughout the area every
fall with the highest noise levels being reached under heavy load
conditions between 8:00 and 8:30 PM. An analysis of the monitoring
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site records for this period indicated 51 percent of the activity during
the period of capacitor bank malfunction occurred between 8 and 9 pm
and 61 percent occurred between 8 and 10 PMm. It is important to note
that, of the 27 times the system rms trigger was operated, 22 occur-
rences were prior to the period of capacitor bank malfunction, i.e., the
capacitor bank malfunction did not produce the rms events reported.

VI. CLASSIFICATION OF LIGHTNING PULSES

As a result of the factors described in the previous section, it was
possible to divide the data records into several categories and subca-
tegories. The rms and capacitor bank records are discussed as appro-
priate, while the lightning pulses are described in this section. Records
1 to 2947 were recorded during the period of thunderstorm activity
from June 9 through October 16. The 2387 valid lightning events (i.e.,
not calibration, rms, or test pulses) within this range could have been
produced by a variety of mechanisms such as lightning hits to com-
mercial power lines, lightning hits to the telephone loop, induced
lightning pickup by the telephone loop, ground potential rises, etc. As
examination of the records usually does not positively reveal their
sources, the records acquired during this period, excluding those which
activated the rms trigger, have been designated as “lightning” which
should be interpreted as “most likely produced by a lightning-related
mechanism.”

The lightning records were categorized into flashes and strokes. A
lightning flash typically consists of several well-defined strokes and is
normally less than one second in duration? Accordingly, lightning
events separated by less than one second were considered to have been
caused by strokes belonging to the same flash. As is the case in
designating a particular event as lightning, it is impossible to assert
that all events occurring within one second were physically associated
with a given lightning flash. Since closely spaced pulses may produce
thermal effects in terminal equipment which are different from those
produced by the same pulses widely spaced in time, the above classi-
fication proves operationally useful despite its physical ambiguity.

VIl. PEAK VOLTAGE

The peak voltage of an event was defined as the maximum voltage
magnitude observed during the event. As first installed the two T™s
channels were devoted to low and high current measurements. On
August 2, 1978 the high current channel (which was capable of record-
ing 1000 ampere events but had shown no activity) was converted to
a voltage channel and was left in this configuration until the end of the
study. As a result, 1087 lightning voltage records were obtained as
opposed to the 2387 lightning current records. The peak voltage
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distribution for all lightning events is shown in Fig. 3. It was found
that 86 percent of the peak voltages were of positive polarity (i.e., that
for 86 percent of the waveforms the highest voltage magnitude attained
was of positive polarity). The distributions for first- and second-stroke
lightning peak voltages, if plotted, could not be distinguished from the
curve of Fig. 3 and have been omitted for brevity. It should be noted
that a small percentage of the surges exceeded the system maximum
of 1000 V, so that the distributions should be considered truncated at
that level.

The lightning voltage distribution obtained in Cleveland is compared
to similar data®®* in Fig. 4 where it is seen that the Washington,
Connecticut, data are the most severe. Assuming 19 thunderstorm
days occurred during the monitoring period at Cleveland, the average
number of surges per thunderstorm day exceeding a given voltage was
computed and is shown in Fig. 5. The first-stroke Cleveland data
should be used when making comparisons against the other curves
since the reset time of the systems used in previous experiments was
on the order of one second and had limited capability to acquire
multiple strokes. Again, the Washington data seen to be the most
severe.

The peak voltage distribution of events attributed to the capacitor
bank is shown in Fig. 6. The highest voltage due to this source was
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Fig. 3—Lightning peak voltage distribution.
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well below the system maximum and the coefficient of variation is
much less than that associated with the lightning events.

Vill. PEAK CURRENT

Peak current magnitude is defined in a manner analogous to peak
voltage magnitude. As indicated in Fig. 1, the measurement is of short
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circuit tip current to local ground as sensed by a wide-band transformer
pickup for events during which the ring voltage to ground exceeded
250 V. Lightning peak current distributions are shown in Figs. 7, 8,
and 9. The steps in the current distributions are due to the discrete
recorder amplitude bins of about 0.195 A and the fact that currents of
peak magnitude comparable to 0.195 A were frequently recorded. For
instance, there is a 100 percent change between the amplitude bins at
0.195 and 0.390 amperes. While also present in the voltage data, the
peak voltage threshold imposed by the trigger level of 250 V makes
the discrete nature of the distribution much less noticeable. In this
case, the amplitude bins of about 8 V combine with a 250 minimum
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peak signal to give a gap of 3 percent between the two lowest voltage
bins. It was found that 61 percent of all lightning peak currents were
of positive polarity.

As can be seen, the largest currents occurred among the group
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identified as first strokes. The peak current distribution from Wash-
ington, Connecticut, which is also plotted in Fig. 7, is seen to be more
severe than the present data. In Fig. 10 it is seen that, for currents
exceeding about 1 A, Washington averaged more events per thunder-
storm day than Cleveland.

The peak current distribution for events associated with the capac-
itor bank is shown in Fig. 11. The distribution is considerably better
behaved than the lightning current distributions and may be reason-
ably approximated as lognormal.

IX. PEAK MAGNITUDE SCATTER PLOTS

It is natural to suspect that events producing large peak voltages
will be associated with large peak currents. To investigate this possi-
bility, the scatter plots of Figs. 12 to 15 were prepared. A word of
caution is in order concerning such plots—because of quantization
effects and graphic system characteristics, only a finite number of
plotting coordinates are available, and a given event will be assigned
to the nearest of these points. For this reason, a given point in a scatter
plot may represent more than one event recorded by the monitoring
system. Figure 12 shows peak voltage-peak current magnitude pairs
for lightning events as well as the least-squares regression line. The
square of the sample correlation coefficient, which is known as the
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coefficient of determination, provides an estimate of the percentage of
overall variation in the dependent variable which can be attributed to
variations in the independent variable—in this case, only about 38
percent. Although a trend toward higher currents at higher voltages
exists, a least-squares linear relationship is not quantitatively useful.
Plots of first-stroke vs second-stroke voltages and currents, Figs. 13
and 14, show even less relationship. It is useful to note that larger
currents generally occurred on first strokes but that such a trend was
not apparent in the voltage data. The scatter plot for capacitor bank
events (Fig. 15) indicates more dependence between voltage and cur-
rent than was observed with lightning.

X. RATE OF RISE

As discussed in Ref. 1, a generally accepted definition of rate of rise
exists for double exponential waveforms. For the more complex wave-
forms observed on loops, a more general definition was developed and
continues to be appropriate. The voltage rate of rise at 300 V, for
instance, was defined in Ref. 1 as the waveform derivative at the first
crossing of 300 V. This definition was also adopted for the T™Ms data
processing but, because of the quantization of time and amplitude in
the TMS output, it was necessary to mathematically condition the data.

Numerical calculation of derivatives is a difficult task, particularly
for data which are discrete in time and quantized in amplitude. If the
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quantizing error is large compared to the true change between samples,
simple numerical techniques may lead to huge errors in results. If
excessive data smoothing is used, again unnecessary errors may result.
For the task at hand, it was decided to bracket the time sample point
at which the derivative was desired, to fit splines™® (interpolatory and
B-spline) to the data, and to evaluate the derivative in a variety of
ways to test for consistency of results. The approach adopted was to
use interpolatory splines at rates of rise up to 300 V per us and least-
squares B-splines at higher rates of rise where more sophisticated
techniques became necessary.

The results are indicated in Fig. 16. The high rate of rise events in

LOOP TRANSIENT MEASUREMENTS 1661



the upper tail of the distribution result from narrow voltage impulses
superimposed on the basic waveform, as illustrated in the waveform of
Fig. 17. Because of the considerable smoothing employed, impulses
contributing to Fig. 16 must have been of considerable amplitude and
existed for several sample points, i.e., they appear to be real and not
artifacts of the digitizing process. These impulses, possibly produced
by protector operation on adjacent pairs or by arcing in the cable
plant, were detected only because of the system pretrigger capability
and wide recording bandwidth since they were beyond the bandwidth
of the recorder trigger circuitry. Each voltage impulse caused a simul-
taneous impulse in the short-circuit current waveform. Although the
energy associated with such impulses is small, they may not be
sufficiently limited in magnitude by conventional primary protection
devices such as gas tubes, and appropriate secondary protection
schemes may be required in sensitive terminal equipment.

Because the digitizing process used to process the analog records
from Washington, Connecticut, yielded at most 50 points per record,
the data from that site would not have revealed such impulses if they
had been present. In an attempt to approximately compare the Cleve-
land data with the Washington data and the results of other investi-
gations, derivatives were also calculated at the system trigger point
where such noise pulses did not occur because of the reduced band-
width of the system trigger. This distribution, obtained at the nominal
250-V trigger point and based on first strokes only, is shown in Fig. 18.
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Fig. 18—Lightning voltage rate of rise distribution at trigger point.
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Fig. 19—Comparison of rate of rise data.

In Figure 19 it is seen that the trigger point data are comparable to
voltage rate of rise data obtained by Bennison® but less severe than
voltage rate of rise data obtained at Washington.! Lightning current
rate of rise data is shown in Fig. 20, where no attempt was made to
remove narrow impulses.

The rate of rise distributions derived from the capacitor bank
waveforms are shown in Figs. 21 and 22. These pulses also contained
spikes, reinforcing the belief that the spikes were caused by protector
block operation or arcing in the cable plant rather than through a
mechanism peculiar to lightning events.

Xl. ENERGY

As described in Ref. 1, several integrals related to energy are of
interest. The integrals [v® dt and [i* dt are used to compute energy
dissipated in a resistive load while [ |v|dt and [|i|dt relate to circuitry
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Fig. 20—Lightning current rate of rise at first crossing of 1 A.

in which i and v respectively are held constant. The distributions of
these quantities are given in Figs. 23 through 26 along with data
available from Washington, Connecticut. Also shown in Figs. 27, 28,
and 29 are scatter plots of energy versus peak voltage and current.
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Fig. 21—Capacitor bank voltage rate of rise at first crossing of 500 V.
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Fig. 22—Capacitor bank current rate of rise at first crossing of 1 A.

From the positive correlations, it is seen that there is a trend toward
increasing energy with increasing magnitude, a trend which is most
visually apparent in the current plot of Fig. 29. It is also demonstrated
in the figures that, for a given event, an exponential wave of the same
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Fig. 23—Lightning [ | v| dt distribution.
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peak amplitude and with a 1000 ps decay to half value would contain
more voltage “energy” than the given event in most cases and would
always contain more current energy.

A correlation of about 0.4 between peak voltage and energy was
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found in Washington, Connecticut,' vs 0.45 and 0.54 in Figs. 27 and 28.
Prior to the data reduction from Washington, it had been expected
that the correlation between peak current and energy would be similar
to that of peak voltage and energy. Instead, it was found to be close to
zero in Washington versus 0.76 in Cleveland. Corresponding plots for
capacitor bank events are not given since, in most cases, the duration
of these events exceeded the measurement time window.

Xil. DECAY TIME

For a simple exponential wave A exp(—¢/7), the decay time (to half
value) Ty is given by Ty = 0.6937, where 7 is known as the decay time
constant. For the complex waves recorded in Cleveland, decay time
constants can be defined in terms of exponential waveforms having
the same peak amplitude and equivalent energy as the complex wave-
form. As shown in Ref. 1, this leads to

L

Tequivi A % x2(¢t) dt (based on amplitude squared)
P Jo

and

Tequiv 2 gl | x(t)] dt (based on magnitude),
Xp 0

where x represents voltage or current and x, represents the peak
amplitude. The equivalent decay time (to half value) is again 0.693
times the decay time constant.

The decay time distributions are given in Figs. 30 to 36. Information
from other studies is given for comparison where available. Scatter
plots comparing voltage-based decay times are given in Fig. 32, and
the corresponding plot for current in Fig. 35. Although equality is not
attained, a linear relationship between quantities on each plot is
apparent with the square-based calculations giving the longest decay
times. The correlations between decay time and peak voltages or
currents were found not to exceed 0.08. As discussed in Ref. 1, this was
expected because of the normalization contained in the definition of
decay time. The current decay times were only mildly related to and
for the most part shorter than the corresponding voltage decay times
as indicated in Fig. 36. This behavior was also apparent from visual
examination of voltage-current waveform pairs. The voltage decay
time distribution reported by Bodle and Gresh! from the five-mile
cable at Mount Freedom closely approximates that obtained from the
.Cleveland voltage-squared data. The data reported by Bennison,
Ghazi, and Ferland indicate considerably longer decay times than any
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Fig. 34—Lightning current decay time based on current squared.

of the other distributions. The 1-ms decay time which has been widely
regarded as encompassing 90 percent of all lightning surges in paired
cable still appears appropriate based on the Cleveland data. It should
be noted that the longest decay time observed at Cleveland was 3.3
ms.
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Decay time was not computed for the capacitor bank events since
many of them continued well beyond the recorded data. Data records
were extended from 3 ms to 7, 14, and finally to 144 ms before
encompassing the bulk of capacitor bank events. It can be said that
the capacitor bank events were primarily repeated damped sinusoids
with a damping frequency of a few kilohertz such as illustrated in Fig.
37, but occasionally contained short-term sinusoidal activity at 60 Hz.

XIll. STROKES PER FLASH, INTERARRIVAL TIME, AND TIME OF OCCUR-
RENCE

A lightning flash is typically composed of several closely spaced
components called strokes. As discussed in Cianos and Pierce,? it is
reasonable to assume that the total duration of a flash will rarely
exceed 1 second, that the median time between strokes in a flash is 60
ms, and that about 92 percent of all strokes are spaced greater than
16.67 ms apart. In this paper, it has been assumed that pulses occurring
within a time interval of 1 second belong to the same flash. Although
the system reset time was considerably shorter, the internal clock
supplied time in units of 16.67 ms. When considering intra-flash events,
time intervals less than 16.67 ms (recorded as 0) have been assigned as
8.34 ms for convenience of plotting.

The density of strokes per flash is shown in Fig. 38. The average
number of recorded strokes per flash was 1.8. When comparing this to
data given by Cianos and Pierce,” who report 2 to 3 strokes average
per flash, it should be recalled that the T™Ms recorded a stroke only if
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Fig. 37—Waveforms induced by malfunctioning capacitor bank.

its peak voltage exceeded 250 V so that all strokes occurring in a flash
were not necessarily recorded. The density of flash time of occurrence
is shown in Fig. 39, which shows that most events occurred between 3
PM and 4 pM E.D.S.T.

The flash interarrival time distribution is shown in Fig. 40 along
with the Washington, Connecticut data' which are rather similar. The
median time between flashes was found to be 52.9 seconds. Figure 41
gives the distribution of time between strokes within a flash along with
a proposed model from Cianos and Pierce. The median time between
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intraflash strokes was 83.4 ms. The quantization of time apparent in
the Cleveland curve is due to the characteristics of the internal clock,
as discussed above.

XIV. RMS EVENTS

As mentioned in the system description, an rms detector was used
to detect voltages of 100 V rms or greater and to switch sampling rates
to an interval more suitable to 60-Hz related data. For a periodic
waveform, the thermal element employed by this instrument requires
0.25 second to heat from ambient to the temperature corresponding to
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Fig. 38—Density of strokes/flash.
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Fig. 39—Lightning time of occurrence.

the rms current flowing. The rms detector was activated 27 times
during the study, producing records such as that shown in Fig. 42. A
typical scenario was for induction voltages to momentarily reach 100
V rms causing the system to trigger, and then to fall to a lower level
for the remainder of the sweep. If the voltage had been just less than
100 V rms for a period and then increased in amplitude, the time for
the indicated output to exceed 100 V rms after the increase could be
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Fig. 40—Distribution of time between flashes.
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Fig. 41—Time between strokes within a flash.

less than 0.25 second. For the records obtained, the maximum voltage
was 195 V peak and the maximum current was approximately 0.2 A
peak; most of the currents did not exceed 0.1 A peak. At no time was
the voltage at the end of an rms record sufficient to trigger an
additional sweep. This implies that the maximum event duration was
1.26 second, 0.25 second to activate the sweep rate change followed by
a 1.01 second record. By contrast, capacitor bank events, which did
not trigger the rms detector, produced currents up to about 3 A peak.
Shorter bursts of 60 Hz, up to seven cycles in length, were detected
without activation of the rms trigger and produced currents up to 0.4
A peak with voltages to 508 V.

XV. SUMMARY AND CONCLUSIONS

A computer-based transient monitoring system was utilized to record
open-circuit voltage and short-circuit current waveforms on a loop in
Cleveland, South Carolina during the 1978 lightning season. The
equipment operated reliably and met design objectives. Analysis of the
data waveforms showed records attributed to lightning, to AC induc-
tion from power lines, and to disturbances resulting from power system
capacitor bank malfunctions.

Both oscillatory and approximately exponential lightning waveforms
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Fig. 42—Waveform recorded at rms sweep rate.

were observed. Other more complex lightning waveforms were ob-
viously distortions of exponentials produced by breakdown of compo-
nents within the loop plant or by reflections. This is in contrast to the
results in Washington, Connecticut, which showed no waveforms well
approximated by an exponential. The system acquired 2387 lightning
associated pulses with 1309 identified as first strokes. The median peak
lightning voltage was 367 V, while the system maximum of +1000 V
was exceeded on several occasions. The median peak lightning current
was 0.59 A, and the system maximum of 25.0 A was attained once but
not exceeded.
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Both voltage and current peak magnitude distributions as well as
the average number of events per thunderstorm day exceeding a given
level were found to be less severe than comparable data from Wash-
ington, Connecticut. The larger lightning current magnitudes occurred
on first strokes.

Rate of rise calculations were complicated by the presence of high
amplitude narrow transients with computed rates of rise up to 788 V/
ps superimposed on many lightning waveforms. When these impulses
are removed, the rate of rise distribution is considerably less severe
than that obtained in Washington, Connecticut, where such narrow
spikes could not be processed.

The energy associated with a lightning event of a given amplitude
was for most voltage waveforms and for all current waveforms bounded
above by that of a 1000 us decaying exponential waveform of the same
peak magnitude. Both voltage and current energy showed a moderate
positive correlation with peak magnitudes.

The median lightning voltage decay time based on voltage was about
0.54 ms with a maximum observation of 3.01 ms. The Washington
voltage decay time distributions ranged beyond the Cleveland data in
the upper tails. Although up to 13 strokes per lightning flash were
recorded, the average was only 1.8 strokes per flash. The distribution
of time between flashes was similar to that found in Washington.

Disturbances from an automatic oil switch in a nearby power system
capacitor bank produced 5480 records with durations reaching 144 ms.
These waveforms consisted of a succession of damped sinusoids with
a median voltage just less than the lightning median, and a median
current twice that of the lightning waveforms. The maximum current
due to this source was 3.1 A, as opposed to the 25.0 A lightning
maximum.

The rms detector was activated 27 times when induction from the
power system exceeded 100 V rms for at least 0.25 second. The
maximum current was about 0.2 A peak and the maximum voltage
was 195 V peak.
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