Copyright © 1980 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 59, No. 9, November 1980
Printed in US.A.

Designer’s Workbench:

Providing a Production Environment

By T. J. THOMPSON
(Manuscript received May 1, 1980)

In the development of Designer’s Workbench, special consideration
was given to the design, implementation, and maintenance of the
production environment. Since DWB filled an immediate need in the
computer-aided design world, production use of the system was
started early and became an important factor as further development
was planned. The reliability of the production system needed to be
insured, while at the same time allowing the frequent changes and
additions required in the normal course of development and general
maintenance. To fulfill these requirements, we have implemented a
“version control” system, allowing several independent versions of
the entire system to be available simultaneously. In the general
maintenance of DWB, we have used the Source Code Control System
and make utility provided by the PWwB/UNIX* interactive operating
system. We also have made extensive use of command procedures
written in the UNIX “shell” language to perform the librarian and
maintenance functions that are necessary to support the system.

I. INTRODUCTION

Designer’s Workbench is a software system based on the UNIX time-
sharing operating system" * which provides an interactive front end to
a variety of circuit design aids programs on a variety of different
computers. As such, it is supporting daily production use within Bell
Laboratories, primarily at the Holmdel and Merrimack Valley loca-
tions. At the same time, however, it is a growing development system.
Changes are constantly being made, either as new features are added

* UNIX is a trademark of Bell Laboratories.

1811



or in response to user feedback. This paper first discusses the often
conflicting needs of a production and development system. The various
methods used to resolve these conflicts and better control the bwg
production system are then described. These include the use of a
“version control” system, the sccs® and make* utilities, and shell
procedures.’

Il. THE NEEDS OF A PRODUCTION SYSTEM
2.1 Reliability

One of the most important factors in a successful production soft-
ware system is its reliability. Users quickly become discouraged when
frequent errors prevent them from working effectively, especially when
either the users or the system is new. Many of these errors are due to
software bugs, both in original code and in additions and modifications
to it. Of course, it is impossible to write error-free software, and
programmers can never predict all the uses and misuses their programs
will suffer. There must be some way, however, for programmers to
ease a new program into the system, reducing the number of errors
which users experience and which deteriorate their confidence in the
production system.

2.2 Maintainability

The operation and maintenance of a production system should be
made as automatic as possible, to eliminate the human element which
invariably is error-prone and unreliable. All aspects of the system
should be cleanly organized and completely documented, facilitating
maintenance and reducing the learning curve for new development
and maintenance personnel.

2.3 Statistics

Usage and accounting information are required for the management
of any production system. The same information can be used to
provide feedback information to users on their performance, or to flag
those users who are having trouble and need special assistance.

2.4 Responsiveness to users

User complaints, suggestions and requests should be considered
extremely important input necessary for the long-range success of a
production system. This requires an efficient and effective line of
communication between users and developers. User comments should
be acknowledged and acted upon as quickly as possible to maintain
the users’ confidence in the system. If an immediate solution to a
problem is impossible or impractical, a proposal for solution and
timetable for implementation should be formulated to show that
something is being done.

1812 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



Immediate solutions to user problems usually require software mod-
ifications which, as we have noted, sometimes introduce new problems.
However, we still want to be able to make changes which can be
immediately available for those production users who need them.

lll. THE NEEDS OF A DEVELOPMENT SYSTEM
3.1 Control of changes

The software of a development system undergoes constant change.
These changes must, first of all, be easy to make. Programmers should
not have to wade through complicated procedures to modify their
software. On the other hand, the changes must be controlled. Problems
are bound to arise if programmers are not aware of the changes being
made by others on a common system.

3.2 Statistics

The utilization of various parts of the system can affect where
further development efforts should be aimed. If a particular aspect of
the system is being heavily used, it may be advantageous to expand
the system’s capabilities in that area. Also, if a large amount of
computer time is being spent in certain programs, it may be appropri-
ate to optimize those programs.

3.3 Documentation

In a constantly evolving development system, all changes must be
properly recorded and documented. However, recording and docu-
menting every single change a programmer made to his software would
be definite overkill. There should be a happy medium in fulfilling the
documentation requirements of a system without overburdening the
programmers with unnecessary red tape.

IV. THE PRODUCTION ENVIRONMENT OF DWB

The design and implementation of the production environment of
pWB has taken into account all the requirements described above for
production and development systems.

4.1 Version control

Many problems outlined above are the result of having a single copy
of a software system which must fulfill a variety of functions. These
problems would be alleviated by having several complete copies of the
system which could coexist and yet be independent, so that changes in
one copy, or version, would not affect other versions. This is the basic
premise behind the “version control” system which was developed and
implemented for DWB.

There are currently a maximum of five separate versions of DWB

DESIGNER'S WORKBENCH—PRODUCTION ENVIRONMENT 1813



maintained by our “version control” system. These are named oLD,
CURRENT, RELEASE, TEST, and DEBUG.

4.1.1 The DEBUG version

This version of DWB is available for experimentation and debugging
by programmers, both in the development of new modules and the
changing of old ones. Since programmers are free to make any changes
they want to, this version may not be fully operational at times. Good
communication and coordination are necessary between programmers
to avoid conflicts in the use of this version.

4.1.2 The TEST version

This version of DWB is intended to contain new features and modi-
fications which have been debugged by programmers. As we have
discussed above, new software often results in new bugs, and is there-
fore too unreliable to incorporate immediately in a production system.
The TEST version is intended for users who require or want to try out
new features as soon as possible. These users should be relatively
“friendly,” since they are bound to experience problems. The feedback
obtained from these people enables most bugs to be eliminated from
the software before it is incorporated and used in the main production
system.

4.1.3 The RELEASE version

Eventually, after a number of significant changes and additions have
been sufficiently tested by “friendly” users in the TEST version, we are
ready to issue a new “release” of DwB. To further insure the reliability
of the new release before it is issued, we want to perform regression
testing to verify that everything works the way it used to work. This
regression testing usually requires a week or two to complete, during
which time further changes can be made to the TEST version as
development continues. Therefore, when we decide to make a new
release, a “frozen” copy of the TEST version is made and called the
RELEASE version. This version is only accessible to DWB system per-
sonnel, and exists only as long as the new release is undergoing
regression testing. When testing is finished, the RELEASE version is
made into the CURRENT version. .

4.1.4 The CURRENT version

This version of DWB is the main production system, provided as the
default for most users. This version is very stable and hence more
reliable, since changes are usually made only by new releases or to
correct serious bugs.

1814 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



4.1.5 The OLD version

This version of DWB is a copy of the CURRENT version which existed
before the latest release. If unforseen problems develop with a new
release, users can still access the OLD version as a backup while repairs
are made.

The most important feature of the version control system is that all
versions are simultaneously available, without any overhead or recom-
pilation required by users or systems personnel. All versions work off
the same user data base, so that a user can switch from, say, the
CURRENT to the TEST version without losing any files or having to redo
anything. This capability is a direct result of our conscious effort to
design DWB software in a totally upward compatible manner.

4.2 Version control operations

Each module or program of DWB is treated independently in the
version control system. Although various programs may depend closely
upon one another and should be treated together, these inter-program
dependencies are not automatically handled. Therefore, to describe
the operations required to maintain and propagate changes through
the version control system, it is only necessary to consider a single
module. To facilitate the discussion, the following notation is adopted
to define the present state of a particular module within the versions:

M = Module name

I = Issue number of module
Io = I of module in oLD version
Ic = I of module in CURRENT version
Ir = I of module in RELEASE version
It = I of module in TEST version
Id = I of module in DEBUG version

Present state of module M is M (lo,lc,Ir It Id).
The issue number is similar to the sccs IDentification string (SID)
and represents a unique instance of a given module. Whenever a

module is altered in any way, the changed module is assigned a new
issue number. For example, the following version state expression:

edit (5,5,6,6,6)

indicates that the oLD and CURRENT versions of DWB contain issue 5
of the edit module, while the RELEASE, TEST, and DEBUG versions
contain issue 6. Since the RELEASE version may not (and usually does
not) exist, its entry in the state expression may be empty:

edit (5,5,,6,6)

DESIGNER'S WORKBENCH—PRODUCTION ENVIRONMENT 1815



4.2.1 Using the DEBUG version

The DEBUG version is available to programmers for experimentation
and testing. Making a change to the DEBUG version of the edit module
would correspond to the following transition in state expressions:

edit (5,5,,5,5) — edit (5,5,,5,6)

Making multiple changes in the DEBUG version of that module could
be expressed as multiple changes in the issue number, as in the
following:

edit (5,5,,5,6) — edit(5,5,5,7)

However, for simplicity multiple changes are represented as a single
change in issue number. This means that the DEBUG version issue
number can only differ by one from the TEST version issue number.

4.2.2 installing the TEST version

When the programmer is satisfied with changes made to a particular
module of the DEBUG version, that module can then be installed in the
TEST version. This corresponds to te following transition in state
expressions:

edit (5,5,,5,6) — edit (5,5,,6,6)

At the same time, the “program librarian” manually records a descrip-
tion of the changes that have been made in the module. This is used
later to properly update the system documentation and on-line tuto-
rials. The TEST version will now contain the new module which can be
tried by “friendly” users. Notice that further changes can be made in
the DEBUG version and again installed in the TEST version, as illustrated
by the following transitions:

edit (5,5,,6,6) — edit(5,5,,6,7)
edit (5,5,,6,7) — edit(5,5,,7,7)

4.2.3 Making a new release

When enough changes have been incorporated in the TEST version
to warrant a new release, the RELEASE version is created. This corre-
sponds to the following transition:

edit (6,5,,6,6) — edit (5,5,6,6,6)

which is performed for every module of pwB. At this point, the
RELEASE version is an exact copy of the TEST version, to be used for
complete regression testing. Notice, however, that development can

1816 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



continue unabated in the TEST and DEBUG versions, as reflected by
these transitions:

edit (5,5,6,6,6) — edit (5,5,6,6,7)
edit (5,5,6,6,7) — edit(5,5,6,7,7)

When regression testing has been completed on the RELEASE version,
it is ready to become the new CURRENT version. At the same time, the
CURRENT version must become the oLD version, and the oLD version
must be removed. The RELEASE version is also deleted, having become
the CURRENT. These changes are reflected in the following transition:

edit (56,5,6,7,7) — edit(5,6,,7,7)

which would be performed for every module of pws. If the oLD and
CURRENT versions of a particular module, say the acquire program,
were different, the transition would look like this:

edit (5,6,7,8,8) — edit(6,7,,8,8)

4.3 Source and executable files

The version state expression which defines the state of a particular
module is actually a simplification, since programs which are written
in C consist of both source and executable files which are all maintained
under the version control system. Hence, the expression

edit (5,6,,7,7)
really represents all source and executable files of the edit module:
edit.c (5,6,,7,7) and edit.x (5,6,,7,7)

The interrelationship of source and executable files and the fact that
their state expressions should be identical is not explicitly enforced in
the current implementation of the version control system, and must
be handled manually. This problem does not exist for shell procedures,
in which the source and executable files are one and the same.

4.4 Simplification of the state expression

The most important fact communicated by the state expressions of
pwB modules is the nature of the differences between the versions.
For example, the state expressions

edit (5,6,,6,6) and acquire (5,6,,8,9)

indicate the CURRENT and TEST versions of the edit module are
identical, while the TEST version acquire module is different from the
CURRENT version. In fact, the DEBUG and TEST versions of the acquire
module are different, indicating that someone is actively experimenting

DESIGNER'S WORKBENCH—PRODUCTION ENVIRONMENT 1817



/P4/4393 DWB

SOURCE EXEC SOURCE. TEST EXEC. TEST

Fig. 1—Directories for CURRENT and TEST.

with that program. To bring out these facts more clearly, the state
expressions can be simplified by assigning the letters O, C, T, and D
(corresponding to OLD, CURRENT, TEST, and DEBUG) to the issue
numbers in the expression as follows:

edit (O,C,,C,C) and acquire (O,C,,T,D)

Notice that an issue number which appears in more than one version
takes on the letter corresponding to the leftmost version in the group.
Using this notation, it is more clearly shown which modules are
common or different between versions.

4.5 Implementation of version control

4.5.1 Version storage

The implementation and operation of the version control system
relies heavily on the directory structure in which the source and
executable files are stored. This structure is illustrated in part in Fig.
1. Each version of pwB has a directory for its source files and its
executable files or programs. Shown in Fig. 1 are the directories for
the CURRENT and TEST versions. Naturally, there are equivalent direc-
tories for the OLD, RELEASE, and DEBUG versions. Each executable
directory contains a complete copy of every program required to run
DWB.

4.5.2 Version linkage
Consider the situation expressed by the following:
edit (O,C,,T,D)

This indicates that each version contains a different version of the edit
module, and hence there would be different source and executable files
in each version directory. Now consider the following situation:

edit (0,0,,T,D)

1818 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



In this case, the same edit module exists in the OLD and CURRENT
version, and hence identical source and executable files would exist in
the directories for these versions. To eliminate the wasted space in
situations such as this, source and executable files can be linked to
several directories. The arrangement of executable files for the situa-
tion above is shown in Fig. 2. The UNIX In command performs this
linking function, allowing a file to be stored only once and yet appear
in more than one directory. All the operations described in Section 3.2
above (debugging, installing test modules, etc.) must take into account
and manipulate these links.

4.5.3 Executing a particular version

DWR uses the UNIX $PATH shell variable to determine the version
under which each user is executing. The value of $PATH is a list of the
directories in which to search for executable programs. For example,
if a user’s $PATH had the value

:/p4/4393dwb/sys/exec:/bin:/usr/bin

all pwB programs would come from the /p4/4393dwb/sys/exec
directory, and hence from the CURRENT version. In order for the user
to execute the TEST version, the value of $PATH need only be changed
to

:/p4/4393dwb/sys/exec.test: /bin: /usr/bin

so that all programs will come from the /p4/4393dwb/sys/exec.test
directory, and hence from the TEST version.

In actuality, pwB users know nothing about the shell variable
$PATH. Its value is determined by the DWB main program which the
user invokes by typing dwb. The argument given to the program, if
any, indicates the desired version. For example, to get the TEST version,
the user types dwb test. If no argument is specified, the CURRENT
version is used. Since each person logged onto a UNIX system has his
own $PATH, each person can access a different version of DWB at the
same time.

EXEC.OLD EXEC EXEC. TEST EXEC. DEBUG

EDIT. X EDIT, X EDIT. X

Fig. 2—Executable files for version linkage.

DESIGNER'S WORKBENCH—PRODUCTION ENVIRONMENT 1819



New users have a problem in accessing bwB for the first time, since
the program dwb in directory /p4/4393dwb/sys/exec cannot be
found by their initial $PATH, which is:

:/bin: /usr/bin

Therefore, to access DWB for the first time, users must type /p4/
4393dwb/sys/exec/dwb. At this point, DWB detects that the user is
logging in for the first time, and changes his .profile to set the initial
$PATH to:

:/bin:/usr/bin: /p4/4393dwb/sys/exec

(The .profile is a set of commands which is executed every time the
user logs onto the UNIX system.) From then on, the user need only
type dwb, since the proper directory is in the initial $PATH. Notice
that we are using the $PATH for two purposes. The user’s initial
$PATH is used to find the program dwb. Once within this program,
the $PATH is changed to reflect the desired version, so that all
subsequent programs come from the proper version directory.

The ability to change the $PATH shell variable and, in effect, easily
alter the environment in which a user operates was the main ingredient
which allowed our implementation of the version control system. This
is just one more example of the many simple yet powerful capabilities
of the UNIX operating system upon which one can build.

4.6 Compilation control

One of the nice things about the UNIX operating system is the low
overhead associated with the initiation of a process. This makes it
convenient to write and use small, general-purpose utility programs, in
essence creating new commands with which to program in shell pro-
cedures. The UNIX “pipe” operation, in which the output of one
program is fed as input to another, provides a convenient mechanism
for combining such programs. Therefore, the design of a well-struc-
tured and modular software system (in which category we naturally
place DWB) inevitably contains a large number of individual programs.
In developing and maintaining such a system, the problems of man-
aging a large number of source files and the corresponding executable
programs quickly become apparent. In particular, it becomes tedious
to specify and perform the repeated compilations necessary during
development. Fortunately, the UNIX operation system again comes to
the rescue with a utility called make. This utility enables automatic
recompilation of programs. To use it, you must specify the actions to
be taken in compilation, as well as the file dependencies (i.e., which
source files, object files, and libraries are required to recompile a
particular program). Based on the dependencies, make determines

1820 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



when a program should be recompiled, and then performs the recom-
pilation. The logic is simple: if a source or object file has changed, all
programs depending on that source or object file must be recompiled.

DWB uses the make utility for all its C programs. This use was
complicated, however, by the implementation of the version control
system described above. It was necessary to write a preprocessor to
conveniently specify the recompilation of a particular version of a
particular program. For example, to recompile the TEST version of the
“edit” program, the source file edit.c from the sys/source.test direc-
tory must be used, and the compiled program edit.x must be placed in
the sys/exec.test directory. The make utility provides a macro defi-
nition capability which helps in this regard. By defining the source
and executable directories as macros, the definition of compilation
dependencies (the “makefile”) can be the same for every version. The
preprocessor determines which version is desired by looking at the
current directory, and sets the macro values accordingly. For example,
to compile the TEST version of the edit program, you would only have
to go into the sys/source.test directory and issue the command
make.x edit. The preprocessor (make.x) would set the directory macros
to sys/source.test and sys/exec.test and then call make to do the
recompilation.

The use of the make utility has been invaluable in the development
of DWB. A situation in which its use was particularly helpful involved
the tutorial mechanism, which provides the on-line documentation via
a series of text files. The initial implementation required a rather
convoluted compilation procedure in which programs were compiled
to make programs that created other programs which had to be
compiled. The use of make made the entire procedure automatic,
performing only those recompilations necessary with each change.
This was quite important, since the tutorial mechanism was included
(as a library routine) in a large number of programs. Fortunately, this
implementation has been changed to a much more flexible system
which is driven directly from the text files and does not require
multiple levels of compilation.

4.7 Source code control

The existence of a large number of programs also presents problems
in maintaining, changing, and documenting the numerous source files.
As usual, UNIX software provides some assistance in the form of a
Source Code Control System (sccs). This system organizes the storage
and changing of any type of source file. Each change to a source file is
recorded under sccs as a “delta” and is identified by a version number.
Prior versions of a particular source file can be recreated at any time
merely by specifying the appropriate version number. sccs provides

DESIGNER'S WORKBENCH—PRODUCTION ENVIRONMENT 1821



for the storing of various information about each change, such as the
programmer’s name and the reasons for the change. This organization
of information is invaluable in providing and updating system docu-
mentation.

Because of the version control mechanism and the organization it
provides, we have chosen not to use sccs to record every change to
every program. Instead, only the CURRENT versions of DWB are stored
under sccs. This includes all C programs, shell procedures, utility
programs, and data files needed for a complete running system. Every
time a new issue (and hence a new CURRENT version) of DWB is
released, the program and data files stored under sccs will be updated.
This use of sccs enables us to retrieve a complete running copy of any
previous CURRENT version of DWB.

When a new issue of DWB is released, we want to make sure that all
documentation is up to date; that is, all changes which have been made
since the last issue are reflected in the system documentation and on-
line tutorials. The primary means of doing this is to gather together all
the descriptions of changes which have been obtained by the librarian
in the installation of modules into the TEST version. These descriptions
must then be incorporated into all formal system documentation. The
secondary means of making sure that all changes have been docu-
mented involves the direct comparison of the new issue with the last
issue. Since every file of the last issue of DWB is stored in sccs, this is
no problem. Shell procedures have been written which reconstruct, in
temporary directories, the files of the last issue of bWB. These are then
compared, one at a time via the UNIX diff utility, with the files of the
new issue. Any differences are automatically flagged, indicating the
need for a change in the documentation. Naturally, most of the
differences will already be covered by the descriptions of changes
incorporated in the TEST version. However, by doing a complete
comparison of the new and old issues of DWB, we are assured of
catching and properly documenting all modifications.

4.8 Statistics

DWB uses a generalized logfile mechanism to record the usage of the
various programs in the system. Each circuit has its own logfile which
records the activity in that circuit. A system logfile records all logins.
The statistics which can be obtained from these files are important in
monitoring the usage of the production system to find problem areas.
Problems can be caused by software bugs, which need to be corrected,
or by the improper use of DWB programs, indicating that users need
more help or that the programs must be redesigned for easier use.

A major advantage of the logfile approach is that the type of
statistics which can be gathered is not fixed, but can be changed

1822 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



dynamically. This is because the logfile contains a complete record of
all activity, the summarizing and condensation of which is done by
report generating utilities (see the next section) and no. within the
logfile itself.

4.9 Maintenance and operating procedures

A variety of functions must be performed in daily and periodic
maintenance of DWB production use as well as in support of develop-
ment efforts. These require the manipulation of large numbers of files
and directories, and if done manually would be extremely tedious and
error-prone. Therefore, most of these maintenance and librarian func-
tions have been implemented as shell procedures which are reliable
and easy to use. This significantly reduces the knowledge and training
required for support of DWB. As an example, the following dialog
illustrates the use of the librarian utility which allows the initialization
of the DEBUG version of a particular program:

*—* DEBUG INITIALIZATION* —*

Is the module a C program or Shell? (¢ or s) —c

Enter the names of all source files involved (ending with “‘end’’)
— edit.c

*INITIALIZED *

— end

Enter the names of ALL dependent executable modules (ending with
“end’")

— edit.x

*INITIALIZED *

— end

*** Thank you, come again! ***

In this utility, a check is first made to see if the program is already
initialized for debugging. If not, the links from the TEST version to the
DEBUG version for that program (both source and executable files) are
removed, and separate copies of the TEST version files are placed in
the pEBUG version. The mode of the files is then changed to allow the
programmer to edit them.

Some of pDWB’s utilities are designed to run automatically. For
example, a cleanup routine is invoked every morning at 3:00 am. to
find and delete temporary and other garbage files. This utility also
looks for inactive circuits for which data base storage can be freed.

Statistics utilities allow the scanning, collection, and summarizing of
the circuit and system logfiles. This can be done on a per-circuit, per-
project, per-user, and systemwide basis. UNIX utilities, such as grep
and wc, are extremely useful in helping to collect such statistics. For
example, the total number of logins for a particular circuit can be

DESIGNER'S WORKBENCH—PRODUCTION ENVIRONMENT 1823



found with the following command (where cktlog is the usage logfile
for the circuit of interest):

grep login cktlog [wc —1

The grep program picks out every line from the cktlog file which
contains the word login. These lines are then counted by the wc (word
count) program.

All the operations required for manipulating the version control
system are controlled by shell procedures. These include the initiali-
zation of the DEBUG version (illustrated above), the installation of
changes into the TEST version, the creation of the RELEASE version,
and the installation of a new issue of DWB. A procedure called modchart
produces a chart which illustrates the current status of every pws
program, indicating the differences between the programs of each
version. This chart is basically a listing of the simplified state expres-
sion for each program. Also controlled by shell procedures is the
updating of the sccs whenever a new issue of DWB is released.

4.10 Security

The only means of providing file security within the UNIX operating
system is through the file protection modes. There are three levels of
file access modes. One specifies the access permissions for the owner
of the file, the second specifies the access permissions for the group
owner of the file, and the third specifies the access permissions for
everyone else. DWB uses the group permissions to control access to
each project, i.e., each DWB project has a group associated with it, and
only that group can work on that project.

Passwords for remote computers are protected on bwB through the
use of the crypt command, which performs data encryption based on
a “key.” The “key” is the user’'s DWB password, which is used to
encrypt the user’s other passwords such as the IBM TSS or TSO
passwords. Whenever one of these is required, the user is asked to
enter his DWB password which is then used to decrypt the desired
password. This provides security even from system personnel, since
the pwe password is never stored (even in a temporary file). The only
capability permitted to DWB system personnel is the complete removal
of all the user’s passwords, in case the DWB password is forgotten.
Verification of the pwB password is accomplished through the storage
of an encrypted “constant” string. When the user enters his pws
password, it is used to encrypt the “constant” string, which is compared
against the stored encryption of that string.

V. SUMMARY

The production environment of DwWB resolves many conflicts be-
tween a development and production system. This environment suc-

1824 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1980



ceeds in providing a reliable system for production use, as well as a
convenient system for debugging and the smooth installation of new
features. The version control system was instrumental in providing
this versatility, and the features of the UNIX operating system provided
a rich pool of resources from which to draw. The overall result is an
environment in which work can be productive and enjoyable.

REFERENCES

1. K. Thompson and D. M. Ritchie, “The uNix Time-Sharing System,” B.S.T.J., 57,
No. 6 (July-August 1978), pp. 1905-1930.

2. T. A. Dolotta, R. C. Haight, and J. R. Mashey, “The Programmer’s Workbench,”
B.8.T.J., 57, No. 6 (July-August 1978), pp. 2177-2200.

3. M. J. Rochkind, “The Source Code Control System,” IEEE Trans. on Software
Engineering, SE-1 (December 1975), pp. 364-370.

4. S.1. Feldman, “Make—A Program for Maintaining Computer Programs,” Software—
Practice and Experience, 9 (April 1979), pp. 255-265.

5. S. R. Bourne, “The unix Shell,” B.S.T.J., 57, No. 6 (July-August 1978), pp. 1971-
1990.

DESIGNER'S WORKBENCH—PRODUCTION ENVIRONMENT 1825






