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To develop a sound base on which to design efficient lightguides,
it is necessary to understand the physics of the propagating modes of
this transmission medium. In this paper, we examine the properties
of the scalar modes in an infinite lens-like medium and the vector
modes in a self-focusing fiber with an infinite homogeneous cladding
for a hyperbolic secant index distribution. We find that only the
meridional rays are equalized and that this only occurs when there
is no material dispersion. '

I. INTRODUCTION

As is well known, the index distribution
N(x) = N, sech gx (1)

has an ideal focusing property for a two-dimensional medium.'™ The
group velocities of the various modes are equalized, and if the medium
is dispersion-free the group velocities are independent of frequency as
well. It is believed that, for a cylindrical lightguide where the index is
a function of the radius, such an optimum distribution does not exist.'
In particular, a distribution of the sort

N(r) = N, sech gr, (2)

where r is the radius, will not be expected to have ideal focusing
properties. In fact, in the presence of material dispersion, the distri-
bution described by eq. (2) is expected to be similar to a parabolic
distribution.

The properties of the distribution described by eq. (2) can most
easily be inferred from an analysis of the scalar modes in an infinite
lens-like medium.”® The purpose of this work is to review these
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properties and then compare them with an exact numerical analysis of
the vector modes in a self-focusing fiber with an infinite homogeneous
cladding.

Il. RELATIONSHIP BETWEEN SCALAR AND VECTOR MODES

The vector modes'®"? in a lightguide are normally specified as HEpn,q,
q:

EHmg, TEog, and TM,, where m is the polar index and g the radial
index. Far from cutoff, relationships between the radial field functions
for the vector modes ¢ and the scalar modes y can be established."
They are

HE,,, modes

Pmg = Hbm—l,q—l (3)

EH,,, modes

Pmg = Yma1g-1 (4)

TEo,, modes

‘i’u,q = l1b].qv—l (5)
TM,,, modes
Pog = lf’l.q—l- (6)

Likewise, relationships can also be established between the effective
indices N.. They are

Vector Modes Scalar Modes
HE N.(m, q) N(m-1,q-1) (7)
EH N.(m, q) Nem+1,q-1) (8)
TE Ne(o, q) N.(1,q-1) 9
T™ N.(o, q) N.(1, g — 1). (10)

IIl. SOME PROPERTIES OF SCALAR MODES
Consider now the following dispersion-free index distribution for an
infinite lens-like medium
N*(r) = No[1 = (r/L)* + 8(r/L)"], (11)

where 27L represents the paraxial focal length of the medium. When
& = %4, this function approximates eq. (2) closely and, when 8 = o, it
approximates a parabolic index distribution. For the scalar radial field
function Y, s, one finds from a first-order perturbation calculation that
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the effective indices can be written as'

o NeA B
Ne=No = T @/ (12)
where A=228+a+1)/L, (13)
B = 8[6B% + 68(a + 1) + (a + 1)(a + 2)1/L%, (14)

and A is the wavelength. If we substitute § = % and let o = 1, we get
the result

2[B+ 1]

N9=Nn"‘-(m.

(15)
This tells us that the difference in effective index between adjacent
scalar modes with a = 1 is a constant. By means of (9) and (10), we
predict the identical result for the tightly bound TE and TM vector
modes.

Also, from first-order perturbation theory, it can be shown that'

N.[(27/\)-N, — A/2]

Ne = [(27/A)?-NZ — (2m/AN.A + B]V*’

(16)

where N, is the group index. Again, if we substitute § = % and let
a = 1, we obtain another interesting result, namely,

N, = N.. (17)

This tells us that all scalar modes with a = 1 have the same group
index and this index is N.. Equations (5) and (6) predict the same
result for the tightly bound TE and T™ vector modes. One would not
expect this to be the case for general EH or HE vector modes, however.
This latter point will be examined by the numerical methods to be
described shortly. As pointed out by Kawakami,' scalar waves Vas
when a =~ o are meridional rays and when 8 = o are helical rays. From
egs. (3) to (10) and (17), we conclude that the tightly bound TE and ™
vector models are meridional rays. Similarly, tightly bound EH and HE
vector modes with high polar indices m and low radial indices g would
be helical rays.

Let us now apply the previous results for scalar waves to a lightguide.
We consider a guide with a core center index of 1.47428 and at a
wavelength of 0.82 microns. The parameters N, and L in eq. (11) are
chosen so that, at an r of zero, we obtain the core center index and at
an r of 25 microns we have an index of 1.45330. This allows us to make
a good comparsion with the vector modes in a self-focusing fiber that
is considered in the next section. We again assume the medium is
dispersion-free.

Figure 1 shows the group index N of helical and meridional rays as
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Fig. 1—The group index N, as a function of effective index N, as calculated from egs.
(12) and (16) for meridional and helical rays. The meridional rays are plotted as © while
the helical rays are plotted as®.In (a), § = 0 and the profile is parabolic. In (b), § = %
and there is a separation between helical and meridional rays. In (c), § = % and the
profile is a hyperbolic secant. We note that the group index of the meridional rays is
constant. In (d), 8§ = 1 and we note that the helical rays have the same group index.

a function of effective index for four values of 8, namely, 0, %4, %, and
1. When 8 = o, we have a parabolic index distribution and we see that
the helical and meridional rays lie on coincident curves. In fact, all
other rays are coincident as well. We note substantial dispersion of the
group index with effective index.

When § = %, the curves for the helical and meridional rays begin to
separate. The other rays distribute themselves between these two
curves. One still notes substantial dispersion of the group index with

effective index. When § = %, we very closely approximate a hyperbolic
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Fig. 1—continued.

secant index profile. The meridional rays now all have the same group
index or, in other words, are equalized. The helical rays and all other
rays show varying degrees of dispersion.

When 8§ = 1, the helical rays are well equalized but now the
meridional rays and all other rays show dispersion. Quite obviously,
there is no distribution in index of the form described by eq. (11) that
would equalize the scalar modes in an infinite lens-like medium.

Ill. VECTOR MODES

Using numerical methods, we can obtain rigorous solutions to the
vector form of Maxwell’s equations for any index distribution.'*'® The
method we employ is similar to that of Vigants and Schlesinger'* and
uses an optimized fourth-order Runge-Kutta procedure'’ with double
precision arithmetic. The group indices can be calculated from the
effective indices by the following formula:

Ng= N.— AdN./dA\. (18)
We consider the exact hyperbolic secant profile, eq. (2), rather than
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Fig. 1—continued.

the approximate one given by eq. (11) with & = %. The wavelength and
core index are as given previously. However, now we assume a finite
core with a radius of 25 microns and an infinite, dispersion-free
cladding with the same index as before. The parameter g in eq. (2) is
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chosen so that, when r = 25 microns, the function gives the correct
value for the cladding index and N, is the index at the core center. We
also consider an exact parabolic-index profile rather than that given
approximately by eq. (11) with § = o. This profile is tailored to match
the core-center index and the cladding index.

From the discussion in the previous section and eq. (15), we would
expect the difference in effective index to be the same between adjacent
TE or T™ vector modes for the hyperbolic secant profile. In Fig. 2, we
plot this difference for the sequence of TM modes. We see that, for all
except the last two modes, this spacing is indeed constant. The same
result is found for the TE modes. These latter two modes cannot be
considered tightly bound because of the finite size of the core of the
lightguide. Thus, (15) would not apply to them. This change in char-
acter of these modes clearly demonstrates the strong influence of the
core-cladding interface. The spacing between adjacent TE or TM vector
modes for the parabolic index profile would not be expected to be the
same. That this is the case is also shown in Fig. 2. The influence of the
core-cladding interface is evident here as well.

From eq. (17) and earlier discussion, we would expect that all the TE
and T™ vector modes for the hyperbolic secant profile would have the
same group index. In Fig. 3, we plot the group index for the TE modes
as a function of effective index. For all practical purposes, the group
indices are the same except again for the last few modes. The result is
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Fig. 2—Plot of AN. versus N. for the TE or T vector modes for a fiber with a
hyperbolic secant and parabolic index profile. TE and T™ vector modes correspond to
meridional rays. This shows that there is no difference between the effective indices of
adjacent, tightly bound modes.
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Fig. 3—Plot of N, versus N, for the TE or T™ vector modes for a fiber with a hyperbolic
secant and a parabolic index profile. For the hyperbolic secant profile, we see that the
meridional rays have the same group index except for those that are influenced by the
cladding.

identical for the TM mode. The average value of group index, if we do
not include the last modes, is 1.47427. From eq. (17), we would expect
this to be 1.47428. The agreement is excellent. It should be remembered
that the TE or TM modes are the meridional rays. Thus the meridional
rays are seen to be equalized in a lightguide with a hyperbolic secant
profile, except, of course, the last few, which are being influenced by
the cladding. Figure 3 also shows the result for the meridional rays
when the profile is parabolic. Clearly, these rays do not all have the
same group index.

From (16), we expect only the TE and T™ modes to be equalized in
a fiber with a hyperbolic secant index distribution. In other words,
skew rays would have different group indices from meridional rays.
That this is indeed the case can be seen in Fig. 4. The dots correspond
to the group indices of the vector modes with polar indices 4, 8, 12, 14,
16, 18, and 20. The solid lines are calculated from eq. (16). The upper
one is for helical scalar modes, and the lower one for meridional scalar
modes. It is clear that the vector modes for non-meridional rays are
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not equalized, and the spread is very similar to that predicted by the
scalar theory. The strong influence of the cladding on the vector modes
is again made very clear.

‘When material dispersion becomes dominant, such as would be the
case at 0.82 micron for a germania-doped silica lightguide, we would
expect great similarity between the group indices of a fiber with a
parabolic index and a fiber with a hyperbolic secant index distribution.
Figure 5 shows the group indices for the TE vector modes for both
these profiles with material dispersion effects included exactly in the
calculation. The material dispersion parameters are taken from the
work of Fleming'®'® of 13-mole percent doped silica and pure silica.
The very strong effect of the materials dispersion is evident. In
addition, the influence of the cladding on the last two modes is again
noted.

IV. CONCLUSIONS

The scalar modes in an infinite lens-like medium can indeed predict
some of the properties of the vector modes in a self-focusing fiber with
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Fig. 4—The dots correspond to the group indices of the vector modes with polar
indices 4, 8, 12, 14, 16, 18, and 20. The solid lines are scalar modes calculated from eq.
(16). The upper line is for helical rays and the lower one for meridional rays.
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Fig. 5—A comparison of the group indices for a hyperbolic secant profile and a
parabolic profile in the presence of material dispersion. The wavelength is 0.82 micron,
and the core center is silica-doped with 13-mole percent germania.

an infinite homogeneous cladding. Perhaps the most striking difference
are those modes that are influenced by the cladding. A more subtle
difference is that the vector modes tend to be more dispersive, as is
evidenced by Fig. 4. The belief that, for a cylindrical lightguide, a
distribution of the sort given by eq. (2) (i.e., hyperbolic secant distri-
bution) only equalizes meridional rays is well substantiated by the
rigorous vector mode analysis. Finally, we see that in the presence of
strong material dispersion there is no outstanding advantage of the
hyperbolic secant-index distribution over the parabolic-index distri-
bution.

REFERENCES

1. S. Kawakami and J. Nishizawa, “An Optical Waveguide With the Optimum Distri-
bution of Refractive Index With Reference to Waveform Distortion,” IEEE
Trans., MTT-16 (October 1968), pp. 814-818.

. E. T. Kornhauser and A. D. Yaghjian, “Modal Solution of a Point Source in a
Strongly Focusing Medium,” Radio Science, 2 (March 1967), pp. 299-310.

3. E. G. Rawson, D. R. Herriott, and J. McKenna, “Analysis of Refractive Index
Distributions in Cylindrical, Graded Index Glass Rods (GRIN Rods) Used as
Image Relays,” Appl. Opt., 9 (March 1970), pp. 763-759.

4. S. Cornbleet, “Ray Paths in a Uniform Axially Symmetric Medium,” IEE J.
Microwave Optics and Acoustics, 2 (November 1978), pp 194-200.

5. D. Marcuse, “The Impulse Response of an Optical Fiber With Parabolic Index
Profile,” B.S.T.J., 52 (September 1973), pp. 1169-1174.

6. D. Gloge and E. A. J. Marcatili, “Multimode Theory of Graded-Core Fibers,”
B.S.T.J., 52 (November 1973), pp. 1563-1578.

7. E. A. J. Marecatili, “Modes in a Sequence of Thick Astigmatic Lens-Like Focusers,”
B.S.T.J., 43 (November 1964), pp. 2887-2004,

o]

1690 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



8. D. Marcuse, Light Transmission Optics, New York: Van Nostrand, 1972, Chap. 7.

9. M. Matsuhara, “Analysis of TEM Modes in Dielectric Waveguides by a Variational
Method,” J. Opt. Soc. Am., 63 (December 1973), pp. 1514-1517.

10. G. L. Yip and Y. H. Ahmew, “Propagation Characteristics of a Radially Inhomoge-
neous Optical Fiber,” Electron. Lett., 10 (February 1974), pp. 37-38.

11. J. G. Dil and H. Blok, “Propagation in Graded Index Optical Fibers,” Opto-Elec-
tronics, 5 (May 1973), pp. 415-420.

12. S. Ishikawa, K. Furaya, Y. Suematsu, “Vector Wave Analysis of Broadband Multi-
mode Optical Fibers With Optimum Refractive Index Distribution,” J. Opt. Soc.
Am,, 68 (May 1978), pp. 577-583.

13. G. L. Yip and S. Nemoto, “The Relations Between Scalar Modes in a Lenslike
Medium and Vector Modes in a Self-Focusing Optical Fiber,” IEEE Trans.,
MTT-23 (February 1975), pp. 260-263.

14. A. Vigants and S. P. Schlesinger, “Surface Waves on Radially Inhomogeneous
Cylinders,” IEEE Trans., MTT-10 (September 1962), pp. 375-382.

15. G. E. Peterson, A. Carnevale, U. C. Paek, and D. W. Berreman, “An Exact Numerical
Solution to Maxwell’s Equations for Lightguides,” B.S.T.J., 59, No. 7 (September
1980), pp. 1175-1196.

16. M. O. Vassel, “Calculation of Propagating Modes in a Graded Index Optical Fiber,”
Opto-Electronics, 6 (July 1974), pp. 271-286.

17. A. Ralston, “Runge-Kutta Methods With Minimum Error Bounds,” Mathematics
of Computation, 16 (October 1962), pp. 431-437.

18. J. W, Fleming, “Material and Mode Dispersion in GeO;-B:0;-Si0; Glasses,” J. Am.
Ceram. Soc., 59 (November-December, 1976), pp. 503-507.

19. J. W. Fleming, “Material Dispersion in Lightguide Glasses,” Electron. Lett., 14 (May
1978), pp. 326-328.

VECTOR AND SCALAR MODES IN LIGHTGUIDE 1691






