Copyright © 1980 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 69, No. 9, November 1980
Printed in U.S.A.

Designer’s Workbench:

The User Environment

By J. R. BREILAND and R. A. FRIEDENSON
(Manuscript received May 1, 1980)

Designer’s Workbench, an interactive approach to integrating de-
sign aids, overcomes most impediments that normally restrict the use
of these aids. Written under the PWB /UNIX* operating system, these
programs smooth the flow of data between the application programs
that reside on various computer systems and are used to aid in the
design of transmission equipment. This paper describes the user
environment. It includes a description of the design technologies,
Dprocesses, and aids and presents the Designer’s Workbench approach
to improving the acceptance and efficiency of those aids.

. INTRODUCTION

Designer’s Workbench (DWB) integrates the design aids used at two
transmission area locations of Bell Laboratories into a uniform sys-
tem.' The set of design aids at the Holmdel, New Jersey location is
primarily used for computer architecture and printed circuit board
design. The set of aids at the North Andover, Massachusetts location
is used to design custom electronics from the silicon chip through the
printed circuit board interconnection. Before Designer’s Workbench,
these aids consisted of more than 40 programs running on 12 different
computer configurations at 9 physically separate locations.

A major reason for the lack of acceptance of many design-aids
systems is that little attention has been given to the needs and limited
level of computer expertise of the user community. The users’ require-
ments have been the controlling force in the implementation of De-
signer’s Workbench. The capabilities and functions they require are
extensive. Foremost, they need a fully integrated set of application
programs for electrical design, test development, and physical design.

* UNIX is a trademark of Bell Laboratories.

1767



Besides the necessary application programs, they require:
(i) Ease of data entry.
(ii) Ease of data modification.
(i) Automatic naming and maintenance of internal files.
(iv) The ability to move data from one computer to another.
(v) The ability to have data translated from one application pro-
gram to another.
(vi) Information about missing and inconsistent data before an
application program is initiated.
(vii) Automatic formating of the job control language (scL) for the
various application programs and machines.
(viii) Interpretation and cross-referencing of their output data.
(ix) Interactive dialogue at multiple skill levels.
(x) A self-learning environment with on-line manuals.

The needs of the departments that support design-aids systems also
affect the user environment. One goal is to reduce the dependence on
consultants, or “gurus,” for each application program that is supported.
Other goals include the support of users who possess a wide diversity
of skill levels, speeding the access by users to new applications pro-
grams that were not developed at the local site, and introducing bug-
free enhancements to existing software.

This paper first explores the state of the design-aids used before this
project was undertaken. The viewpoint is the users, that is, the
electrical designers, physical designers, and test developers. Then the
present user environment under DwB is discussed, including the pwB
tutorials, data entry and modification, job preparation, job submission,
and postprocessing of output data. The paper concludes with user
feedback, user statistics, and future directions.

Il. TECHNOLOGY FOR TRANSMISSION EQUIPMENT

Telecommunications equipment for digital transmission contains a
wide range of both electrical and interconnection technology.

2.1 High volume custom electronics

Equipment that interfaces voice frequency lines contains hybrid
transformers, relays, plugs, jacks, analog filters and amplifiers, signal-
ing control circuitry, encoders, decoders, multiplexers, demultiplexers,
compressors, expanders, etc. Although most of these functions are
implemented with analog circuitry, significant portions are realized
with digital circuitry. The logic structure of this circuitry is generally
random, asynchronous, and sequential. Because of the large manufac-
turing volumes, custom, rather than off-the-shelf, electronics is used.
The custom digital technology includes TTL, IIL, ECL, and MOSs.

Because of the few codes and large manufacturing volumes involved,

1768 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



the line interface product includes a level of interconnection of elec-
tronics not generally found in other types of equipment. Most other
equipment interconnects the electronics at the silicon level and the
printed circuit board level. However, there is an intermediate level of
interconnection in this product. This intermediate level of intercon-
nection is the interconnection of digital devices, linear devices, thin-
film resistors, and/or thin film capacitors on ceramic modules. These
modules are called hybrid integrated circuits (Hics). Thus the design
process to realize a circuit pack involves three levels of electrical and
physical design: the silicon integrated circuit (sic) level, the hybrid
integrated circuit (HIC) level, and the circuit pack level.
The advantages in choosing a customized electrical and intercon-
nection approach include:
(1) Lower interconnection cost.
(if) Lower power consumption.
(iif) Higher speed electronics.
(iv) Higher packing density.
(v) Higher reliability.
(vi) Lower manufacturing cost because of automation of processes.
On the negative side, development times are generally longer and
capital investment is generally higher.

2.2 Electronics for low volume control functions

Transmission equipment that interfaces digital lines or switching
equipment is generally realized in a much more structured form than
the voice frequency interfaces. The circuit packs contain DIPs, micro-
computers, and memories, and are characterized by common hardware,
custom firmware, and many different codes. At times, custom MsI and
LsI will appear on the packs. The advantages of this approach include:

() Fast turnaround of designs.

(i) Quick response to engineering changes.
(iii) Manufacturing economies by use of high volume components.
(iv) Greater commonality of design aids.

lll. DESIGN PROCESS

Although the design processes for the above two equipment archi-
tectures and interconnection technologies are similar, there are basic
differences in the sequence and way these steps are carried out. These
differences are mainly due to technological constraints and the avail-
ability of design tools (with their consultants). The major steps in the
design process are:

(1) Design
(a) Architectural level
(b) Functional level

DESIGNER'S WORKBENCH—USER ENVIRONMENT 1769



(c) Algorithmic level
(d) Logic level
(i) Testability analysis and incorporation
(iii) Design verification
(a) Hardware simulation (breadboard)
(b) Software simulation
(iv) Timing analysis
(v) Test development
(vi) Partitioning, placement, and layout
(vit) Processing and assembly
(viii) Prove-in testing on test machine
(ix) System test, evaluation, and modification
(x) Documentation for manufacture
(a) Schematic diagram
(b) Physical design information
(c) Test information
(d) Consistency checking.

The design process can be split into three major phases, the simu-
lation and breadboard phase, the test development for manufacturing
phase, and the physical design and documentation phase. Engineers
who take the full custom route must repeat each phase in the process
for each level in the hierarchy (sic, HIc, circuit pack).

IV. DESIGN AIDS

The design aids for digital electronics have been developed by many
different computer-aided design groups over the past decade. Some of
these groups are internal to Bell Laboratories, others are outside
suppliers. This section describes the state of design aids in the trans-
mission area of Bell Laboratories in early 1978.

4.1 Circuit pack design aids

The circuit pack design process is illustrated in Fig. 1. Coding of the
engineer’s circuit sketch in the LSL circuit description language®? is
the entry point for the design aids system. The inclusion of physical
design information along with the interconnectivity information en-
ables the creation of the HIWIRE* data base for that board. This data
base is used as input to the programs that create information to drive
either an automatic wirewrap machine or a semi-automatic quick
connect machine for quick turnaround breadboard models. The HI-
WIRE coding can be used as input to the LamP*? logic simulator for
design verification and test development. When the test data are
combined with the physical design information provided in the HIWIRE
description, diagnostics can be created for guided fault isolation.

When the electrical designer is reasonably confident that his bread-

1770 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1880



‘ssavoxd udsap yoed ymony—1 “Sig

dILSVYIN LUV SLNINOdWOI 30v1d

aNY AT9W3ssY NOILHYd
3A00N3 1NOAYT

1143 NODJINddV A2vd LINJHID

NO2ITddV

HOL3xs
L1INJ41D
H3I3ANIONI

1817 NOSIHYdN0D
ALIAILD3INNQOD

ONILS3L NOILYINWIS

21907 NNH

1573002

- —— e | SLNINOJWOD 30v1d

(LNOAYT 1104 HOL13)

€ 3SVHd

HOLINS
11n2412
H3IINION3T

[

asvg
0LE wal viva - =
JHIMIH _—— -

NOILYNTVAZ S SR OLE W8l
ONY ONILSIL AT

87> 10INN0O AV (QUV0Sav3IHE B NOILYINWIS)

<= »Ino L 3SVHd

HO
INIHOVI @
dvHM JHIM
_ —-— —
— /-

1771

DESIGNER'S WORKBENCH—USER ENVIRONMENT



board meets the design intent, layout for manufacture begins on a
computer-aided layout and documentation system. To ensure that the
layout agrees with the schematic, a connectivity comparison is per-
formed between the initial LsL coding and the metal-to-metal inter-
connectivity derived from the layout data base.” Only when the two
are in agreement are assembly and art master drawings created.

The file structure, libraries, and flow of information between major
programs for the electrical portion of this design process is shown in
Fig. 2. Note that there are five libraries (package, component, 1/0
pins, simulation, and test) that must be created and maintained, and
numerous internal files whose data must be compatible with more
than one program. A list of the functions performed in this process,

) st P
PACKAGE
LIBRARY P400
HIWIRE l
COMPONENT DLASAR
LIBRARY
e ] LSL
COMPILER
NETLIST TOLIST ECTOR
BACKPLANE HIWPST TABLES SIMULATION XLATER

é WIREWRAP

INPUT
NETLIST E LAMP VECTORS
VALUES
GDTAPE
SEMI-AUTOMATIC
WIREWRAP
SEMI-AUTOMATIC
QUICK CONNECT
TESTER

Fig. 2—Circuit pack design aids.

1772 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



along with the number of programs and computers used is given in
Table I. This process required 17 programs, which ran on seven
different machines.

4.2 Custom electronics design aids

As another example of the complexity of the use of design aids,
consider the test development process for the hierarchy of custom
electronics (Fig. 3). Test development for custom silicon and hybrid
integrated circuits is generally done using the LaMP simulator, The
test sequences first exercise the chip’s functions and then structurally
exercise nonactivated gates. They are used to verify the performance
of the silicon. Loading the device tester at our Allentown, Pennsylvania
location first required transmission from LAMP (run under IBM TSs at
Naperville, Illinois) to our CDC cYBER machine at North Andover,
Massachusetts, then to the computer-aided silicon design system at
Allentown, which generated a test tape for the device tester. These
data transmissions were accomplished using a multipurpose batch
station (MBs) over the interlocation computing network or over dial-
up lines.

For circuit pack test development, one available tool is an outside
supplier’s automatic test generator. Translating the circuit description
from LAMP to that test generator required the use of programs on both
the cYBER and a HP 2100 computer. As a check for consistency, the
vectors generated by the test generator were run against the initial
coding of the circuit description on the LAMP simulator. The test
development process required interaction with 13 different programs,
residing on 11 computers, from 9 manufacturers, at 5 geographic
locations. The process involved 11 hand carry links and 8 data trans-
missions.

Table I—Circuit pack design aids

Number
of
Function Programs Computers
Breadboard 5 IBM 0S/370
Testability analysis 1 IBM TSS/370
Design verification, test 3 IBM TSS/370
generation, and diag- IBM 0S/370
nostics
Schematic capture 3 DEC PDP-15
DEC PDP-11
IBM 08/370
Layout 1 DEC PDP-11
Metal extraction 1 DEC PDP-11
Connectivity audit 1 CDC cYBER 72
IBM 05/370
Test set 2 Data General Nova

Computer Automation

DESIGNER'S WORKBENCH—USER ENVIRONMENT 1773



'g82001d Juawido[aAap 159 soTUOIIOAA Wwojsn)—¢ ‘S

HOLYINWIS
diWY
HI wal
saw
I
i
0aNv L oL
07 aNY IH WNIT VIVE —
LY3IANOD
37517 1¥D AW H3IEAD AHHYO ONVH
I Awu3gan
: 07 GNY IH
mw._%wm. 1 <=1 0LO ANV | [
LYIANOD
saW
AW ANAGYHIL I AW HIBAD
HILS3L 00%d OL s378vl 31¥1S
aHvos 00%d SaW p—---— 3LVIS v 31VIS == HOd VL —
LHIANOD ETCEN 31vaud
SNHILLVd
S¥1Iva AW AW H3IEAD AW 00LZdH HOLVYINWIS 0 aNV | NV
AVAINN f—- . .= SEW _l —
AW NOHLVLVA AW H3GAD diNV NOILdI¥OS3a
1IN2419
3dvl AW
¥31S31 JIH -.— NOH1Y1va — HIWal AW
31340
TV aTIHOHIVS TV 00LZdH W AN AW HIEAD
v
Y31§3L OIS f—+-—— Qld¥Y [—--—— SEW saw - ¢ ] F%sm_%o"__mx —

1774 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



Table Il—Custom electronics design aids

Number
of
Function Programs Computers
Design 4 CDC cYBER 72
Design verification, test 7 IBM TSS/370
generation, and HP 2100
diagnostics CDC CYBER 72
Univac 1108
IBM 0S/370
Timing analysis 1 HP 2100
Harris
Layout
Silicon 2 HP 21MX
HICs & PCBs 1 DEC PDP-11
Prove-in testing
Column editor 1 CDC cYBER 72
Derace vectors 1 CDC CYBER 72
Test sets 3 Fairchild FST2
Data General Nova
Teradyne M365
Translation
Simulator to simulator 2 CDC cYBER 72
Simulator to test set 2 CDC cYBER 72

A list of the functions performed in the custom electronics design
process is given in Table II. It includes the number of programs used
and the host machines. For the entire process, 24 different programs
are used.

V. DWB INTERACTIVE APPROACH

Like many design aids systems, the above systems did not gain ready
acceptance by new or inexperienced computer users. A major reason
is that the users generally faced a significant learning curve while
trying to meet tight design schedules. Because of this learning curve,
they relied on tried and true procedures rather than contending with
numerous languages, passwords, phone numbers, file systems, libraries,
cryptic unintelligible instructions, and error messages. These obstacles
have been overcome in DWB by creating a “friendly,” circuit-designer-
oriented environment. This environment uses a minicomputer with
the PWB/UNIX operating system®’ and provides the communications
between the user and the application programs, which reside on many
different main frame computers. This system effectively acts as a
highly intelligent terminal to buffer the user from the intricacies and
inconsistencies of the various main frame computers and application
programs.

5.1 The environment

To control Designer’'s Workbench, a user must have access to a
computer with the PWB/UNIX operating system that offers the package
of pwB programs.

DESIGNER'S WORKBENCH—USER ENVIRONMENT 1775



A new user must first have the staff of the computer department set
up a valid user identification for the computer on which Designer’s
Workbench resides. To provide control and security, the DwB librarian
must then add a user’s name to the valid user file and appropriate
project file. The user is now ready to start an interactive session on
DWB.

When the user logs into the computer, he or she will see the PWB/
UNIX operating system. The user next executes the Designer’s Work-
bench program from PWB/UNIX and is prompted for his or her last
name. If the user is new to Designer’s Workbench, a user profile is set
up by interactively prompting for required information. This profile is
saved to be used in later sessions. The profile is built efficiently by
requiring only the necessary information to do the task at hand (see
Fig. 4). If additional information is needed for a specific application
program, it will be prompted for at the time that program is accessed
and added to the profile. Parameters that have logical and commonly

login: bin23
password:

Thu Dec 20 11:29:52 gsT 1979

s dwb
this is pWB-Version 1.2

—-» harrisen
ast name
your 1 name Iy

Good morning,
ease enter
iia you a new user (y ©

Please ent;:; s

a password =<
plgase yerify by re S
your first name 1S = o
your initials are -=> et
your department nu@be:_ s
your phone number 18 :) 1956
your room number 1S ~ >
your location code is

peating passuord -

4821

OK chet I now have the following data on you.

= ¥

Is the data correct (y oF n)? .
d help, type help in cesponse to any q

1f you nee A

j u

r the PtO]eCt yo °

n;e gircuit you want to w?rkbzar
o eady to work on clrcu t

- 3
work on > ds
A ik --> boardl

el vnvec, d1 under project dsd.

please enter
OK chet, you re [

t
DWB: please type command —=? legou

$

Fig. 4—Initial session of new user.

1776 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



login: bin23
password:

1979
Thu Dec 20 12:02:31 EST

sdwb

5 1.2
. _yersion
noon, this 18 D:i —-» harrison
Good 3ftE:E( our last “ad >
please ent ¢ passwor .
please en again chet!

estion.
see you e to any Qv
Glad to cype help in respons 5 as3
' on -~
1£ you need PelP ect you want £ work 27 poardl

. 5 dsl.
k on project
e the prol nt to wot a1 under
chet Pleﬂsteett{";e circuit Y?,\;r‘:aon circuit POAr
please en re ready ©°
ou a
ok chet:, ¥

_— lggout
1ease tyPe command
DWB: P

$

Fig. 5—Session of user known to pwB.

accepted default values are automatically set. However, the user may
reset these or any other parameters at any time.

If, however, the user is recognized as one who has previously used
DWB, the logon procedure continues with a friendly greeting and
prompts for a password (if needed for security), project name, and
finally circuit name (see Fig. 5).

From then on, all commands, edits, and operations will be automat-
ically performed on files associated with this particular circuit. Each
circuit has a profile that grows and changes according to the actions
taken by the user and is used to store items such as library names,
data types, and process keywords.”

The user has no knowledge of actual file names, file types, or naming
conventions that other computer-aided design systems require. File
maintenance is greatly simplified by using generic file names. For
example, the file containing the electrical and physical circuit descrip-
tion is accessed by typing “Isl”, since it is a variation of the LSL-LOCAL
language. The file of input stimuli for logic simulation is accessed by
typing “vectors.” These and other keywords are used to describe the
files that the system maintains for a particular circuit.

The interactive session focuses on one project and circuit. However,
to change from one circuit to another, the “circuit” command is issued.
Projects can be changed in a similar manner, but only if the user has
authorization to access that project.

5.2 Tutorials

Users cannot be expected to operate a multioptioned software pro-
gram without guidance and sources of reference. Printed manuals and

DESIGNER'S WORKBENCH—USER ENVIRONMENT 1777



user guides are available to study when there is time, but typically an
unfamiliar technique is needed or a question arises while the user is
on-line and in the middle of the job. The quick and easy-to-use series
of on-line tutorials in Designer’s Workbench eliminates the problem of
hunting through manuals or, worse yet, stopping the session to go look
for the answer somewhere else.

DWB is designed to let the user enter the tutorials at any time by
typing the keyword help. A new user who enters the tutorials from the
pwB command level has a menu of topics that explains the commands
of interest. More details on special commands, utilities, application
programs, or options are available if the user asks for information by
entering the keywords that are provided. The tutorials are organized
in a hierarchical manner, allowing the user to pursue as much or as
little of a topic as needed. In addition to the hierarchical approach
implemented to learn a topic for the first time, DWB has the feature
that, if the user asks for help in the middle of a task, the section of the
tutorial that pertains to the work at hand is immediately available.
This saves the knowledgeable user from having to search for the
information in an index mode. The user can end the tutorial session at
any time and is ready to resume the job at hand, from the exact place
in the program before the “help” command was requested (see Appen-
dix A).

5.3 Data entry and modification

Data entry is always required to use computer-aided design pro-
grams. It is time-consuming and prone to human errors and misunder-
standings. A goal of DWB is to make this step as easy as possible, yet
flexible enough to serve the needs of the user community. Data entry
takes two forms, directly appending information from a terminal or
transferring data prepared somewhere else. Details on the transferring
of files is discussed in its own section and is not discussed here.

Direct data entry through a terminal is provided using either the
standard PWB/UNIX editor or the DWRB “easy” editor. The “easy” editor
has been designed to meet the needs of users who do not have
computer editing experience. The PWB/UNIX editor is available to
users who are experienced with computer systems and may profitably
use the powerful and flexible features of the current generation of
context editors.

For data entry and modification of test data, two additional features
are available. One is a vector input language that allows a shorthand
method of entering “one, zero” information, and the other is a colum-
nar editor. These programs are used to build up the data files quickly
and with a minimum of errors. The output files of these programs can
be edited using the text editors.

1778 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



Either editor can be used by the user to enter or modify any or all
the user files. These files are accessed using the easy-to-remember
generic names instead of actual file names. DWB again maintains the
files and keeps track of names, types of data, and access dates for
consistency checking.

Another form of data modification that does not use the editors
should be mentioned. DWB provides default parameters at the circuit,
project, or global levels. To modify parameters of the user’s profile or
of the circuit or project profile, a special “change” routine is provided.
The user can at any time change the default conditions and the other
parameters of the profiles.

5.3.1 Easy editor

The “easy” editor is designed to be used with the minimum amount
of learning. It is similar to creating a punched card deck using a
keypunch machine. The commands are immediately recognizable and
the functions are basic. The user can append, change, delete, find,
and list lines of the file to be edited. Alternatively, a, c, d, f, and |
could be used. Operations are on a line-by-line basis, and the new file
is saved only if the user says “yes” to the question concerning saving
the new file. This “easy” editor is used to introduce DWB to new users
who do not have a background in text editing.

5.3.2 Standard editor

The second editor is the standard PwB/UNIX editor, but it is accessed
through the pwB program. This editor is extremely powerful, with
string location, string modification, metacharacters, and global com-
mands that can process complete files using a single complex state-
ment. This power comes with a price, however, and that price is a
longer learning period and less-than-clear command constructions.
This editor is included in DWB to meet the needs of the growing user
population who have learned this editor and feel at home using it.

5.3.3 Vector input language

The vector input language is not an editor but a powerful program
to generate the stimuli for logic simulation or test set programs. It is
described here since it is an important feature of the DWB interactive
environment and does not exist in other computer-aided design sys-
tems.

The vector input language has features to allow the “one, zero”
information used by logic simulators or test sets to be entered either
in a timing relationship (functional form) or in a spatial relationship
(test generation form). Control statements and macros allow the data
set to be built quickly, understandably, and almost error-free.

DESIGNER'S WORKBENCH—USER ENVIRONMENT 1779



5.3.4 Column editor

The column editor is another feature of bwB not found in many
design-aids systems. Stimuli data for simulation programs and test
sets have the characteristic that information for a test lead is stored in
a column form rather than in a row form. While context editors easily
handle lines or rows, most are clumsy if column manipulations are
needed.

The column editor can add, change, and delete columns as easily as
context editors edit lines. Moving columns and complimenting data in
columns are commonly needed actions, but would be difficult to do
without the column editor.

5.4 Job preparation

The environment that the user sees is friendly and easy to use when
application programs are run. Although the application programs are
run on computers located remotely from the user, the job is initiated,
monitored, and retrieved under the control of DwB. For the application
program selected to be run by the user, bwB provides the following
preparation services:

() The circuit files are checked to see if they have been modified,
thus invalidating output results that may have been obtained previ-
ously.

(it) Missing data to run this option of this program are requested
and added to the circuit profile.

(zit) The proper translators are invoked to build data files in the
proper languages of the application program selected.

The following sections expand on these features.

5.5 File and job checking

Many user problems are caused by omitted information unknown to
the user or by misunderstandings about the operations to be per-
formed. Designer’'s Workbench has many checks and audits incorpo-
rated to protect the user from wasting time and resources running
application programs with wrong data.

5.5.1 Syntax checking

Checking starts with a syntax check and verification of the input
data supplied by the user. If information is missing, it is interactively
requested and can be added by the user just before the application job
is run. Note that only information needed to run the application of
interest is required. Once this information is known, it is added to the
profile of the circuit and used automatically in future runs.

1780 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



5.5.2 Library checking

To insure that library elements referenced in a circuit description
are available on a remote machine, a directory listing of remote
libraries is kept on bwB. This listing is updated periodically. If pws
has the library element in its data base, this element is added to the
job deck before submission to the remote machine.

5.5.3 Consistency checking

Checking is also done to inform the user about the proper order of
doing things. DWB checks to be sure that the user runs application
program A before application program B if it is required. Audits are
made of the times files were last changed and application programs
last run to detect any inconsistent conditions. If the user modifies the
circuit description after an application run has been made, the output
files will not agree with the current input files. The user is informed
that the input and output are now out of phase with one another. This
feature is particularly helpful to users who develop new circuit designs
that change during the design cycle. Physical design, logic simulation,
and test generation are kept in step with the “current” circuit descrip-
tion.

For example, to run the FLINT application program,* an automatic
test set program generator that includes guided probe diagnostics, first
the LamP logic simulation program and then the HIWIRE physical
connection program must be run (see Fig. 6). DWB keeps track of the
steps executed, the order and if changes were made after some steps
were completed. The checks to properly run FLINT are listed below:

(i) Check syntax of LsL input.
(if) Run LAMP compile before LAMP run is allowed.
(iif) Check syntax of vectors before LAMP run is made.

CIRCUIT LOGIC LOGIC
DESCRIPTION COMPILATION SIMULATION

LSL LOCAL LAMP LAMP
DWB IH IH
TEST SET

FLINT ——

HO
GUIDED PROBE
HIWIRE FAULT ISOLATION
TEST PROGRAM
HO
CONNECTIVITY
AND PROBE
COMPILATION

Fig. 6—Running FLINT application program.

DESIGNER'S WORKBENCH—USER ENVIRONMENT 1781



(iv) Run HIWIRE before FLINT.
(v) Run LAMP before FLINT.
(vi) Run FLINT only if HIWIRE and LAMP use same LSL input.

5.5.4 Test vector checking

Before a job is submitted to a remote computer, the test vectors are
checked for consistency with the circuit description and for legal vector
values.

5.6 Data translation

An important ability of Designer’'s Workbench is to translate data
files from one form into another. The input language used in DWB to
describe the physical and logical interconnections of a digital circuit is
based on LsL-LocaL. The LaMP logic simulation program uses one
dialect of LSL-LOCAL, while the HIWIRE model building program uses
a different dialect of LsL-LocAL. Designer’'s Workbench provides the
user with an automatic method to translate from one dialect to another
and even to completely different languages. For example, DWB can
translate into the logic description language for LAsAR® and for the
Computer Automation (CAI) simulator.”” Appendix B illustrates the
conversion from the LsI-LocAL language to the LASAR language. Other
user files such as input vectors are also translated from one form into
another. The “one, zero” form for LAMP becomes the “hi, low” for
LASAR or a different “hi, low” for caI.

Using the single master description stored on DWB, the user is able
to translate into logic simulation languages, test generation languages,
and physical model building languages, and into test program lan-
guages for automatic test equipment. The translators of DWB can easily
interface to new applications as needed, yet provide the user with a
single circuit description and test vector set to update and maintain.

To accomplish this, both the circuit description and test vectors are
first translated into a neutral form. For the circuit description, this is
a set of tables that contains component and connectivity information.
Then the information is translated from the neutral tables into the
target language.

VI. JOB SUBMISSION

A major feature of DWB is the semiautomatic or automatic submis-
sion of runs to remote computers and obtaining results from those
computers. This section describes the elements of that process.
6.1 Communications network

Designer’s Workbench uses the extensive communication capabili-
ties of the PWB/UNIX operating system for this function. PWB/UNIX

1782 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



has a high-speed synchronous data link into the Bell Laboratories
Interlocation Computing Network. These links operate at 4800, 9600,
or 56000 baud, depending on the computers involved. Each computer
system is assigned a unique identification and is a node on the network.
The job control language directs the flow of information allowing a job
to be sent to a remote site to be processed and have the results sent to
a different location. The interlocation computing network provides the
path to most application programs used by Designer’s Workbench.

For those application programs that cannot be accessed through the
Bell Laboratories Interlocation Computing Network, PWB/UNIX has
alternate means used by DWB. PWB/UNIX has a call-originating feature
that allows users to connect to the asynchronous time-share ports of
remote computer systems. The dialing of the telephone number and
the setup of the data lines is automatically provided as a PWB/UNIX
feature. DWB uses this feature to communicate with systems not on
the network.

6.2 Distributed database and libraries

The creation and maintenance of large data bases has always been
a significant technological challenge. This, combined with the desire
to minimize the amount of data transferred between the host computer
on which DwB resides and the remote computer on which the appli-
cation program resides, lead to the implementation of a distributed
data base. Only enough data are transmitted to insure that all the
required information can be reconstructed on the remote computer.
The existence of separate data bases requires that DWB provide the
consistency checking described above to insure that only consistent
information is retained.

For example, instead of maintaining a complete library for all
application programs on DWB, only cross-reference listings of libraries
that exist remotely are maintained. If a user uses a subnetwork
description of a function or part that exists on a library, this is quickly
checked to see if it is in the current cross-reference library. Warnings
are given to the user if DWB is not aware of the existence of the
subnetwork.

6.3 Transferring files

The transfer of information from one person to another or from one
physical location to another is often required, especially if the system
and logic design is done at a different location from the fabrication or
from the location of the computer-aided design programs that are
used. The transfer process has been a major problem to users. Each
location has different equipment, techniques, and formats that are
unfamiliar to all but a few experts. Designer’'s Workbench can com-

DESIGNER'S WORKBENCH—USER ENVIRONMENT 1783



municate with many different programs and different computers at
locations remote to the user.

Most transfers are done automatically by pwB without the direct
involvement of the user. For example, the running of application
programs generates a data file transfer from the local system to the
remote main frame computer. Completion of the job generates a data
file transfer from the remote site back to DwB. This transfer is also
done automatically.

A request for a file transfer from a remote computer to DWB can be
done under user control and is often used to create the user files for a
new circuit or to return results from application programs that have
been run. The method of transfer will either be to submit a copy
request using the proper job control language of the remote computer
or to have pwB simulate an interactive time-share session. The user in
either case must only supply the file name, location, and security
requirements. Designer’s Workbench will generate the proper job or
protocol to successfully acquire the data. Transfer of a DWB file to a
remote location is handled in a similar manner.

6.4 Submission options

Currently, applications programs can be run on remote systems in
three ways. They are remote batch mode, interactive mode, and
remote auditing mode. This section describes the implementation of
those modes.

6.4.1 Remote batch

This mode involves combining the constituents necessary to run a
batch run on a remote computer, submitting the card images over the
computer network, and receiving the results via the computer network.
Features include:

({) A job is created to run on the remote computer inserting the
customizing information from the user profile, the circuit profile, and
the global profile.

(if) The maze of accounting and job control statements is hidden
from the user.

(iti) The data files are merged with the job control statements and
program commands at the correct places.

(iv) The newly created job is automatically sent to the remote main
frame, and the job is initiated.

(v) The outputs from the remote application program are sent via
the network to the home location’s computer printer.

6.4.2 Interactive TSS

Programs, such as LAMP, that run on the Time-Share System (Tss)
can be accessed in two interactive modes. For both modes, bwB dials

1784 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



the remote machine and handles the logon (including encrypted pass-
words). In the direct mode, the user works on Tss as if the connection
were made without the interjection of DWB, that is, as if the user had
dialed directly. In the other mode, each command issued by the user
is translated into the proper Tss command, and the responses from Tss
are translated into user-understandable English. An example of this
later approach is given in Fig. 7, which illustrates the check for the
existence of a file on the Tss machine.

6.4.3 Remote auditing mode

LASAR is a commercial logic simulation package that runs on a time-
share system outside Bell Laboratories. Remote batch access is not
possible from DWB, yet an interactive session is not needed either. The
remote audit mode of job submission is used to run the LASAR simu-
lation program via DWB.

The remote audit mode of DWB uses the steps and features of remote
batch submission except that the data file is sent in real time with the
user observing the transfer of data and watching for the proper
completion of the task. If the remote system is down or if transmission
errors are observed (no error checking on this connection), the process
can be restarted at a later time.

6.5 Job and network status

pwB provides the user with two status functions. The first enables
the user to determine the status of any jobs that were submitted to
remote machines by typing status lamp for LAMP or status abc for the
ABC application program. The status of the last job submitted can be
determined by just typing status. In addition, pwB informs the user of
expected turnaround times for jobs submitted to remote machines.

' o away! 1 .
232 iogon to TSS has begun

: sword
ocessing pass¥wor aes i .
r B eessing security CO08cti, . qsg operations
«eP in the DWB monl s direct

RD1
3s3.boardl QUALIFIER cHET***+*.DS3.BOA

" DS3.BOARDL.0BJ
-ps3 RD1.VECORD

ommand --> DBYe
peen broken-

paaEE
(C:II:.EET"" .DS3. BOA!

<155>=--7dwb
DWB(TSS): P
The TSS conn

lease type ©
ection has

-
pWB: please type command

Fig. 7—Interactive check for existence of a file on Tss.

DESIGNER'S WORKBENCH—USER ENVIRONMENT 1785



This is accomplished by using a PwB/UNIX utility that periodically
schedules jobs to be submitted to remote computers and measuring
their turnaround times.

6.6 Postprocessing output data

Output data from application programs are sent to the user as
printed results or as data sets of cards, magnetic tape, or disk files. All
printout is automatically directed to the printout bin of the user, but
data sets are sometimes saved on the remote computer until the user
is ready to receive the data. pwB’s ability to transfer data from one
computer system to another is used to retrieve data for postprocessing.
DWB is aware of the actual file names, the date modified, and contents
of files generated by application programs for each circuit.

Data files from remotely run application programs often are not in
the correct format to be used by another application program on a
different remote computer. DWB postprocesses data from one form
into an intermediate form that can be translated easily. Then, when
this information is required, the proper output translator is called.
Changes in the data structure of one application program can be
accommodated without affecting the translators to the other applica-
tions. This translation takes place automatically, and the circuit profile
is updated to show the status and options available to the user.

VIl. USER FEEDBACK AND STATISTICS

The user response to the capabilities of bwB has been favorable.
Inexperienced computer users who formerly would not have used
design aids because of the significant learning curve have been con-
verted to pwB. Experienced computer users, who had previously used
applications programs on remote computers, have used DWB to create,
check, and transfer files to the remote machine and retrieve output for
postprocessing and transfer to other applications programs. Programs
that were only used if there was a local consultant available are now
seeing heavy use with no consultant available. The amount of time
spent helping users solve JcL problems and use applications programs
has been reduced by 80 percent. Significant effort has been required to
match the tutorials and procedures to the thought processes of the
user community. Most of the usage of the two design-aids systems that
were integrated into pwB have shifted to the workbench.

The most significant requests for new capabilities have been to
replace the predominantly batch-type operation with a fully interactive
mode for executing programs on other computers and to provide
completely automatic data transfer capability between all major com-
puter systems in Bell Laboratories. The tutorial help has been found

1786 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



so popular that the user community has requested that the same type
of help and guidance be provided for all interactive programs.

DWB was introduced to a limited number of “friendly” users in
September 1978 and, after thorough testing, to the general-user com-
munity in January 1979. Since the beginning of 1979, we have seen
steady growth of its use. The greatest portion of the use is in data
preparation and syntax checking before submission of a job to a remote
machine. In November 1979, usage totaled 519 logon hours and 111
application program submissions, with about 65 percent from the New
Jersey location and 35 percent from the Massachusetts location. As
more features and applications programs are added, we expect these
figures to increase significantly.

VIil. NEW FEATURES

This section describes features that were not in the original specifi-
cations of DWB but have been already added or are in the process of
being added. The modular development of DWB allows the requests of
the user community to be addressed quickly and implemented without
much of a change to sections already in use.

8.1 Testability analysis

pwB offers the user two capabilities for evaluating the “testability”
of a circuit. The first is an interactive question-and-answer session
between the user and pwB that qualitatively evaluates the testability
of the circuit. Questions are asked about the design of the circuit to
ascertain its inherent testability based on the strategy that previously
had been applied manually by test engineers. Then DWB provides
suggestions on how to improve the design of the circuit to make it
easier to test. A report is automatically generated that summarizes the
results of this testability review.

The second is the TMEAS!! program that uses the LSL-LOCAL input
circuit description language to evaluate the observability and control-
lability of the various parts of the circuit. The user is provided with a
quantitative figure of merit on the testability of the design and a list
of problem areas, if any exist. The program can be used interactively
as an aid in resolving testing problems by providing insight into the
value of additional test access.

8.2 Analog circuit design aids

DpWB uses the LSL-LOCAL language to describe digital components,
both electrically and physically (HIWIRE form). Analog components
have been added by a new analog circuit description language. Tables
are built for all components, and these tables are available for the

DESIGNER'S WORKBENCH—USER ENVIRONMENT 1787



various output translators to use. We are planning to establish links to
both analog circuit analysis tools and physical design systems.

8.3 Interface to silicon design process

The silicon design process includes using LAMP for logic simulation
and test generation. This DWB does as a regular feature. The timing
analysis that is important for Mos LsI silicon chip designs uses the
Mortis'? program. Input to the MOTIs simulator is another dialect of
LSL-LOCAL and input stimuli in a native MoTIis form. pwB with its
ability to transfer data and its translation programs is now integrating
the MoTIS timing simulator into the remote application program selec-
tion. Further connections can be made in the future to lay out and test
generation aids for silicon chips.

8.4 Downloading physical design process

The physical design process in the transmission area uses minicom-
puter based graphical data entry and editing stations from Applicon,
Inc. Using these tools, the schematic diagram of the digital or analog
circuit description can be captured and sent to DWB in the LSL-LOCAL
(digital components) and UCL (analog components) circuit description
languages. pwB will audit and compare the physical schematic capture
with the data stored on Designer’s Workbench, if it exists, or will use
the data to build the tables used by other programs.

To help check the physical design process, DWB will initiate on the
remote computer an audit of the connectivity of the physical printed
wiring board, hybrid, or chip with the electrical connectivity used for
model building, simulation, and test generation.

IX. CONCLUSIONS

The Designer’s Workbench approach has greatly increased the user
acceptance of design aids programs. Most user complaints about the
aids have been removed by shielding the user from the idiosyncrasies
of the computers, both the job control language and the input lan-
guages of the programs. In addition, most tedious, error-prone steps of
data encoding, file management, consistency verification, and job
customization have been removed or greatly simplified for the novice
user without restricting the flexibility provided for the experienced
user. Furthermore, it has created an environment in which new appli-
cations can be readily written and integrated with the existing aids.

The program modules and utilities that were written as part of DWB
and the utility programs available from UNIX provide a solid foundation
on which to build. Finally, Designer’'s Workbench is inexpensive to
use. The operational costs are low because a minicomputer is used for
the interactive operations while the large programs are run on main-

1788 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



frame compnters. Thus, the costs are reduced by using each class of
computer where it is most efficient.

APPENDIX A
Example of DWB Tutorial Session

DWB: please type command — run lamp
Which option for “‘lamp’’? — help
lamp options are: build compile cval logic race timing

DWB DOES NOT SUPPORT THE TIMING OPTION AT THIS TIME!

For additional information type '‘more’ else type the option

Which option for “lamp’'? — more

There are four independent simulators available under lamp:

1. cval —a true value simulator which simulates circuit behavior

without faults

logic —the standard logic simulator which drops star faults

race —a race simulator which flags and propagates star faults

timing—a timing simulator which performs detailed timing
analysis.

N

DWB DOES NOT SUPPORT THE TIMING SIMULATOR
AT THIS TIME!

The true value (cval), logic, or race simulators may be accessed by
the options: cval, logic, or race, respectively.
Other options allowed are:

1. compile —for compilation of your Isl local circuit description

2. build —to build a flint file on the HO IBM 370 for Datatron

testing

For more detail type '‘tutorial’’ else type the option.
Which option for “‘lamp’’? — tutorial
***DWB TUTORIAL***
Lamp is a set of logic simulation programs used to generate and
evaluate test sequences. It is a Bell Laboratories product that is
interconnected to other aids systems. Lsl and vector files are required
as input. Other optional input files include vecord and lamp command
files. All output listings are returned to your computer bin.
Lamp simulates your circuit, using the test vectors you supplied DWB
and produces outputs according to procedures defined by the option
selected.
For even more detail consult the manual “'LAMP System-TSS Com-
mand Language (Version 4)"" TM-5936-10. If you have a specific
question on running lamp on DWB contact the DWB librarian at

DESIGNER'S WORKBENCH—USER ENVIRONMENT 1789



extension 1537 at HO or 7893 at MV. For assistance in running lamp
itself on TSS contact Al Gibson on extension 9312 at IH.
You can also get help for:

build compile cval faults logic Isllocal

race starflt timing vecord vectors
Type “‘end’’ or a keyword — compile
A compilation must be your first run. Your Isllocal circuit description
is sent from DWB to TSS at IH where it is stored under the user login
id. The Isllocal compiler is run and your circuit is checked for errors.
A good circuit is compiled into tables for use by the LAMP true value
and fault simulators (cval, logic, and race).
See also: cval logic race Isllocal
Type ‘‘end’’ or a keyword — end
**+*END DWB TUTORIAL***
Which option for ‘‘lamp’’? — compile

APPENDIX B
Example of Translation from Augmented LSL to LASAR

1. Circuit to be coded:

NCLK >—1 RAC

NTSE >——2] A03D - RSC

TEST 3 O
RESET > L5 e RME
2 4
NTIME>——=1 A03D ——=RCC

AQ3D

2. Augmented LSL coding:
subnetwk:
cktname: ao3d;
inputs: a,b,c;
outputs: z,zl;
**pin:in=(1,2,3),

1790 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



out=(4,5);
nodelay: orinf;
*unfault: orIinf(0,1); * unicad only;
nand: zl,(a,c); z,(zl,orInf);
or: orinf,(b,c);

*control circuit;

*options: propt = (nolist), cktsize = 8;

*option: autorout = .2;

network:

cktname: cl;

inputs: nclk,reset,ntse,ntme,test;

outputs: rsc, rac, rmc, rcc;

**pin: in = (1,2,3,4,5),

out = (6, 7, 8, 9);

ao3d:

al, (nclk, ntse, test), (rsc, rac);

a2, (reset, ntme, test), (rcc, rmc);

* % pd

ao3d:

al,, loc = (a-22),

a2,, loc = (a-23);

3. LASAR coding:

c1 CIRCUIT

INSERT ao3d

USE 02

NAME = 02

ADD ao3d

NAME = AA

MODEL/

110na/1, 3/5/120na/5, 6/4/13002/2, 3/6/

INPUT /1, 2, 3/OUTPUT/4, 5/

END

END

CIRCUIT

Pl nclk, 1P1

Pl reset, 2P1

Pl ntse, 1P2

Pl ntme, 2P2

Pl test, 1P3, 2P3

PO rsc, 1P4

PO rac, 1P5

PO rme, 2P5

PO rcc, 2P4

DEVICE

1, 2 = ao3d

END

DESIGNER'S WORKBENCH—USER ENVIRONMENT 1791



REFERENCES

1. L. A. O’Neill et al., “Designer’s Workbench—Efficient and Economical Design Aids,”
Proc. 16th Design Automation Conference (June 25-27, 1979), pp. 185-199.

2. H. Y. Chang, G. W. Smith, Jr., and R. B. Walford, “Lamp: Logic Analyzer for
Maintenance Planning, System Description,” B.S.T.J., 53, No. 8 (October 1974),
pp. 1431-1450.

3. S. G. Chappell, C. H. Elmendorf, and L. D. Schmidt, “Lamp: Logic Analyzer for
Maintenance Planning, Logic-Circuit Simulators,” B.S.T.J., 53, No. 8 (October
1974), pp. 1451-1476.

4. D. S. Evans and L. A. O’Neill, “An Integrated System for the Design of Printed

ﬁiﬂng Boards,” ELECTRO '76 Professional Program, Session 26 (1976), Boston,
ass.

. R. M. Allgair and D. S. Evans, “A Comprehensive Approach to a Connectivity
Audit, or a Fruitful Comparison of Apples and Oranges,” Proc. 14th Design
Automation Conference (June 20-22, 1977), pp. 312-321.

6. K. Thompson and D. M. Ritchie, “The unix Time-Sharing System,” B.S.T.J., 57,
No. 6, Part 2 (July-August 1978), pp. 1905-1930.
7. T. A. Dolotta, R. C. Haight, and J. R. Mashey, “The Programmer’s Workbench,”
B.S.T.J., 57, No. 6, Part 2 (July-August 1978), pp. 2177-2200.
8. The Users Manual for the Teradyne P400 Automatic Test Plan Generation System,
Boston: Teradyne Inc., 183 Essex St.
9. P. H. McDonald and T. J. Thompson, “Designer’'s Workbench—The Programmer
Environment,” B.S.T.J., this issue, pp. 1791-1807.
10. Capable Logic Simulation System User’s Manual, Irvine, California: Computer
Automation Inc., 181 Dupont Drive.
11. J. Grason, “TMEAS, a Testability Measurement Program,” Proc. 16th Design
Automation Conference (June 25-27, 1979), pp. 166-161.
12. B. R. Chawla, H. K. Gummel, and P. Kozak, “mMoTiIS—NMo0S Timing Simulator,”
IEEE Trans. on Circuits and Systems, CAS-22, No. 12 (December 1975), pp. 901-
910.

T

1792 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



