Copyright © 1980 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 59, No. 9, November 1980
Printed in US.A.

Designer’s Workbench:

Philosophy

By L. A. O'NEILL
(Manuscript received May 1, 1980)

Designer’s Workbench (DWB) increases the productivity of the de-
sign-aids user by buffering the user from the idiosyncrasies of the
application programs and the computers on which they run. These
aids are used during the electrical design, physical design, and test
development of both custom electronics and printed wiring boards.
The design-aids programs were left unchanged on their original
computers and are accessed via an interlocation computing network
using the capabilities of the PWB /UNIX* operating system. All job
control, file management, and data translation required for the
programs are provided automatically. In addition to describing the
design constraints applied during the development of DWB, this paper
also introduces the three other papers in this issue that describe in
detail the user, programmer, and production environments created
by DWB.

I. INTRODUCTION

The most significant challenge facing the computer industry over
the next decade is to increase the productivity of those who use the
computers. Until now, the end users have relied primarily upon pro-
grammers to develop their applications. The continual reduction in
hardware costs is producing such a proliferation of computers that it
will not be possible to hire and train enough programmers to develop
all the software needed. One approach to resolve this difficulty is to
provide an environment in which the programmer can be more pro-
ductive. That is what has been done in the Programmer’s Workbench

* UNIX is a trademark of Bell Laboratories.

1757



version of the UNIX time-sharing operating system.' Another approach
is to develop a higher level language that makes it easier for the end
user to instruct the computer to perform the operations required. This
is the approach that most data-base management systems have taken
by providing a simple query language for the user to specify what
information is desired.? Designer’s Workbench (DWB) was designed so
that the end users could perform most operations for themselves while
providing an improved development environment for the application
programmer.

DWB provides a high-level language for the user of circuit design-
aids programs, thereby removing most tedious error-prone tasks that,
in the past, have reduced the circuit designer’s productivity. These
design aids are a set of programs used in the design, fabrication, and
testing of both printed wiring boards and integrated circuits. The
various programs perform functions such as simulation, design verifi-
cation, prototype construction, and test generation. DwB is the product
of two separate organizations that, while having similar support re-
sponsibilities, used different programs and processes specifically tai-
lored to their product. While some of the programs supported were
locally developed by these organizations, others were provided and
supported by other organizations. In addition, some of these programs
ran on several different computers at other locations. Because of the
number of programs involved and limited programmer resources, it
was not feasible to consider the usual approach of rewriting the
individual programs on a single computer to simplify and unify their
use.
Instead, another approach was taken. The application programs
were left unchanged on their present computers, and DwB acts as an
intelligent terminal to prepare and submit jobs to the appropriate
computer via an interlocation computer network. Such an approach
would not have been economically feasible without the excellent
communication capabilities and variety of the programming utilities
provided on the PWB version of the UNIX operating system. By using
PWB/UNIX software, the DWB developers were freed from many routine,
yet complicated, programming tasks, and the constraint of using spe-
cific computers was removed. The developers of DWB could concentrate
on designing an interactive front-end to these remote application
programs. DWB has gained immediate production acceptance because
it automates the routine tasks that people dislike doing and computers
do well. Thus, people enjoy the assistance DWB provides because it
frees them for more creative tasks.

DWB serves as a high-level language that is oriented toward the user
rather than the programmer or computer. By inserting an interactive
computer between the designer and the application programs, pws

1758 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



only requires users to learn one language related to their background;
the computer does the remainder of the job. The remote application
programs are not moved or changed. The minicomputer uses a dial-up
capability to reach the other computers and automatically reformats
the data to the specific application program language. In this environ-
ment, training is reduced by economically providing on-line tutorial
text. In addition, pwB helps the users manage their work by keeping
track of files and the status of the jobs submitted.

This paper describes the scope of the design aids application and
the specific constraints applied that resulted in the current implemen-
tation of Designer’s Workbench. The contents of the other three DWB
related papers in this issue are then discussed. Finally, the initial user
reaction as well as future implications of the Designer’s Workbench
approach are mentioned.

Il. DESIGN AIDS APPLICATION

Designers Workbench (DWB) was conceived to integrate two sets of
design aids that had evolved over a period of five years. These sets
were in daily production use in the transmission area of Bell Labora-
tories at the North Andover, Massachusetts and Holmdel, New Jersey
locations.? They had some common components, they used many of
the same machine-aided graphical layout and documentation systems,
and they used similar aids to generate manufacturing tests for digital
circuits., Their differences were also significant. One was used to
develop manufacturing information for circuit packs, both wired pro-
totypes and printed circuit boards (pcB), while the other was used for
the design and development of custom electronics, from the silicon
chip through the pcB interconnection levels. The capabilities that had
to be integrated consisted of:

(i) Logic simulation.

(if) Automatic wiring of prototypes.
(iif) Acceptance and diagnostic tests.
(iv) Testability analysis.

(v) Machine-aided layout.
(vi) Documentation.

The goal of the initial implementation of DWB was to simplify the
generation of the digital test information. Thus, only a subset of the
above capabilities was programmed. Five major capabilities were in-
corporated. The first, HIWIRE® is used for automatic prototype con-
struction and to provide the physical design data required for guided
probe diagnosis of bad circuits. Two logic simulators, LAMP® and LASAR®

DESIGNER'S WORKBENCH—PHILOSOPHY 1759



are used for test generation and evaluation of different classes cof
circuits. The fourth, TMEAS' is used to evaluate the testability of a
digital circuit and to enable the designer to determine the effect of
various techniques to enhance its testability. The fifth capability is an
interface that reformats the data from the previous programs into
machine-readable form that will execute on specific test machines.

Ill. IMPLEMENTATION CONSTRAINTS

The complexity of the integration effort becomes clear when we
realize that the test generation process in New Jersey consisted of 17
programs running on 7 different computers. The process in Massachu-
setts consisted of 24 programs running on 11 computers. To accomplish
this task economically, the following constraints were applied.

(i) Leave application programs on present computers.
(#Z) Do not change the input languages of these programs.
(ii{) Keep the amount of data to be transmitted small.
(iv) Make the new system easy to learn.

The first constraint would allow all existing programs to be used as
well as make it possible to access any future programs that would be
developed on other machines. The availability of the Bell Laboratories
interlocation network meant that the pwB developers did not have to
be concerned with the physical and software problems of establishing
such a facility. PWB/UNIX software provided the commands to transfer
data between specified computers. Therefore, DwB had only to provide
the next protocol levels to select the appropriate computer for execu-
tion, send the necessary data, and then return the results to the user.

Only by retaining the input languages was it possible to avoid major
reprogramming effort, especially on programs supported by other
organizations. To satisfy this constraint, it was necessary to provide a
translation mechanism so that the data could be reformatted to the
appropriate application language. The development of these transla-
tors was simplified by the availability of the PWB/UNIX compiler
writing utilities, LEX and YAcc.® To avoid a proliferation of translators,
a simple internal data base structure was selected and then each
specific language was converted into and out of this data base. In
addition to the data translators on pwB used for the circuit descrip-
tions, translators had to be provided for the input signals applied to
the circuits because the different programs used different formats. To
provide a common command language for various application pro-
grams, DWB also must translate commands into the specific form
required by the individual programs. This has been done to a limited
extent for some of our current applications. Significant effort will have

1760 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



to be applied to command translation in the future if pwB is to reach
its full potential for buffering the user from program differences.

The third constraint, on the amount of data transmitted, led to a
distributed data base. The internal data base of DWB is never sent to
another machine. Only enough data are transmitted in source form so
that the appropriate data structure can be populated on the remote
computer. Thus each application program can retain its own data base.
Whenever data from remote computers are needed for other pwB
applications, it is reacquired by bwB. Checks are made to determine
if editing has occurred on the remote computer, and the user is
informed of differences which may have to be reconciled. Some data,
such as graphical layouts, do not need to be returned to pwB. These
data are appropriately marked to indicate what version of the pwB
data base was used in their production, and may then be distributed
to the end user. The existence of separate data bases required that
pwB provide checks to insure that only consistent information is
retained.

The fourth constraint was satisfied by providing an inexpensive,
interactive environment where the user could be led through the use
of the system. The UNIX operating system on a minicomputer provided
just such an environment. Not only does bwB prompt the user to
supply all required information, but extensive on-line tutorials are also
provided to answer any questions that may arise.

One other major constraint was applied in the development of DWB.
It was obvious that pwB would have to be an evolving system to track
changes in product line and technology. Thus, it was designed from
the start to be easily modified and maintained. Throughout the design
and implementation phases, modularity and testability were empha-
sized. Whenever possible, the program code and the data were kept
separate so that changes could be introduced without recompiling.
Finally, a production control system was instituted to insure that the
user would not be inconvenienced by future development work.

The application of these constraints and the use of the PWB version
of the UNIX operating system led to the economical implementation
desired. The specification phase required 13 programmer months and
an elapsed time of 6.5 months. The implementation of the initial
thread required 25 programmer months and an elapsed time of 3.5
months. The provision of the entire production set of applications
required 29 programmer months and an elapsed time of 5.5 months.
Finally, the provision of the production control system required 21
programmer months and an elapsed time of 3.5 months. These times
and efforts are remarkably small when compared to the effort required
to implement other design-aids systems on a new computer. Many
application programs are dependent upon the operating system under

DESIGNER'S WORKBENCH—PHILOSOPHY 1761



which they were written, and the original development of these pro-
grams required many programmer years of effort. Furthermore, the
flexibility of the approach has made it easy to add other applications
and programs to the Designer’s Workbench.

The testing of a design-aids system with its evolving application
environment differs from the testing of a typical software product. The
formal integration testing by the developers consumed only 8 program-
mer months for the first thread (successful run of an application) and
10 programmer months for the full capability. However, the end users
are continually testing and evaluating the system and recommending
changes to the specifications. Relatively little code was changed to
correct bugs, but much has been modified to satisfy evolving user
requirements. Maintenance, including the modifications required to
accommodate changes in operating systems, has required less than one
programmer half-time since the system went into production.

IV. THE USER ENVIRONMENT

The view of Designer’s Workbench seen by the end user is described
in “Designer's Workbench—The User Environment.”? This paper
presents the requirements that were placed upon the implementation
to gain the acceptance of the user community. Particular emphasis
was placed upon the human-machine interface to insure that the new
user would not be frustrated by the many details needed to run
different programs on different machines. The methods by which the
user is shielded from the file-naming conventions, data translations,
job control, and error handling are illustrated. The processes by which
the user creates and maintains data and submits jobs are described.
These jobs may be submitted either interactively or to a batch queue.
For batch jobs, DWB keeps track of the status so that the user can
easily determine if the remote program has run successfully or not.
For interactive jobs, DWB performs the login process for the target
machine and provides an encryption mechanism to keep the required
passwords secure. Then either a clear channel is provided for normal
interactive operation on the remote computer or DWB can translate
the commands into the form accepted by the target machine and
interpret the replies for the user.

V. THE PROGRAMMER ENVIRONMENT

The view of Designer’s Workbench seen by a programmer who is to
add a new capability to DWB is presented in “Designer’s Workbench—
The Programmer Environment.”"® This paper emphasizes that DwWB
was designed to provide consistency, simplicity, modularity, reliability,
and ease of maintenance. The reasons that these attributes were
stressed are presented, as well as the software engineering techniques

1762 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



utilized. We describe the file structure used to simplify the access of
data. This is needed both to describe the circuit and to submit the job
with complete accounting information. Then the mechanisms used to
customize each job for submission and to translate the data to the
form required by the application programs are presented. The value of
PWB/UNIX utility programs is discussed, as well as the effect that the
UNIX languages had on the implementation. Finally, the methods used
to retain status information and maintain records are presented. The
overall purpose of this paper is to illustrate the simplicity with which
pwB could be implemented and new applications could be added in
the PWB/UNIX environment.

VI. PRODUCTION ENVIRONMENT

The methods used to keep a system such as DWB current in a
production situation are described in “Designer’s Workbench—Provid-
ing a Production Environment.”"' If a system such as DWB is to be
successful, careful provision must be made to insure that it can be
modified, either to correct bugs or add new capabilities, without
interfering with the end user. It is imperative that the software be
reliable to maintain the user’s confidence. To accomplish this, a simple
yet comprehensive production software control facility has been pro-
vided for pwB. The source code is controlled, multiple versions are
concurrently available, and an extensive testing procedure is followed.
The Source Code Control System (sccs) provided by the PWB/UNIX
system is used to keep track of all sources, both program and data,
needed to reconstruct any previous version of pwB. In addition, several
versions of DWB are concurrently available so that debugging in a
complete system environment, testing, and production can occur si-
multaneously, without interference. Three versions are available to
the user: the current one, a test one containing new features, and the
last production version. The last version is used if a new release
appears to cause trouble with a capability that worked previously,
then the user can revert to a good version until the problems are
corrected. To simplify the control of this production operation, a set of
utility librarian programs are provided. The utilities automate the
process to insure that all functions are performed correctly and con-
sistently. Other utilities are provided to automate the record-keeping
and accounting functions; these provide usage data that aid the devel-
opers in isolating potential problem areas and guide future develop-
ment efforts.

VIl. USER REACTION

The initial user response to the capabilities of DWB has been quite
favorable. In general, the basic philosophy has been accepted, and the

DESIGNER'S WORKBENCH—PHILOSOPHY 1763



users have made many suggestions on additional capabilities that they
would like to have provided. The training of new users is indeed
simpler, and the number of requests to solve JcL-related problems has
greatly diminished. In contrast, the demands placed upon the trans-
lators have greatly increased. When these programs were used only by
experienced, trained users, the users would compensate for deficiencies.
Novice users, however, placed additional strains on the translators.
Therefore, additional effort has been placed in this area to make the
translators more robust. The users have requested that the remainder
of the design aids process be implemented so that the circuit descrip-
tion developed for the testing function can be used in the physical
design process. Work is in progress to add links to the other interactive
layout and design aids systems used throughout Bell Laboratories. To
accomplish this, a second input language is being added to pws. This
is the language used to populate the data base of those other systems.
With the implementation of these capabilities, DWB will be able to
satisfy its original goal of integrating the complete design process.

The most significant request for a new capability was to augment
the current batch capability with an interactive method for executing
programs on remote computers. The user community wanted the same
type of tutorial guidance and assistance that they presently have on
DWB made available for remote interactive programs. Interactive op-
eration is a much more complicated task than batch submission,
because pwB would have to analyze each command submitted by the
user and each response received from the remote computer. With pws
serving as a buffer, the user would see similar commands for all
applications while each computer would see its specific command
language. An initial version of this capability is available, but more
work is needed to generalize the handling of messages, such as error
return codes, received from the remote systems.

Another class of interactive applications that must be integrated
into DWB are those programs that rely heavily on graphical editing. As
a minimum, DWB provides for simplified file transfer to and from the
graphics system so that the user can concentrate on learning and using
the graphical capability itself. Within Bell Laboratories, many new
graphical systems are being rewritten to take advantage of the UNIX
operating system. When these graphical programs exist on the same
computer as DWB, it will be possible to switch between bwB and the
graphical system as necessary in the design process.’

VIil. CONCLUSIONS

It has been found that the Designer’s Workbench approach greatly
increases user acceptance of design-aids programs. The vast majority
of the previous complaints about design aids have been removed by

1764 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



shielding the user from the idiosyncrasies of the computers, both the
job control language and the input languages of the programs. In
addition, most of the tedious, error-prone steps of data encoding, file
management, consistency verification, and job customization have
been removed or greatly simplified for the novice user without restrict-
ing the flexibility provided for the experienced user. Furthermore, bwB
has created an environment in which new applications can be readily
written and integrated with the existing aids. Although pwB was
designed to handle a specific set of application programs, the capability
is perfectly general and can easily be applied to other sets. Adding new
applications is straightforward because of the software engineering
techniques used. Thus a general-purpose capability has been developed
that can be used to simplify the task of the end users and thus increase
their productivity.

IX. ACKNOWLEDGMENTS

The authors of this set of papers would like to acknowledge the
significant contributions of C. G. Savolaine in defining, specifying, and
implementing the initial version of pwa. In addition, they would like
to thank A. Devito, D. S. Evans, J. M. Franke, T. V. Gaudet, J. E.
Gorman, J. W. Kasinskas, B. T. McNamara, R. P. Snicer, C. A.
Verbinski, and E. D. Walsh for their contributions to bws, and a
significant number of users who have driven this work. We would
especially like to thank R. B. Hawkins, E. B. Kozemchak, and J. Logan
for their advice and support in realizing DWB.

REFERENCES

1. T. A.Dolotta and J. R. Mashey, “An Introduction to the Programmer’s Workbench,”
Proc. 2nd Int. Conf. on Software Engineering (October 13-15, 1976), pp. 164-168.

. B. Schneiderman, Databases: Improving Usability and Responsiveness, New York:

Academic Press, 1978.

. L. A. O'Neill et al., “Designers Workbench—Efficient and Economical Design Aids,”

Proc. 16th Design Automation Conference (June 25-27, 1979), pp. 185-199.
D. S. Evans and L. A. O'Neill, “An Integrated System for the Design of Printed
&Vi.ring Boards,” Electro ‘76 Professional Program, Session 26 (1976), Boston,

ass.

. S. G. Chappell et al., “LAMP: Logic Analyzer for Maintenance Planning, Logic-Circuit
Simulators,” B.S.T.J., 53, No. 8 (October 1974), pp. 1451-1476.

. The Users Manual for the Teradyne P400 Automatic Test Plan Generation System,
Boston: Teradyne Inc., 183 Essex St., Mass.

. J. Grason, “TMEAS, a Testability Measurement Program,” Proc. 16th Design Auto-
mation Conference (June 25-27, 1979), pp. 156-161.

. S. C. Johnson and M. E. Lesk, “Language Development Tools,” B.S.T.J., 57, No. 6,
Part 2 (July-August 1978), pp. 2155-2175.

. J. R. Breiland and R. A. Friedenson, “Designer’s Workbench: The User Environ-
ment,” B.S.T.J., this issue, pp. 1765-1790.

10. P. H. McDonald and T. J. Thompson, “Designer's Workbench: The Programmer

Environment,” B.S.T.J., this issue, pp. 1791-1807.
11. T. J. Thompson, “Designer's Workbench: Providing a Production Environment,”
B.S.T.J., this issue, pp. 1809-1823.

F T

© o =N o o

DESIGNER'S WORKBENCH—PHILOSOPHY 1765






