Copyright © 1980 American Telephone and Telegraph Company
THE BELL SysTEM TECHNICAL JOURNAL
Vol. 59, No. 9, November 1980
Printed in U.S.A.

Designer’'s Workbench:

The Programmer Environment

By P. H. McDONALD and T. J. THOMPSON
(Manuscript received April 16, 1980)

Designer’s Workbench, based on the PWB/UNIX* operating system,
is a software system that provides a high level interface to the circuit
design aids used within Bell Laboratories. As well as providing a
convenient environment for the use of these applications, a primary
goal in the design of DWB was to provide a convenient and versatile
environment in which programmers could work. This paper describes
the objectives that were defined to reach this goal. The approach was
to simplify the addition of new capabilities to the system, realizing
that a viable design-aids system must be able to expand with the
increased demand for and complexity of the applications it supports.
We discuss in detail the methods and mechanisms used in the
development and implementation of the system. Although some of
these are specific to the functions required by pwB, the general
philosophies that are emphasized can be applied to provide a pro-
gramming environment for any software system.

. INTRODUCTION

Designer’'s Workbench is an interactive front end, using the PwB/
UNIX operating system,'” to a variety of circuit design-aid application
programs. The system is designed to be convenient to use at all levels
of user expertise. This is accomplished primarily through a consistent
user interface and extensive on-line tutorials. A discussion of the user-
oriented design philosophy and features upon which the system is
based can be found in Ref. 3. As well as being user-oriented, however,
DWB is also programmer-oriented. This means that programming
simplicity, consistency, and versatility are as important in the overall

* UNIX is a trademark of Bell Laboratories.

1793



design as are issues of user convenience. The special considerations
given to the programming environment of DWB are the subject of this
paper. We first discuss basic objectives for the environment and the
properties they require. The methods and mechanisms used in fulfilling
these objectives are then discussed in detail.

Il. OBJECTIVES

Designer’'s Workbench was developed to coordinate and enhance
the use of circuit design aids. Since we realized that the number of
design aids to which pwB could interface was virtually unbounded, a
primary goal in the design and implementation of our programming
environment was to simplify the addition of new applications; many of
the objectives discussed below are directly related to this goal. First,
this emphasis simplifies our own programming in improving and
expanding the system. Second, it allows other people to take the
framework provided by pwB and tailor its use and application to their
own particular requirements. With this capability, DWB can become a
generalized interface to almost any set of applications programs.

2.1 Control framework

The way in which applications are executed must be easily expanded
and modified. For example, when adding a new capability similar to
existing ones, it is often tempting to copy existing code, make the
control and data changes necessary, and install that as the implemen-
tation of the new capability. This, however, wreaks havoc with the
maintainability and modifiability of the system. In a good control
framework, the addition of a new application should require only the
coding of information and programs that are unique to that application,
and should not require changes that have to be reflected in a number
of modules that use similar code.

2.2 Distributed data base

Each circuit stored under pwB has its own data base, including the
interconnectivity of its components and the input vectors for simula-
tion and testing, which is used to generate the input for running
applications. Almost every application run from DWB also makes use
of a library of data that exists on another computer. T'o eliminate the
need for storing and maintaining copies of these libraries on DwB, to
reduce the amount of information which must be sent from DWB to
the remote machines, and to reduce the intricacies and interdependen-
cies of the data required by a complete data base, we have chosen to
leave most of these libraries on the remote machines. We therefore
have a distributed data base in which the circuit data base kept on
DWB refers to other data bases on other machines. However, to reduce

1794 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1880



the number of (usually expensive) jobs which must be submitted to
the computer network, it is desirable for DWB to have some knowledge
of these remote libraries so that simple consistency checking can be
done on the circuit data bases.

2.3 Data framework

The structure and format of data in our programming environment
should be easily accessed, modified, and expanded. To simplify the
provision of data required for new applications, interdependent and
redundant data should be avoided. The requirements of a distributed
data base indicated that the amount of data that is stored and
maintained on pwB and must be transmitted to other computers
should be kept to a minimum.

2.4 Data translation

To provide the input necessary to run applications on other ma-
chines without modifying the application programs, pwB must trans-
late its data to the required format. This was necessitated by the large
number of design-aids application programs that use either completely
different circuit description languages or require special dialects and
restrictive coding conventions of a supposedly “common” language.
To eliminate redundant data and the duplication of programming
effort, the implementation of these translators should be coordinated
to take advantage of common data and program structures.

2.5 Customization

Each application to which pwB provides an interface has a number
of user-dependent and circuit-dependent variations that require some
customization of the jobs submitted by bwg. For example, a typical
batch application would need variations in line and time limits, de-
pending on the size of the circuit being processed. The implementation
of this customization mechanism should allow the addition of new
variations and the manipulation of existing ones without reprogram-
ming. To simplify their addition and use, these variations should only
have to be specified once, to be used automatically therafter. To
minimize the effort required to enter them, the most typical variations
should be automatically provided by a defaulting mechanism. Natu-
rally, there must be a mechanism to override these defaults for indi-
vidual user or circuit dependent customization.

2.6 Software development

Since the development of bwB involved up to 10 people at two
locations, it was extremely important to control the organization and
maintenance of the software. We did not want to hinder the ability to

DESIGNER'S WORKBENCH—PROGRAMMER ENVIRONMENT 1795



experiment with and create new software; however, early production
use required careful control of the testing, installation, and documen-
tation of our software. Our operational procedures should provide all
these capabilities in a simple framework.

. METHODS

To achieve the objectives discussed above, DWB was designed in a
top-down modular approach that emphasized expandable control and
data frameworks. The UNIX operating system, known for its simple
and consistent organization, was chosen as the basis for our program-
ming environment. The large number of PWB/UNIX software utilities
significantly reduced the programming effort and contributed to mod-
ularity. The various methods and mechanisms used in specific imple-
mentations of the general objectives discussed above are described

below.

3.1 Shell procedures

In implementing the “first-cut” of DWB, we wanted to demonstrate
the feasibility of the overall system with a minimum of programming
effort. This was accomplished through extensive use of the UNIX shell,’
a command language that can be used either on-line as the normal
interface for time-sharing users or as an interpretive programming
language via shell procedures. pwB programmers have found many
advantages in using the shell as a vehicle for software development.
Its syntax is simple and concise, and procedures are easy to create and
maintain. Debugging shell procedures is facilitated by the capability
of on-line testing as well as a “verbose” mode that traces their execu-
tion. The interpretive nature of the shell which provides these features
also results in substantially slower execution times. However, there is
no syntactic or operational difference between the use of a shell
procedure and a C program.” (“C” is the standard compiled program-
ming language of the UNIX operating system.) This feature has been of
crucial importance in the continuing development and improvement
of pwB. Programs initially implemented in the shell for feasibility and
debugging purposes can be easily rewritten in C to obtain the increased
speed and efficiency of a compiled language. The programs which
required such rewriting were identified through timing and statistical
data gathered using utility shell procedures.

3.2 Version control

One of the most distinctive software features of DWB is its imple-
mentation and use of a “version control” mechanism that has proved
invaluable in resolving the conflicting needs of production use and
development work on DWB, This mechanism Provides multiPle versions

1796 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



of the entire DWB system which are independently and simultaneously
available, so that programmers can do software development on one
version without disturbing production users on another.

Under the “version control” mechanism, five separate versions of
DWB are named DEBUG, TEST, RELEASE, CURRENT, and oLD. The
DEBUG version is used by programmers for any debugging and program
development. The TEST version contains new features and modifica-
tions that have been debugged but are not reliable enough to be put
into production use. “Friendly” users can use the TEST version to try
out these new features and provide valuable feedback and further
testing. The RELEASE version is used for final regression testing just
before a new release or “issue” of pwB is made. When a release is
made, the changes which have accumulated in the TEST version are
transferred to the CURRENT version, which is the default system for
most production users. The oLD version is a copy of the CURRENT
version before the latest release, and is always available for users as a
backup in case any problems develop with a new release. In this way,
we provide a dynamic development environment (the DEBUG and TEST
versions) as well as a reliable production environment (the CURRENT
and oLD versions). The pPwB/UNIX Source Code Control System (sccs)®
is used to control all formal releases of DWB so that we can reconstruct
and maintain any prior release of the system.

Debugging and development are greatly facilitated by the existence
of the DEBUG version, a copy of the entire DWB system in which
programmers are free to experiment. This eliminates the need for
writing software drivers or other testing devices, since new programs
can be tested within the complete system. Naturally, good communi-
cation and coordination are required to prevent any testing conflicts
between programmers.

The versions of pwB are under the strict control of a “program
librarian.” Shell procedures are used to insure the consistency and
reliability of the operations performed by the librarian. To work on a
particular module in the DEBUG version, for example, a programmer
must notify the librarian of this desire. The librarian, through the use
of a shell procedure, then performs the manipulations necessary to
create a separate DEBUG version of that particular module. Similarly,
the librarian is notified when the module is ready to be installed in the
TEST version, and a shell procedure is used to perform the operation.

It may seem to be a waste of storage to keep five complete copies of
an entire software system. Actually, storage is kept to a minimum by
using UNIX “links” to link common programs between versions. For
example, if program edit is identical in all five versions, it is stored
only once with “links” to the directories representing the five versions.
Both source and executable files are managed in this way.

DESIGNER'S WORKBENCH—PROGRAMMER ENVIRONMENT 1797



A more complete discussion of the “version control” mechanism and
its implementation can be found in Ref. 7.

3.3 Data organization

UNIx data files are normally ascii text files, and most utilities rely
on and take advantage of this fact. pwB data files follow the same
convention, even though binary storage of data might reduce storage
requirements and increase execution speed slightly. These disadvan-
tages are far outweighed by the improved consistency and modularity
which text files provide.

3.3.1 File and directory structure

The organization of data on DWB is based, at both the user and
system levels, on the UNIX file system. DWB user files are organized
according to projects and circuits, each project containing several
circuits. Under the DWB root directory, there is one directory for each
project; its name identifies the project. Under each project directory,
there is one directory for each circuit; its name identifies the circuit
and it contains all the data files for that circuit.

System files are organized in the sys directory under the DWB root.
Under sys are subdirectories containing various categories of system
files, illustrated in Fig. 1.

3.3.2 Data access

The programming access to various files within the system is sim-
plified by the structure described above. Equally important is the
requirement that DWB users, when executing the programs of DWB, are
in a circuit directory. When DWB is initiated, the user is asked for the
project and circuit on which work is to be done. After checking that
the user has permission to work on that particular project, DwB places
the user in the appropriate circuit directory via the chdir (change
directory) function.

The fact that a user is in a circuit directory makes it very easy for
programmers to access user files without worrying about full UNIX
path names. For example, each circuit’s description is kept in the form
of Logic Simulation Language (LsL)*® statements in a file called
source.lsl under the circuit directory. Any program that wants to
access it need only specify source.lsl, since the current directory will
determine the circuit.

Executing from a circuit directory also makes program access to
system files consistent. Relying on the fact that circuit directories are
two levels down from the DWB root, system files can be accessed via a
relative path name. For example, files under the sys/data directory

1798 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



DATA

B

DOC
EXEC
INCLUDE
SYS RETSH
TEMPLATE
SOURCE

USERS

UTILITY

VOBYHOE

Fig. 1—Subdirectories: data contains miscellaneous system data files, doc contains
on-line documentation, exec contains all executable C and shell programs, include
contains C program including files, retsh and template contain files which drive the
batch submission capability, source contains C program source files, users contains files
for user information, and utility contains C and shell programs required for system
operation and maintenance.

can be accessed from any circuit directory by using the relative path
name ../../sys/data. (The notation “..” in a UNIX file name signifies
moving up one directory level.) This is illustrated by Fig. 2, where
proj.1 and ckt.1 represent arbitrary project and circuit directories. As
you can see, the name ../../sys/data/edit.table will access the file
edit.table from any circuit directory.

DWB ROOT

a

EDIT. TABLE

Fig. 2—System file access.

DESIGNER'S WORKBENCH—PROGRAMMER ENVIRONMENT 1799



The directory structure and method of accessing files described
above have a very distinct advantage in that the pwB root directory
can be changed without having to change or recompile any DWB
software. This was crucial in our initial development programming
environment on the “public” UNIX machines in the Holmdel Computer
Center. On these machines, user directories (of which DwB’s root
directory was one) were subject to periodic change as users were
moved between computers and file systems for purposes of load
balancing. Our implementation rendered a programming environment
immune to such changes.

3.4 Data-driven control and processing

To provide a flexible control framework, DWB uses data-driven
control and processing. This means that the operation of many DWB
programs is defined and can be altered by the contents of system data
files. For example, the edit program allows the user to edit specific
files in a circuit directory by specifying file keywords. The mapping of
file keywords to the actual uNix file names is provided by a data file
called edit.table in the sys/data directory (see data access example
above). Each line of this table contains two words, the file keyword
and the actual UNIX file name. This table is a text file that can be
manually edited if additional keywords, either as aliases for existing
files or as new files, need to be added to the capabilities of the edit
program. In this way, the most typical additions to the edit program
are handled quickly, easily, and without program modifications or
recompilations.

The major sections of DwB which have been implemented using this
data-driven approach are discussed below.

3.4.1 Table-driven monitor

DWB is a single-word, command-oriented system with automatic
prompting for any additional information required. For example, to
edit the LsL (circuit description) file, the user merely types the com-
mand edit. DWB will come back with the question What do you want
to edit? to which the user will answer Isl. DWB then asks What editor
do you want to use? to which the user can answer either unix (for the
UNIX text editor) or easy (for a simplified line-oriented editor). The
user is then put into the desired editor.

Each single word command corresponds to a particular bwB pro-
gram. This mapping is provided by a “monitor table” stored in the
sys/data directory which serves to drive the monitor program. The
section of this table which specifies the edit command is shown below:

.cm edit 2
.al qed
fe edit.x

1800 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



The format of the monitor table is based on the philosophy of the UNIX
text formatters TROFF and NROFF,'” where each line begins with a
“directive.” The .cm directive in the first line above indicates the
definition of a command, which in this case is the edit command. The
2 which follows is the minimum number of letters required to recognize
the command. Within this limit, unambiguous abbreviations of com-
mands will be recognized. The .al directive defines an alias for the
command which has just been defined. The .fc directive specifies the
C program (in this case, edit.x) which should be executed for that
command. Shell procedures are specified with the .fs directive. For
procedures which must be executed within the monitor program itself,
such as logging off or changing circuits, the .fi directive is used.

If the command typed by the user is not found in the monitor table,
a prompt (specified in the table with a .pr directive) is printed. A
typical example would be:

.pr “"Command not recognized, please re-enter —’

If the user’s next try is unsuccessful, a list of all available commands
is printed. On the third consecutive error, the user is advised to use
the help command. More information on the help or “tutorial” mech-
anism follows.

Using a table-driven monitor, the command repertoire of DWB can
be expanded by merely adding lines to the monitor table. Programmers
responsible for writing new commands need not worry about linking,
loading, or recompiling procedures when interfacing their programs
with bwB. The monitor contains no “hard coding” for specific com-
mands except those which must use the .fi directive. For example, a
list of current commands is automatically derived from the monitor
table.

Additional directives can be added to the monitor table to increase
its capabilities for expansion. Currently being developed is the concept
of “sub-monitors.” Using the single monitor table approach above, all
new commands are added to the same table and are accessible to all
users. Most users, however, use only a subset of the available com-
mands which pertains to their application of bwB. Inundating users
with a list and on-line documentation of every available command
makes it very difficult (especially for new users) to find those com-
mands which are useful for a particular application. Therefore, we
wish to implement submonitors which contain subsets of commands
specific to each application. Each submonitor will have its own table
of commands, and users will be able to switch between submonitors as
they work on different applications.

3.4.2 Textfile-driven tutorials

New users of a complex software system must normally sift through
a detailed user’s manual to discover what facilities are available,

DESIGNER'S WORKBENCH—PROGRAMMER ENVIRONMENT 1801



learning the command names and the various arguments associated
with each. DWB simplifies this process for users by providing immediate
help for every question, as well as complete on-line documentation.
Whenever a user types help, pwB will first respond with a short
message specific to the question at hand. If the user wants more
information, pwB will then enter a “tutorial” mode in which informa-
tion is available in a keyword-oriented fashion (e.g., by typing com-
mands, the user gets a list of commands). Through this mechanism,
users can be guided through a tutorial on the complete operation and
use of DWB, obtaining as much or as little information as is desired.

To make sure that the “help” mechanism is always active, it must
be included in every program that requests input from the user. This
is provided by a C function (also available from the shell) called ask,
which accepts all user input and automatically catches and processes
special keywords such as help. Arguments provided by the programmer
to this function specify the text of the question to be asked and the
immediate help message. With a minimum of programming effort, this
single input function provides a consistent user interface, including a
look-ahead feature that enables a user to enter more than one com-
mand or response at a time.

To help insure that on-line documentation is up to date, it must be
convenient for programmers to enter and modify its text. The tutorial
mechanism is therefore controlled by a series of “textfiles,” which
contain the on-line documentation and which are easily edited and
modified by programmers. Each “textfile” contains a list of messages,
each preceded by the keyword to which it applies. For example, the
following excerpt from a textfile defines the message for the keyword
“circuit™:

"31 circuit”

The ‘‘circuit’’ command allows you to switch to another circuit

(within the same project) without logging off of bpwBs. After typing

“‘circuit'’, you will be asked for the name of the circuit on which

you want to work.

See also: project

Every time the user enters a keyword in the “tutorial” mode, the
message corresponding to it is printed. To eliminate repeated searching
through the textfiles, an internal “directory” is constructed first, and
is used thereafter to locate each message.

In addition to the general textfile which contains basic information
on the commands and capabilities of DWB, each application, such as
LaMP,” ® has its own textfile which contains more specific information
on that application. This information can be accessed by using the
keyword more after obtaining information on a particular application.
pwB will respond by allowing the perusal of that application’s textfile.

1802 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



3.4.3 Template-driven batch submission

DWB provides access to many applications through the submission
of batch jobs to the Bell Labs interlocation computer network. The
implementation of this capability is driven by a series of template files
which define the Job Control Language (JcL) required for each appli-
cation. By using these template files to control the operation of as
many DWB programs as possible, we have significantly reduced the
programming effort required to add a new batch-oriented application.
In many cases, a new application can be added merely by adding a
single JcL template file. This implementation again illustrates the
value of data-driven programming.

A batch-oriented application program can often be run in several
different ways, each of which requires different scL. DWB refers to
these as options, and each of these has its own template. Therefore, to
determine the particular template to use for a batch run, the user must
specify an application and option. These are concatenated to construct
the specific file name of the JcL template. Through the UNIX “linking”
mechanism, we can specify two different names for the same file, hence
providing a simple aliasing mechanism for application and option
names. For example, consider a template file named lampcompile
which contains the JcL to compile a circuit description for the Lamp
application. A user can access this template by specifying application
lamp and option compile. However, by creating a link to this template
file called lampc, a user can also access the template by specifying
application lamp and option c. The first line of each template file
contains an internal code used by DwWB to uniquely identify that
template. Notice that in this implementation we are using both the
template file names and the contents of the files to drive our software.

The existence of the template files provides a number of DwWB
programs with information about the applications currently available.
For example, programs which require the user to enter an “application-
option” pair can check the validity of those names by looking for the
appropriate template file. The internal code contained on the first line
of the template can then be used for all internal references and
processing for that “application-option.”

3.5 Parameter substitution

The JcL template files described above contain various parameters
that allow for detailed customization of the batch jobs. The substitu-
tion of specific values for these parameters is driven entirely by the
contents of the template files, and new parameters can therefore be
specified by programmers merely by including them in the JcL tem-
plates. Several features are automatically provided by the implemen-
tation described below. These include: automatic query for and storage
of missing parameter values, and a defaulting and override mechanism.

DESIGNER'S WORKBENCH—PROGRAMMER ENVIRONMENT 1803



The values used to fill in the template parameters come from several
sources, depending on the type of parameter. Some values, such as the
project and circuit names, are computed and included by DWB at the
time of submission. Other values come from parameter files, which are
divided into two categories: user and circuit. User parameters, such as
job numbers and output bin numbers, are specific to the user who
requests the batch run. These values are stored in user files under the
sys/users directory (see figure above). The name of the file is the
same as the user’s last name, hence easy programming access via the
relative path name ../../sys/users/ {lastname}. Circuit parameters,
such as component library names, are specific to the individual circuits,
and are stored in a file called parms under the circuit directory. The
parameter fields in the JcL templates contain flags which indicate the
parameter type (user, circuit, or computed), and hence determine
where the value can be found.

A defaulting and override facility for circuit parameter values is
provided by using the project-circuit directory structure. As in circuit
directories, parms files are stored under each project directory and in
the DwB root directory. This provides a three-level hierarchy of circuit
parameters: a circuit level (the parms file in the circuit directory), a
project level (the parms file in the project directory), and a global level
{the parms file in the pwB root directory). Figure 3 illustrates this
structure.

When looking for parameter values, the parms file under the circuit
directory is searched first. If any values are not found, the parms file
under the project directory is searched, and if any values are still not
found, the parms file in the DWB root directory is searched. In this
way, values not specified at the circuit level can default to values
stored in the project or global level. Also circuit-level values can
override those in the upper two levels. The implementation of this
capability is accomplished by using the bwB directory structure and
the knowledge that execution occurs in a circuit directory. Using the

DWB ROOT

PROJ 1 PARMS

CKT 1 PARMS

AN

PARMS

Fig. 3—Project-circuit directory structure.

1804 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



relative path notation, the three files in which to search for circuit
parameters are merely parms, ../parms, and ../../parms, no matter
which circuit is being used.

When a particular parameter value is not found, the user is requested
to enter its value. This value is then stored in either the circuit-level
parms file or the user file, depending on the parameter type indicated
by the template. In this way, parameter values need only be entered
once, and are used automatically thereafter. If any values need to be
modified, the change command can be used.

3.6 Libraries

DWB maintains several libraries of information. The component
library contains LSL language descriptions of various components (e.g.,
integrated circuits) that can be referenced and automatically included
in users’ circuit descriptions. There are also libraries of component
references. These are essentially lists of the components that exist in
libraries on other computers. Using these lists, along with some utilities
for their interrogation, programmers can easily perform consistency
checks, verifying that components referenced by users in their circuit
descriptions exist in remote libraries. To provide a framework for easy
access of these libraries, as well as provide a defaulting and override
capability, we again use the UNIX directory structure. Just as with
circuit parameters, library information in DWB exists on three levels,
circuit, project, and global, corresponding to the circuit, project, and
DWB root directories. Under each of these directories is a directory
called libraries which contains all the library data for the associated
level. For example, the directory libraries under the DwB root directory
contains all global library information, which can be used as the default
by everyone. Under a particular project directory, a libraries directory
contains the library data specific to that project. Project library
elements override equivalent global library elements, that is, library
elements with the same name. Similarly, each circuit directory contains
a libraries directory whose contents can override equivalent project
or global data. The entry and modification of library elements is
handled through several utilities and simple file manipulation.

3.7 Generalized translation

The implementation of the data translations required by pwB is
done in a generalized fashion which takes advantage of current com-
piler techniques and available software tools. The motivation for this
implementation was to simplify the addition of new translators, and
thereby new applications, to bwB. We have found that individual
translation programs can take from six months to a year for planning
and implementation. Using the techniques described below, we can
add new translations in two to four weeks.

DESIGNER'S WORKBENCH—PROGRAMMER ENVIRONMENT 1805



A typical compiler can be divided into two major sections. The
“front end” takes an input language, parses its statements, and con-
structs an internal representation of its contents. The “back end” takes
the internal representation and produces its equivalent in the machine
code of the computer for which the compilation is intended. A “port-
able” compiler allows the compilation of a common language for
execution on several different computers by using a single front end
and several back ends, one for each target computer. The input
language is always parsed by the same program, producing the same
internal representation. The back end programs take this representa-
tion and produce the machine code required for a particular computer.
DWB uses this “portable” compiler technique to produce different input
languages for application programs from a single input language.

The circuit description language used as input to DWB is a dialect of
LsL (Logic Simulation Language) known as HIWIRE." The front end of
the pwB translation process consists of a “table generator,” which
takes the HIWIRE, parses it, and constructs a relational data base. This
data base contains all the information expressed by the original HIWIRE
input. In addition, a postprocessor derives additional information
about the circuit (e.g., determining which components are resistors
according to a naming convention) which is added to the tables. The
back end of the translation process consists of a variety of “formatters,”
which take the information from the data base and produce equivalent
circuit descriptions in other languages. Some of these languages serve
as input to application systems such as LASAR," CAPABLE,"” and
TMEAS." Figure 4 illustrates the overall process.

This system, then, provides translation from the HIWIRE language
to a variety of other languages, so that a single circuit description can
serve as the input to a number of application programs. Notice that,
once the data base is built, the formatters can all be run off it without
rerunning the “front end,” thereby saving execution time.

To add a new output language to the capability of DWB now requires
only the writing of a new formatter, assuming, of course, that all the
information required by the new language is already present in the
data base. The most dramatic expansion of capabilities is produced by
writing a new front end to the process. Consider, for example, the
writing of a program which translates a new language into the data
base. This would allow the translation of the new language into all the
languages represented by existing formatters, a considerable capability
to be gained by the writing of a single program. We are currently
adding a new input language which will handle analog data in just this
way, using several UNIX utilities, described in the next section, to
significantly reduce the programming effort required.

1806 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



HIWIRE

CIRCUIT
DESCRIPTION
DATA BASE
GENERATOR
RELATIONAL POST
DATA BASE PROCESSOR
]
LASAR CAPABLE TMEAS
FORMATTER FORMATTER FORMATTER
LASAR CAPABLE TMEAS
INPUT INPUT INPUT

Fig. 4—Translation process.

3.7.1 Lex and Yacc

The pwB/UNIX utilities Lex and Yacc'® are a tremendous aid in
writing software which must parse and interpret complex input, such
as HIWIRE and many other circuit description languages. In DWB, they
have been used to write the “table generator” described above.

Lex generates a program to do lexical analysis, breaking its input
into “tokens” (names, numbers, and punctuation). Yacc generates a
program to do grammatical analysis, the separation of tokens into
meaningful “statements.” Both Lex and Yacc are controlled by sets of
rules supplied by the programmer. In the DWB table generator, these
rules describe the format of the HIWIRE language along with the
actions necessary to build the data base.

The use of Lex and Yacc is especially important in a constantly
changing development system such as DWB because changes can be
made quickly and easily. For example, if the syntax of the HIWIRE
input must be changed, perhaps by the addition of new statements to
express new types of circuit information, we need only change the
Yacc rules and recompile the program.

3.7.2 Data base manager

To create and manipulate a relational data base containing the
circuit description, we needed some sort of data base manager. We

DESIGNER'S WORKBENCH—PROGRAMMER ENVIRONMENT 1807



experimented with the INGRES'® system, but found it too slow for the
large amount of data and queries required. We therefore chose to write
a small data base manager of our own, incorporating the features we
desired and making it easy to access, change, and expand.

One of the main advantages in using relational data bases is to
eliminate the storing of redundant information by arranging the data
base in third normal form. To illustrate, consider the following table:

GATENAME ICNAME ICTYPE ICLOC
GATEA IC1 T17400 A-10
BATEB IC1 T17400 A-10
GATEC IC2 TI17474 B-10

This table may seem like a reasonable way of storing information
about the gates and IC’s of a circuit. However, the redundant infor-
mation can be eliminated by using the following two tables, which
have been reorganized in third normal form:

ICNAME ICTYPE ICLOC GATENAME ICINDX
IC1 TI17400 A-10 GATEA 1
1C2 TI7474 B-10 GATEB 1

GATEC 2

Since the 1CTYPE and 1cLOC are directly dependent upon ICNAME, they
need only be stored once, in the separate table on the left. The
GATENAME is then relaied to these values in the table on the right
through the 1CINDX field, which indicates the row number in the first
table of the 1c on which the gate lies. In addition to eliminating
redundant information, third normal form also facilitates changes. For
example, to change the location of 1c1 from “A-10" to “C-10” would
require two changes in the first table above, while requiring only one
change in the third normal form tables.

An important feature of the DwB data base manager is the fact that
access to the tables is independent of the order of its fields or the
existence of additional fields. For example, consider the table on the
left above. If, in accessing that table, a program specified the fields
ICNAME, ICLOC, and ICTYPE, the data base manager would return the
values from the table in that order, and not the order in which they
were actually stored. Also, a program does not have to access all the
fields in the table. For example, a program could specify that it wanted
to access the IcNAME and 1cLoc fields, without even knowing that the
table contained a 1cTYPE field. This means that data-base tables can
be reordered and expanded as necessary, without having to change
existing programs which access them. This built-in upward compati-
bility has been extremely useful in the expanding development of DWB,
as new information has been added to the circuit description data
base. For example, several applications have required that special

1808 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



information about analog components (e.g., resistors and capacitors)

be derived from and added to the data base. This is accomplished by
a postprocessor (see Fig. 4) which adds extra fields and tables to the
data base, and requires absolutely no changes to the existing format-
ters.

IV. SUMMARY

This paper has discussed the objectives and methods used in the
implementation of bwB which have created an effective programming
environment. The overall objective has been to create a software
system that is easily expandable and maintainable. This philosophy
was emphasized even in the early design and feasibility implementation
through modular, data-driven, and generalized programming tech-
niques. As a result, we have gained considerable control and flexibility
in a programmer-oriented development effort.

REFERENCES

. D. M. Ritchie and K. Thompson, “The unix Time-Sharing System,” B.S.T.J., 57,
No. 6, Part 2 (July-August 1978), pp. 1905-1930.
. T. A. Dolotta and J. R. Mashey, “An Introduction to the Programmer’s Workbench,”
Proc. 2nd Int. Conf. on Software Engineering (October 13-15, 1976), pp. 164-168.
J. R. Breiland and R. A. Friedenson, “Designer’s Workbench—The User Environ-
ment,” B.S.T.J., this issue, pp. 1765-1790.
S. R. Bourne, “The unix Shell,” B.S.T.J., 57, No. 6, Part 2 (July-August 1978), pp.
1971-1990.
. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood
Cliffs, N.J.: Prentice-Hall, 1978.
. M. J. Rochkind, “The Source Code Control System,” IEEE Trans. on Software
Engineering, SE-1 (December 1975), pp. 364-370.
. T. J. Thompson, “Designer's Workbench—The Production Environment,” B.S.T.J,,
this issue, pp. 1809-1824.
. H. Y. Chang, G. W. Smith, Jr., and R. B. Walford, “LaMP: Logic Analyzer for
Maintenance Planning, System Description,” B.S.T.J., 53, No. 8 (October 1974),
pp. 1431-1450.
. S. G. Chappell et al., “LaMP: Logic Analyzer for Maintenance Planning, Logic-Circuit
Simulators,” B.S.T.J., 53, No. 8 (October 1974), pp. 1451-1476.

10. B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, Jr., UNIX Time-Sharing System:
“Document Preparation,” B.S.T.J., 57, No. 6, Part 2 (July-August 1978}, pp. 2115-
2135.

11. D. S. Evans and L. A. O'Neill, “An Integrated System for the Design of Printed
Wiring Boards,” ELECTRO '76 Professional Program, Session 26 (1976), Boston,
Mass.

12. The Users Manual for the Teradyne P400 Automatic Test Plan Generation System,
Boston, Mass.: Terdyne Inc., 183 Essex St.

13. CAPABLE 4000 Logic Simulation System User Manual, Irvine, California: Com-
puter Automation Industrial Products Division, 2181 Dupont Drive.

14. J. Grason, “TMEAS, A Testability Measurement Program,” Proc. 16th Design Auto-
mation Conference (June 25-27, 1979), pp. 156-161.

15. S. C. Johnson and M. E. Lesk, UNIX Time-Sharing System: “Language Develop-
ment Tools,” B.S.T.J., 57, No. 6, Part 2 (July-August 1978), pp. 2155-2175.

16. John Woodfill et al., “INGREs Version 6.2 Reference Manual,” Electronics Research

Laboratory, University of California, Berkeley, California, Memorandum No.

UCB/ERL M79/43, May 1979.

[« I - I =

[3=]

DESIGNER'S WORKBENCH—PROGRAMMER ENVIRONMENT 1809



I TIIIIENmm—— S




