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This paper shows that an iterative process, with certain desirable
convergence properties, can be used to compute the solution of an
important general equation when certain conditions are met. More
specifically, let f be a function from U into B, where B is a Banach
space and U is a nonempty open subset of B. One main result reported
on is a proof of the existence of a superlinearly convergent algorithm
that globally converges to a solution x of f(x) = a for each a € B,
whenever f is a C'-diffeomorphism of U onto B, and either B = R" or
f satisfies certain other conditions that are frequently met in appli-
cations. For the case of an important class of monotone diffeomorph-
isms f in a Hilbert space H (examples arise, for example, in signal-
theory studies), the “other conditions” reduce to simply the require-
ment that f'(the F-derivative of f) be uniformly continuous on closed
bounded subsets of H.

I. INTRODUCTION AND OUTLINE OF RESULTS

Let f be a function from U into B, where B is a Banach space with
norm |- | and U is a nonempty open subset of B. We say that f is
differentiable on a set S C U if fhas a Frechet derivative f'(s) at each
point s of S.t (If, for example, B = R" with the usual Euclidean norm,
then fis differentiable on U if it is continuously differentiable on U in
the usual sense.) By f a C'-diffeomorphism, we mean that f is a
homeomorphism of U onto B, and f’ and (f ")’ exist and are continuous
on U and B, respectively. (We emphasize that here continuity refers to
the dependence of the derivatives on the points at which they are
evaluated, not to their boundedness as operators, which is assured by
definition.})

* Results reported were part of an invited talk at the Workshop on Nonlinear Circuits
and Systems of the 1980 IEEE International Symposium on Circuits and Systems,
Houston, Texas, April 1980.

T In other words, f is differentiable on S C U if for each s € S, there is a bounded
linear map f'(s): B — B such that f(s + A) = f(s) + f'(s)h + o(| k]) for (s + h) € U.

i And, of course, this continuity is with respect to the usual induced norm of a
bounded linear map of B into B.
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C'-diffeomorphisms frequently arise in applications. One of the main
purposes of this paper is to show the existence of a superlinearly
convergent algorithm that globally converges to a solution x of f(x)
= a for each a € B, whenever fis a C'-diffeomorphism and either B
= R” or fsatisfies certain additional conditions that are frequently met
in applications.

With f not necessarily a C'-diffeomorphism, suppose that a € B and
an initial point x® € U are specified. Let L denote {z € U:|f(z) — a|
= |f(x°) — a|}, and assume that f’ exists on L. Consider the following
process (which, possibly, might not be able to be carried out) for
generating a sequence x', x% ... of points in U.

Process N: Define s(v) = | f(v) — a| for v € U. Choose real numbers
kand osuchthat0<k <% <o<1l. Fork=0,1, -.. do the following.
If f(x*) = a, set x**' = x*.
If f(x*) # a, determine ¢» € B such that f'(x*)¢x = a — f(x*). Then
choose yx > 0 such that (x* + yx¢x) € U and
< s2(x*) — s2(x* + yadr) s
2yps®(x®) ’

and take yx = 1 when possible. Set x**' = x* + ¢

Since x**' — x* = yy¢» when f(x*) # a, with y, a scalar and ¢ as
indicated, Process N is a Newton-direction process with a particular
subprocess for determining each steplength y:|¢.|. Of course, if
vx = 1 for all %, then the iterates x!, %%, ... are the same as those
produced by Newton’s method, assuming that each f’(x*)™" exists.f

All our results concern Process N and are given in Section II, where
we first prove two preliminary theorems. The first of these, Theorem
1, provides conditions on f, a, and x°, under which Process N can be
carried out and any sequence x', x% ... produced is a sequence of
eventually arbitrarily good approximate solutions of f(x) = a, in the
sense that |f(x'“) — a|— 0 as k2 — . Under the assumptions that the
process can be carried out and that we have x* - x as k — o, where
x satisfies f(x) = a, Theorem 2 shows that x', x% ... converges
superlinearly in the usual sense that | x**' — x| = ¢x|2* — x|, k=0,
where ¢; — 0 as & — o, provided merely that (f')™" exists and is
continuous in some neighborhood N, of x. Process N is similar to an
algorithm studied in Ref. 1, pp. 43-44, in connection with mappings in
R"™. Results related to Theorems 1 and 2 are given in Ref 1 where,
however, the strong hypothesis that f is twice continuously differenti-
able plays a central role in the proofs, as does the use of the sequential

+ With regard to the convergence properties of Newton's method and the results
given in this paper, it is a simple matter to give an example of a diffeomorphism f of R'
onto R! such that f{0) = 0 and for some x° the Newton iterates for a = 0 do not converge.
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compactness of closed bounded sets in R". (For a general B # R",
closed bounded subsets of B need not be sequentially compact.)
Newton-direction algorithms, which are sometimes referred to as
“damped Newton” methods, have been considered also by other
writers (see, for example, Ref. 2, which contains a good bibliography).

Theorems 1 and 2 are used in Section II to prove three results
concerning C'-diffeomorphism and Process N. Theorem 3 asserts that,
whenever fis a C'-diffeomorphism with certain properties and a and
x° are given, Process N can be carried out, and any sequence x', x%
... generated converges superlinearly to the unique solution x of f(x)
= a. Theorem 4 shows that the conclusion of Theorem 3 holds for an
important class of “monotone operators” which is of interest, for
example, in connection with studies of nonlinear elliptic partial differ-
ential equations, demodulation of very wide band frequency-modu-
lated signals, recovery of distorted signals, and nonlinear networks.

Our final result, Theorem 5, is a characterization of C'-diffeomorph-
isms in R"; it asserts that a continuously differentiable map f: U — R"
is a C'-diffeomorphism if and only if Process N can always be carried
out, and for each a always produces a sequence of iterates that
converges superlinearly to a solution x of f(x) = a that does not depend
on the initial point x°. A similar characterization in terms of a steepest
descent process is given in Ref. 3.},1

Sections 2.2, 2.5, and 2.6.2 contain comments concerning Theorems
1, 3, and 4, respectively. An example of an f that meets the hypotheses
of Theorem 4, and for which B is not finite dimensional is given in
Section 2.6.3.

Il. THEOREMS CONCERNING PROCESS N

Recall that f, U, B, the set L, Process N, and the terms “differenti-
able” and “C’'-diffeomorphism” are defined in Section 1. Throughout
this section, § denotes the zero element of B, and if A:B — Bis a
bounded linear map, then | A | denotes the usual induced norm of A.
By for f’ uniformly continuous on a set S C U is meant, as usual, that
for each 8, > 0 there is a 8; > 0 such that u, v € S with |u — v| < &
implies that | f(z) — f(v) | < 8 or | f'(u) — f'(v) | < &), respectively.

Theorem 1: Let a € B and x° € U be given. Assume that L is bounded,
that [ is differentiable on L, that f and ' are uniformly continuous on
L, that f'(u)™" exists for each u € L, and that there is a constant K

1 A related early result concerning the use of Newton-direction algorithms in R", in
which fis assumed to be twice continuously differentiable, is contained in the appendix
of Ref. 4, and some recent peripherally related material on Newton-direction algorithms
in R" is given in Ref. 5.

$ This writer is indebted to his colleague D. J. Rose, for discussions concerning
general aspects of numerical analysis, and for reawakening this writer’s interest in
Newton-direction algorithms.
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such that | f'(u)™"| = K for u € L. Then Process N can be carried out,
and any sequence x,, Xs, - - - generated by the process satisfies | f(x*)
—a|—=0ask— oo

2.1 Proof of Theorem 1

Assume, for the purpose of the following inductive argument, that %
is an integer for which the process can be used to determine x’ for
0 <j < k and that x* € L, which is certainly true for £ = 0. If f(x*) =
a, then obviously x**! can be determined and x**' € L.

Suppose now that f(x*) # a. We have x* + y¢, € U for sufficiently
small y > 0, because U is open. Let g(x*, y) denote

s3(x*) — s%(x* + yor)
2ys(x*)
whenever the latter is defined. Since fis differentiable at x*, s(x* + &)
=|f(x*) — a+ f'(x*)h + 8| for (x* + h) € U, in which |8|/| k| — 0 as
|h|— 0.Let A = — yf'(x*)™'[ f(x*) — a], with y > 0 such that (x* + )
€ U. We have s(x* + y¢x) = | (1 = y)[f(x*) — &] + 8. Since |(1 —
PFE®) —all = 18] = [(1 = n[f(x*) —a] + 8| = |(1 - NI[fG*) — a]
+ ]98], clearly | (1 — Y)[f(x*) — a] + 8| = | (1 — V[ f(x*) — a]| + 7| 8]
where n € [—1, 1] depends on y. Thus, for sufficiently small y > 0,

glxf, v —1
_ PN —al' 20— Yl f&*) —a] - |8 -7 8] )
2y|f(x*) — a|? '
Since .
81 _ 181 |7] @
vIf&*) —a| ([h] vIf@a") - a|’

and |k |y | f(x*) — a| ' = K, we see that the left side of (2) approaches
zero as Y —> 0. Similarly,

812 _181* _ |R|® 152
&) —al® 1l Y@ —al’ " [&l”

which shows that the extreme left side of (3) approaches zero as y —
0. Thus, using |n| = 1, g(z* y) — 1 as y — 0. We use this fact as
follows.

Let S denote {y > 0:x* + a¢y € L for a € [0, y]} . Notice that S is not
empty, because g(x*, y) > 0 for sufficiently small y > 0. Let y* = sup
S, and observe that y* is finite, since L is bounded and ¢ # 6. Also, x*
+ y*¢» € L because, by the continuity of £, L is closed. It follows that
y* € S, which requires that g(x*, y*) < 0 (because if g(x*, y*) > 0, we
arrive at the contradiction that for some A > 0, x* + a¢x € L for a €
[v*, v* + A)). Since g(x*, y) is defined and continuous for y € (0, y*],

= yK? 3
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and using g(x* y*) <0 as well as g(x*, y) = 1 as y — 0, there is a yx
€ (0, v*) such that x = g(x*, y.) = g, and, of course, for that y., we
have x**' € L.

Thus, we can determine x**! as required and x**! € L. This shows
that the process can be carried out.

Now let x', x% - - . be any sequence produced by Process N. Suppose,
for the purpose of obtaining a contradiction, that |f(x*) — a| % 0 as
k — o, We have |f(x*) — a| # 0 for all k. Observe that, since (1 —
2cye)s2(x*) = s*(x**") for k = 0, the existence of a positive constant ¢
such that yx = ¢ for all k implies that | f(x*) — a| — 0 as £ — o,

For all 2 we have x* € L, |f(x**") — a| < |f(z*) — a|, and g(x*
vx) < o. Let {x*} be a subsequence of {x*} such thaty, — 0asi—
. Since | f(x*) — a| is monotone decreasing for increasing & and | f(x*)
— a| - 0 as k — o, there is a constant p > 0 such that | f(¥*) — a| =
p for all .

Let h; denote —yf'(x*)7'[f(x*) — a], and notice that |hi| =
v, K| f(x°) — a| for all i. Let &; = f(x* + h;) — f(x*) — f'(x*) h; for each
L.

Lemma: Under the hypotheses of Theorem 1, y, ~'|8i| = 0 as

1 — oo,

Proof: In the following, let i = 2, notice that | f(x*) — a| < |f(x') — a|
<|f(x°) — a|, and let » denote % (|f(x°) — a| — | f(x") — a|). By the
uniform continuity of f, choose § > 0 so that, if x* and x” are in L and
|x* — x*| < 8, then | f(x*) — f(x®)| <.

Assume that | h;| < §, which is satisfied for all sufficiently large i. To
justify the use of a certain integral representation given below, we first
establish that x* + Bh; € L for 8 € [0, 1]: If it were not true that x*
+ Bh; € L for 8 € [0, 1], and since x* is an interior point of L, there
would be a 8; € (0, 1) such that x* + B:h; € L and | f(x* + Bih:) — a|
= |f(z°) — a|. On the other hand, | f(x* + k) — a| = |f(x") — a| +
|fx* + Bihi) — f(x*) | = |f(x") — a| + » < |f(x°) — a|, which is a
contradiction.

Therefore, we have

feh + ho) — flxh) = f f'(x* + Bhi) dB-hi,
0
and so

8] =

j [f(x* + Bh:) — f'(x*)] dB-hi ‘

o

SJ |f'(ax™ + Bhi) — f'(x*) | B - | b
0
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= wK|fa’) — a| sup| f'(x* + ) — f'(x")|.

By the uniform continuity of f’, and |A:| — 0 as i— o, we have
vx, "'| 8i| = 0 as i - o, which proves the lemma.
With g(x*, y) as defined earlier, we have (see the steps leading to

(1)),
‘ 1 (1 = ya)mi| 8] 7’| 8|
i) —1=—=yp — L - : ,
g( 'Yk;) 9 Y&; i, If(xk,) _ al zYk, If(xk,) _ a|2
in which | ;| < 1, for all i. By the lemma, using the bound | f(x*) — a|

= p, we have g(x*, yx,) = 1 as i — oo. This contradicts the inequality
g(x*, ) < o for all i, and thus | f(x*) — a| - 0 as k — c.

2.2 Comments

With regard to the hypotheses of Theorem 1, a sometimes useful
sufficient condition for f and f’ to be uniformly continuous on L is
simply that f and f’ satisfy uniform Lipschitz conditions on closed
bounded subsets of U.

For the important special case in which B = R" and | - | is the usual
Euclidean norm, a relatively short proof can be given of the proposition
that, under the hypotheses of Theorem 1, we have | f(x*) — a| — 0 as
k — o for any sequence generated by Process N: Suppose that | f(x*)
—a|-4 0as k— . We have | f(x*) — a| <| f(x°) — a| for all £ > 0.
Since {x*} is contained in the compact set L, we can construct a
convergent subsequence {x*} with limit x* € L such that Hm; ey,
=0 and f(x*) # a. Since x* satisfies | f(x*) — a| < | f(x°) — a|, L
contains an open neighborhood of x*, and we may therefore assume
without loss of generality that {x*} is contained in a convex subset of
L.

By the mean-value theorem,
g(x", y) = —(Vs*(m), dn,) /25 (x*)

in which (.,.) denotes the usual inner product, V the gradient,
and 7, is a point on the open-line segment between x* and x*
+ yu,¢r,. Thus, with “tr” denoting the transpose,

2L fOmw,) — al®f (na ) (en) 7 '[ fxn,) — a]
g(x ,’Yk,-) 2|f(.7c ) = a|2

from which it is clear thatg(x® y,) — 1 as i — o, and this
contradicts g(x*, yx,) < o for all i, which completes the proof.

Theorem 2: Let a € B and x° € U be given. Assume that there is an
x € U such that f(x) = a, that Process N can be carried out, and that
it generates a sequence x', x*, - - - such that f(x*) # a for all k, and
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x* > x as B — o. Assume also that ' and (f')"! exist in a
neighborhood N, of x, and that (f')™! is continuous at the point x.
Then there is an integer M such that vy, = 1 for k = M, and we have
[x*' — x| (|x* —x|) "> 0ask— .

2.3 Proof of Theorem 2

We assume, without loss of generality, that x* € N for all k. Let J
and J; denote f'(x) and f’(x:), respectively. Since ¢r =" (a — f(x*))
= (J&' — I )@ — f(x*)) + Ja — f(x*)), we have | x| =< |J5* —
J7 - la= flx*)|+|J 7| - |a— f(x*)|for all & By the continuity of
(f) "' at x and f(x*) — a as k — o, it is clear that ¢, — 8§ as k — 0.
Therefore, there is an integer m such that x* + ¢ € U for 2 = m. With
regard to the existence of M, observe that, since k < % < o, it suffices
to show that g(x* 1) — % as £ — » (g is defined in the proof of
Theorem 1), or, equivalently, that #(x*, 1) given by #(x*, 1) = s(x* +
&) /s(x*) for k = m, satisfies t(x*, 1) > 0 as 2 — c.

Let 2 = m. Since [’ exists at the point x, f(x*) — a = J(x* — x) +
and f(x* + ¢u) — a = J(x* + ¢p — x) + A, with 8 = o(| x* — x|) and
A = o(|x* + ¢» — x|), and of course ¢ =—J3'[J(x* — x) + 8]. Since
J is an invertible bounded linear operator from B onto B, there are
positive constants 8, and 8; such that 8, |u| < |Ju| < B:|u| for u €
Bt

Thus, for some m > m, |J(x* — x) | = 2| 8| and |J(x +¢r—x)| =
|A| for k= 7. We have, for &£ =m, s(x*, 1) <4 |J(x* + ¢ — x) | - | J(x*
—x) | ' =4B07" | x* + ¢ — x| - | x* —x| -1, Therefore, for k = i,

ViBiBz's(x® 1) = | 2% — x| (|xF —x — (x* — x)
—J 8+ (J = TN [J(xF - x) + 811)
=|x*— x| Y| I8 + | = 3|

| JxE—x) |+ [T = TR - | 8)). (4)
Using |J7'8| <B7"| 8|, as well as 8 = o(| x* — x|) and | J ' =JF'| —
0 as & — o, we see that ¢(x*, 1) — 0 as 2 — o, which proves the
existence of M such that x**' = x* + ¢, for 2 = M. Finally, notice that
the right side of (4) is |x**' — x| - |x* — x|~ for £ = M. Thus, our

proof shows that |x**' — x| . |x* — x|™' > 0 as £ — =, which
completes the proof of Theorem 2.

Theorem 3: Assume that f is a C'-diffeomorphism. Let f and f’ be
uniformly continuous on closed bounded subsets of U, and let | (')’ |
be bounded on closed bounded subsets of B. Then for each a € B and
each x° € U, Process N can be carried out; any sequence x", x%,

1 The left inequality is a consequence of the proposltmn. due to Banach, that if A : B
— B is a bounded linear invertible operator, then A~ is bounded.
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generated by the process converges to the unique solution x of f(x)
= a, and is such that we have | x**' — x| = cx|x* — x| for k=0, in
which ¢z — 0 as k — o,

2.4 Proof of Theorem 3

Let a and x° be given. Let p be a constant such that | (f ') (u) | <p
forue (u€B:|u|=<|a|+|f(x°) —a|).fvEL,then f(v) =a+
b with | b| = | f(x°) — a|. For any such b,

1
fHa+b)=fa) +J (f)(a+pBbydp - b
0

and thus | f (@ + b) | =|f '(a@)]| + p| f(x*) — a|, which shows that L
is bounded.

Since fis a C'-diffeomorphism, u = f'[f(u)] for u € U and v =
fIf "(v)] for v € B. By the continuous differentiability of fand f’, we
have, with I the identity operator on B, I = (f~')'(f(u)) - f'(u) for u
eU,and I= f[fv)] - (f)(v) for v € B. Now set v = f(u), and
observe that, for u € U, I = (f')(f(w)) - f'(w) and I = f'(u) -
(f")(f(u)). Thus f'(u)~" exists, because f’(u) possesses both a left
inverse and a right inverse, and it satisfies f’(x) ™" = (f~')'(f(u)) for u
€ U. Let K satisfy | (f")(w) |=Kforwe€ {(weB:|w|<|a|+|f(x°)
— a|}. Choose v € L, and notice that | f'(v)™"| = K because | f(v) | =
la| + | f(x°) — a].

By Theorem 1, Process N can be carried out, and any sequence that
it generates satisfies | f(x*) — a| — 0 as £ — . Let x*, 2% ... be any
such sequence.

Clearly, x* = f'(a + &) with |8;| — 0 as 2 — . Since f'is
continuous, x* — x as 2 — o, where x is the unique solution of f(x)
= a.

If x° # x, then x is an interior point of L, and is therefore contained
in some neighborhood N, of x such that N, C L. For w € N,, we have
[fw)™ = f@)7 =[x - flf @7 =K f(x) -
f'(w) |, which shows that ()" is continuous at x. Thus, by Theorem
2 and the observation that if x/ = x for some j, then x* = x for & > j,
there is a sequence ¢g, ¢1, - -+ with the properties stated in Theorem
3.1 This completes the proof.

2.5 Comment

Here we give a related result concerning conditions under which f
is a C!-diffeomorphism, which is sometimes useful. Assume that f’
exists and is continuous on U, and that U is convex. Let 4, and A; be
any two families of compact subsets of B and U, respectively, such

+ In this connection, from Theorem 2 and known local Properties of Newton's method,
it follows that we have quadratic convergence (i.e., |x**' — x| < 8| x* — x|*for k= 0
and some constant B) if in addition f’ is locally Lipschitzian on U,
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that if C and D are compact sets in U and B, respectively, then there
are SEA and T€ Ay suchthat CC Tand DC S.

If fis a C'-diffeomorphism, we have, as in the proof of Theorem 3,
I=(f")(fw) - f'(u) and I = f'(u) - (f7)(f(w)) for u € U, and
thus then f’(u)™' exists for u € U. This observation, together with
Theorem 3 of Ref. 6, and the implicit function theorem in Ref. 7, p.
273 show that fis a C'-diffeomorphism if and only if f'(z)" exists for
each u € U, and for each S € A,, there is a T' € A, such that f(s) €S
implies that s € T. A corresponding result for B = U = R" is well
known.?

2.6 Monotone diffeomorphisms in Hilbert space

Let ¢:[0, ©) — [0, ») be continuous, strictly increasing, and such
that Y(0) = 0, Y(a) — = as a — o, and a 'Y(a) = ¢ for a € (0, @) for
some positive constants ¢ and a. Notice that, for example, J(a) = «
meets these conditions.

Theorem 4: Let f map a real Hilbert space H, with inner product
(+,+), into itself such that ( f(u) — f(v), u —v) = |u—v|¥(|u—-v|)
for all u, v € H. Assume that [’ exists and is uniformly continuous on
closed bounded subsets of H. Then fis a C'-diffeomorphism of H onto
H, and the conclusion of Theorem 3 (with U and B replaced with H)
holds.

2.6.1 Proof of Theorem 4

Since fis continuous and satisfies the indicated inequality with ¢ :
[0, ) — [0, ) continuous, strictly increasing, and such that ¥(0) = 0
and Y(a) — o« as a — o, it can be shown that fis a homeomorphism
of H onto H® (see also Refs. 10 and 11 for early results along similar
lines).

Now let A € H with h # 4 be arbitrary, and let v be any point in H.
Since ( f(v + th) — f(v), th) = |th|{(|th|) for each real number ¢, it
follows from the existence of f’, and the inequality a 'Y(a) = ¢ for a
€ (0, @), that | A |~%( f’(v)h, h) = c. This implies that f'(v)~" exists and
that | f/(v)™"| = ¢ for v € H.” Since fis onto, by the inverse function
theorem in Ref. 7, p. 273, f~' is continuously differentiable on H.
Therefore, fis a C'-diffeomorphism of H onto H.

As in the proof of Theorem 3, (f~")'(f(u)) = f’(u) ™" for u € H, which
shows that | (f~')’| is bounded on H. Finally, by the uniform continuity
of f', |f'| is bounded on convex closed bounded sets, and since any
bounded set in H is containeu in some convex closed boundea subset
of H, it easily follows that fis uniformly continuous on closed bounded
sets.T Therefore, by Theorem 3, the proof is complete.

T This type of argument shows also that the uniform continuity requirement on fin
Theorem 3 can be dropped when U = B.
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2.6.2 Notes

An early related result is the following. If H is a real or complex
Hilbert space, and f: H— H is Lipschitz as well as uniformly monotone
in the sense that for some constant ¢ > 0, we have

Re(f(u) = fv),u—v)y=clu—-v|®* for u v€EH,

then fis a homeomorphism of H onto H, and, with A the Lipschitz
constant, given a € H, and any starting point x° € H, the iterates x,
x% - defined by

' =x*+ A Ha - f(x*), k=0

converge to the solution x of f(x) = a.''{ A similar proposition is given
in Ref. 13, p. 131, and a modification of the proposition described
above, of use in Banach spaces, is given in Ref. 14.

2.6.3 An example

Here we give a simple example of a uniformly monotone operator
for which H is not finite dimensional and the hypotheses of Theorem
4 are met. The example arises in connection with results concerning
the recovery of distorted signals (see Ref. 11 and the work of Beurling,
Landau and Miranker, and Zames cited there).

Let L; denote the linear space of square-integrable functions from
R!into R, let the inner product (-, - ) in L; be given, as usual, by

(u, v) =f u(tv(t) dt,

and let |- | denote the corresponding norm. Let H be the closed
subspace of elements v of Ls for which V(w), the Fourier transform of
v, given by

V(w) = Lim. J v(t)e ! dt,

vanishes for almost all w & £2, where £ is a fixed bounded interval
[—wo, wo]. Of course, for any v € H we have

v(t) = if Viw)e™ dw, a.e. (5)
27
]
and we shall use the fact that
1/2
esssup | v(t) | < (%) lv], vEH, 6)

t For a particularly interesting application, see Ref. 15.
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which easily follows from (5), the Schwarz inequality, and Plancherel’s
identity.

Let P: L; — L; denote the projection operator that projects L; onto
H, and let @ : H— L be defined by the condition that for each v € H,
(Qu)(t) = q[v(¢)] for almost all ¢, where g : R' — R' is continuously
differentiable, such that g(0) = 0, and such that there are positive
constants ¢ and A with the property that ¢ < ¢’(a) < A for all a. Finally,
let f: H— H be given by f= P@.

It can easily be verified that (@(u) — Q(v), u — v) = c|u — v|?® for
u, v € H. Since P is self-adjoint, { f(u) — f(v), u — v) = c|u — v|?* for
u and v in H. Similarly, using |P| = 1, we have | f(u) — f(v)| <
Alu—v|foru, veEH.

For each v € H, let R, : H— L, be defined by (R.u)(t) = q'[v(t) Ju(t)
for almost all ¢ and any u € H. (The definition makes sense because
q’[v(+)] is measurable, and we have essssup | ¢’[v(t)]| < .)

Now let v € H be arbitrary but fixed, and let §(h) € H be given by
8(h) = (PQ)(v + h) — (PQ)(v) — (PR.,)h for each h € H. Using | P|
= 1, we have |§(h)| = |Q(v + k) — Qv — R,h|, and thus |8(h)| =
p(h)| k|, where

1
p(h) = ess,sup J’ |q'[v(t) + BR(£)] — q'[v(t)]]| dB.
0

Since g’ is uniformly continuous on compact sets, ess,sup | v(¢)| < oo,
and ess;sup | A(¢)| — 0 as | h| — 0 [see (6)], we have p(h) — O as | k|
— 0. This shows that f'(v) exists and that f'(v) = PR,.

On the other hand, | PR,, — PR,,| =sup{|(R., — R,,)w| : w € H,
|w| = 1} for v, and v, in H, where| PR, — PR,,| denotes the induced
norm sup{|(PR., — PR,)w|: w € H, |w| = 1} of (PR,, — PR,,) : H
— H. Thus,

| PR., — PR.,| < essisup|q'[va(t)] — q'[vs(2)]]

for v,, vs € H. Now let y be an arbitrary positive constant, and suppose
that v, and v, in H satisfy |va| < y and | vs| =< y. Let 0 > 0 be another
constant. Using (6), ess,sup max(| v.(t)], | vs(t)|) = K where K = (wo/
m)'/?y. By the uniform continuity of ¢'(-) for |a| < K, let § be such
that |g'(e1) — @’(az)| <o when |a | = K, |ae| = K, and |a; — 2| <
8. Thus, by (6), if |va — vs| < 8(wo/m)™"/? then|PR,, — PR,,| < 0.
Since o is arbitrary, f’ is uniformly continuous on bounded subsets of
H. This shows that f satisfies the hypotheses of Theorem 4 (and it
proves that there is a superlinearly convergent algorithm that recovers
bandlimited signals that are nonlinearly distorted by @ and subse-
quently bandlimited by P).

Theorem 5: Let B = R", and let  be a continuously differentiable
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map of Uinto R". Then f is a C'-diffeomorphism of U onto R" if and
only if

(i) Process N can be carried out for each a € R™ and each x° €
U.
(it) For each a, any sequence produced by the process converges
superlinearly to a solution x of f(x) = a, and x does not depend
0
on x".

2.7 Proof

If f is a C'-diffeomorphism, then f, f’, and (')’ are continuous,
and then, since closed bounded subsets of R" are compact, f, f’, and
|(f~!)’| are uniformly continuous and bounded, respectively, on closed
bounded sets. Thus, by Theorem 3, (i) and (ii) hold when f is a C'-
diffeomorphism.

On the other hand, suppose that (£) and (ii) are satisfied. Then
f’(u)™" exists for each u, because otherwise there would be an x° and
an a such that a # f(x°) and such that there is no solution ¢o of
f(x%)¢o = a — f(x°). Also, f is one-to-one and onto. Since there is an
x such that f(x) = a for each @ € R", and f’(u)™" exists for all , it
follows from a standard inverse function theorem (see, for example,
Ref. 7, p. 273) that (f~")’ exists and is continuous on R". Thus, () and
(i) imply that f is a C'-diffeomorphism.

2.8 Comments

Our concern throughout this paper is primarily with studies of what
is possible. We do not claim that of all applicable Newton-direction
algorithms, Process N is the most efficient. In fact, it is not difficult to
modify Process N to improve its performance in certain specific cases.
Also, results along the lines of this paper can be proved using Newton-
direction algorithms that, unlike Process N, do not typically require,
for the determination of the y;, a one-dimensional search procedure
for a finite number of values of k. These results will be reported on in
later papers.'¢’
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