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When calls offered to a primary group of trunks find all of them
busy, provisions are often made for these calls to overflow to other
groups of trunks. Such traffic overflow systems have been of interest
for a long time, but recently overflow systems that allow for some
calls to be queued have been of importance. In this paper we analyze
a traffic overflow system with queuing, which consists of a primary
and a secondary group. The system which we consider here differs
from the two systems we investigated earlier, in that no overflow from
the primary to the secondary is permitted if there is a waiting space
available in the primary queue. As with the earlier investigations, we
adopt an analytical approach which considerably reduces the dimen-
sions of the problem, and simplifies the calculation of various steady-
state quantities of interest. Our results include expressions for the
loss probabilities, the average waiting times in the queues, and the
average number of demands in service in each group.

. INTRODUCTION

In this paper a particular overflow system with queuing is analyzed.
The system consists of two groups, a primary and a secondary, with n
servers and g, waiting spaces, which receive demands from indepen-
dent Poisson sources S; with arrival rates A, > 0, £k = 1 and 2,
respectively, as depicted in Fig. 1. The service times of the demands
are independent, and exponentially distributed with mean service rate
p > 0. If all n; servers in the secondary are busy when a demand from
S, arrives, the demand is queued if one of the g. waiting spaces is
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available, otherwise it is lost (blocked and cleared from the system).
Demands waiting in the secondary queue enter service (in some
prescribed order) as servers in the secondary become free.

If all n, servers in the primary are busy when a demand from S,
arrives, the demand is queued in the primary, if one of the g, waiting
spaces is available. No overflow is permitted from the primary queue,
so that a demand in the primary queue must wait for a server in the
primary to become free. If all n, servers in the primary are busy and
all ¢, waiting spaces are occupied, when a demand from S, arrives, the
demand is served in the secondary, if there is a free server and there
are no demands waiting in the secondary queue, otherwise it is lost.

The overflow system described above differs from the two systems
which we investigated earlier,"” in that no overflow from the primary
to the secondary is permitted if there is a waiting space available in
the primary queue. This restriction was one invoked by Anderson.’ In
the two systems investigated earlier, arriving calls can overflow when
the primary queue is not full. The system considered in this paper is
a particular case of the one considered by Rath,* which was composed
of two queues, one of which is allowed to overflow to the other under
specified conditions involving the queue lengths. He obtained some
numerical solutions using a Gauss-Seidel iteration technique, but none
of these correspond to the particular system that we are considering.
He also developed an approximate procedure for analyzing his system,
based on the use of the Interrupted Poisson Process.

Here we analyze the overflow system using a technique analogous
to the one introduced in the earlier paper.’ Let p;; denote the steady-
state probablhty that there are i demands in the primary and j
demands in the secondary, either in service or waiting. These proba-
bilities satisfy a set of generalized birth-and-death equations, which
take the form of partial difference equations connecting neighboring
states. We carry out an analysis that reduces the dimensions of the
problem, which may be considerable in cases of interest. The basic
technique is to separate variables in the region away from a certain
boundary of state space. This leads to an eigenvalue problem for the
separation constant. The eigenvalues are roots of a polynomial equa-
tion. The probabilities p;; are then represented in terms of the corre-
sponding eigenfunctions. The constant coefficients in these represen-
tations are determined from the boundary conditions and the normal-
ization condition that the sum of the probabilities is unity.

Various steady-state quantities are of interest, which may be ex-
pressed in terms of the probabilities p;;. The quantities include the loss
(or blocking) probabilities, the average waiting times in the queues,
and the average number of demands in service in each group. These
quantities may be expressed directly in terms of the constant coeffi-
cients which occur in the representations for the probabilities p;;. Thus
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the steady-state quantities of interest may be calculated directly,
without having to calculate the probabilities p;;. Here again the reduc-
tion in the dimensions of the problem is valuable.

Only the theoretical results are presented in this paper. Numerical
results will be presented in a forthcoming paper by Kaufman, Seery,
and Morrison.” Results will be given there for the two overflow systems
considered previously, based on the earlier analysis,' as well as for the
system considered in this paper.

Section II discusses the representation of the probabilities p;; in
terms of the eigenfunctions, and the boundary and normalization
conditions. Various steady-state quantities of interest are calculated in
Section III. The appendix gives properties of the eigenfunctions.

We assume throughout the analysis that g, = 1, since the system
considered in this paper, and the two systems analyzed earlier, are
identical if ¢ = 0, i.e., if there is no primary queue. However, the
results of this paper reduce to those obtained earlier' if g, = 0. If gz is
large, or even infinite, an alternate analysis, analogous to that pre-
sented for the other two systems,” may be carried out for the present
system, but we do not pursue that here.

Il. REPRESENTATION AND BOUNDARY CONDITIONS

We let p;; denote the steady-state probability that there are ¢
demands in the primary and j demands in the secondary, either in
service or waiting. These probabilities satisfy a set of generalized birth-
and-death equations,® which may be derived in a straightforward
manner. We define the traffic intensities

a = A/, as = A2/1, (1)

and let the total number of servers and waiting spaces in each group
be

kl =m + qy, ks =ns + qa. (2)
It is convenient to introduce the function
1, I=0,
as well as the Kronecker delta
Jpp— 17 i = j’
b = {0, i), @

Then the birth-and-death equations are
[@1(1 = 8ir,Xj-ny) + @2(1 — 8x,) + min(i, n1) + min(J, na)]pis
= ai(1 = Sio)pi-1,; + (1 = 8p)(@18ix,Xn,~; + @2)Pij
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+ (1 = 8, )min(i + 1, n1)pisr,; + (1 — 8, )min(j + 1, na)pijr1, (5)

for 0 =i < ky, 0 =j < k,. The normalization condition is
bk

Y rpii=L1 (6)

i=0 j=0
For i # k,, the variables in (5) may be separated, and there are
solutions of the form a;f;, where
[a: + min(i, ny) + plai = ai(1 — Si)ai—y + min(i + 1, n)aiv, (7)
for0=i=<k —1,and
[ax(1 — 8j,) + min(j, n2) — plB;
= as(1 — 8j0)B-1 + (1 — §p,)min(j + 1, n2)B+1, (8)
for 0 = j = k3, and p is a separation constant. Hence, from (7),

(a1 + i + plai = ai(1 — Sw)ai-1 + (I + Daisy, (9)
for 0 = { = n, — 1. The solution of (9) may be expressed in terms of
Poisson-Charlier’® polynomials. We here denote the solution of (9) for
which ao = 1 by si(p, @1). The properties of s:(p, a) which we will need

are given in the appendix.
We assume that ¢, = 1. Then, from (7),

(a; + n, + p)a,- = ai-1 + i+, (10)

for n; = i < k; — 1. The solution of (10) may be expressed in terms of
Chebyshev polynomials of the second kind,? Uj(x). It is convenient to

define
12
n a+n +p
(o) = (_) u(—) (1)
l(p ay : 2\‘ an;

The appendix gives the properties of these functions that we need. We
note here, however, that Uy(x) = 1 and U_i(x) = 0. From (9), (10),
(53), and (64), with a suitable normalization, it follows that

qQ
(ﬂ) si(p, @), 0=i=mn,

a

ai(p) = ky—i e
(?) [n,(p, @1)i-n,(p)=8n,-1(p, @1)Si-n—1(p)],

1
m=<i<k.
Next, from (8),
(a2 +j = p)Bi = az(l — 8p)Bi-1 + (j + 1)Bjsy, (13)

for 0 = j < n, — 1. It follows from (53) that 8; is proportional to
si(—p, az) for 0 = j = na. Also,
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[az(1 = 8s,) + n2 — p1B; = azfi1 + na(l — dja,) Bjsy, (14)
for n, < j < ko. Corresponding to (11), we define

2
n: a:+nz—p
Yip)=|—| U|\l——])- (15)
e) (02) i( 2Vasns )
We also define
oi(p) = ¥r,—i(p) — ¥r,—j-1(p). (16)

The appendix gives the properties of these functions that we need. It
follows from (14) and (62) that B; is proportional to ¢;(p) for n; — 1 =
j = kz.

Consequently, we take

Bip) = si(—p, a2)¢n,(p), 0=<j=no,
7 Sn(—p, @)di(p), M2 —1=j=ky (17)

where
Sny-1(—P, @2)ny(p) = Sn,(—p, Q2)Pn,-1(p)- (18)
This equation may be written in the form
plsny(1 = p, @2)¥4,(p) = Sn,-1(1 — p, a2)¥ga(0)] = 0. (19)

The expression in the square brackets in (19) is a polynomial in p of
degree k; = na + qo. It was shown' that its zeros are positive and
distinct, and we denote them by pm, m =1, -+, k2. We also let po = 0.
1t follows that we may represent the probabilities p;; in the form

ka

2 Cmai(Pm)sj(_Pm, a2)¢n.z(Pm), 0 EJ = ng,

m=0
pi;= (20)

ky
E Cmai(Pm)an(_Pm, a2)¢j(Pm), na 5] = kz,

m=0

for 0 < i < k,, where a;(p) is defined in (12), and the constants c, are
to be determined.

It remains to satisfy the boundary conditions corresponding to i =
k, in (5), as well as the normalization condition (6). If we set i = & in
(5), we obtain

(@1 + az + ny + )pr,; = @rpr-1; + (@1 + a2} (1 — 80)pa, i

+ (J + 1pe,j+1, (21)
forO=j=<n:—1,
[a2(1 = 84,0) + 11 + nalpe,.n,

= @1 Pr-10y + (@1 + QPR -1 + N2 = 8g,0)Dhymp41, (22)
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and, if g2 =1,
[az(1l = 8ir,) + n1 + nalps,,;
= @1Pk,1,; + Q2P i1 + naAl = Si)pr, 41,  (23)

forn+1=<j=<ks.

If we substitute (20) into (21), after reduction with the help of the
recurrence relations in the appendix, we find that
ky
2 Cm{pmlsn,(1 + pm, @1)S,(pm) — 8n,2(1 + pm, @1)2g,1(pm) Js(—pm, @2)
m=0

+ ﬂl[sn,(Pm. al)nq,(Pm) - snrl(Pm, al)ﬂqu(Pm)]sj{_l — Pm, G2)}
"pn!(Pm) = 0: (24)

for 0 < j < n, — 1. Also, from (23), it is found that
ky
Y CmPmSn(—Pmy @2)[5n,(1 + pm, @1)Rq, (0rm)

m=0
- Sn,—l(]- + Pmy al)ﬂql—l(pm)]‘#j(pm) = Oa (25)

for ny + 1 <j =< k». It may be shown that the boundary condition (22)
is redundant, as is to be expected. Thus the constants ¢, are deter-
mined by (24) and (25) only to within a multiplicative constant, which
is determined from the normalization condition (6).
From (20), with the help of (16), (19), (57), and (58), it is found that
ky
Y Pij = coai(0)[sn,(1, a2)¥4,(0) = 8n,-1(1, @2)¥,,-1(0)], (26)
J=0
for 0 < i < k;. But, from (12) and (66),

1

(n )fn .

— ) 80, ai), O=si=mn,

a

ai(0) = ) (27)
n

ky—i
a_) sn(0, @), m=i<kh.
1

Hence, from (26) and (27), with the help of (57), (58), and (65), the
normalization condition (6) implies that

co[Sn, (1, @1)82,(0) = su,1(1, @1)Qq,1(0)]
+[5n,(1, @2)¥,,(0) — sn,—1(1, @2)¥,,—1(0)] = 1. (28)

Once the constants ¢, have been determined, the steady-state prob-
abilities p;; may be calculated from (20). We remark that the number
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of constants to be determined is only %2 + 1, whereas the number of
probabilities p;; is (k: + 1)(kz + 1).

Il. SOME STEADY-STATE QUANTITIES

We proceed now to the calculation of various steady-state quantities
of interest. These quantities are depicted in the diagram of Fig. 1,
which indicates the mean flow rates. The loss probabilities L, and L.
are given by

ka B
Li= Y Dk Ly= Y pir, (29)
J=ny =0
and the probabilities that a demand from the primary, or secondary,
source is queued on arrival are

k=1 ko ky ky—1
=13 _Eopzj, €2 = (1 — 8g,0) _EO 2 pij (30)
i=n, j= =0 j=ny

The probability that a demand arriving from the primary source

)\|L1
n; SERVERS
Ay1-Ly—Qy-1y3) A 1=Ly=hg)
M
Ry =0
q; WAITING
M, SPACES
Al
n, SERVERS
?\ A2(1=Lg)+ Ay Iyp
2(1-L2-0Q5)
A
=2 Rz =A2Qp
a3 WAITING
;\202 SPACES
AaLy

Fig. 1—Mean flow rates for an overflow system with queuing; Poisson arrival rates
A1 and A, loss probabilities L, and L., queuing probabilities @ and @., and overflow
probability I...
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overflows (immediately) is
ns—1

Iy = E Pk, j- (31)
/=0

Since the mean service rate is p, the mean departure rate from the
primary queue to the primary servers is

&y ko
Ru=nyp ¥ ¥ pi (32)
i=n;+1 j=0

while the mean departure rate from the secondary queue to the
secondary servers is

B ks
Ra = nop(1 = 84,0) ¥ Y Dpij. (33)
im0 jmny+1

The average number of demands in the primary and secondary queues
are

ky ks A
Vi= 3 S (i-npy,  Ve=3 3 G-npy.  (34)
i=n, j=0 i=0 j=n,

Also, the average number of demands in service in the two groups are

ky kg ki ks
Xy=3 Y min(i, n)py, Xoe=3Y Y min(j, na)pi;.  (35)
=0 j=0 i=0 j=0

Now, according to Little’s theorem,® the average number of demands
in a queuing system is equal to the average rate of arrival of demands
to that system times the average time spent in that system. If we apply
this result to the primary and secondary queues, we find that the
average waiting times of the demands which are queued in the primary
or in the secondary are given by

V1 V2
W= Ny W, = 0 (g2=1), (36)
respectively, independently of the order of service within each queue.
Also, if we apply Little’s theorem to the primary and secondary groups
of servers, we obtain

)\1(1 -L, - I12) = MXh Az(l = Lz) + Adie = ﬂ-Xz- (37)

The steady-state quantities of interest may be expressed in terms of
the constants ¢, with the help of the representations in (20). From
(29) it is found, with the help of (12) and (16), that

kg
Li= Y cnlsn(pm @1)2%,(pm) = Sn,-1(om, @1)2g,-1(pm)]

m=0

i Sng(_Pm: 02)‘1'%(.0#;)- (38)
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We define
do = co[sn,(1, "12)‘1’4;2(0) — 8n,-1(1, 02)‘1’%-1(0)]
= [8n,(1, @1)2,(0) — $n,—1(1, @1)2,-1(0)]7", (39)

from (28). Then, from (30) it is found, with the help of (26), (27), and
(65), that

Q1 = dosi, (0, @)[2,(0) — 1]. (40)
Moreover, from (29) and (31), it follows that
L, + Iz = dos», (0, a1), (41)

and from (32) it follows that R,; = A1@), as is to be expected, since in
the steady state the mean departure rate from the queue is equal to
the mean arrival rate to it.

We define

vogpe-t Jl@— @+ DE+HET)A -8, £,
Bg8) =T & ’—[%q(”l)’ £=1. (42)

Then, from (34), with the help of (26), (27), and (39), it is found that
Vl = stnl(O; al)%](%l) . (43)
1

Also, from (35), with the help of (56), (58), (59), and (65), it follows
that

1

X, =doa: (g‘l‘) Sn,—l(l. a)) + Snl(O, al)[ﬂm(o) - 1]} (44)

It may be verified, with the help of (39), (57), and (65), that (41) and
(44) are consistent with (37). The explicitness of the expressions for
the quantities in (40), (41), (43), and (44) is due to the fact that these
quantities are not affected by the secondary. This, of course, is not the
case for the loss probability L,, which is given by (38).

Next, from (29), since ¢, (p) = 1, it is found, with the help of (20)
and (68), that

k2

L,= 20 Cmsm;(_Pm, az)[Sn,(l + pm, al)gql(pm)

- Snl—l(l + Pm, al)“q,—l(Pm)]- (45)
Also, from (35), with the help of (6) and (59), it follows that

ko

X2 = Nz — E CmSn2—1(2 = Pm, 32)¢n2(Pm)

m=0

'[snl(l + Pmy al)ﬂq,(.om) - Sn*l(l + pm, al)ﬂqu(Pm)]- (46)
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In view of (38), (41), (45), and (46), the second relationship in (37)
provides a useful numerical check.

We now define
Ry

ri=Y pi, ns<j<k. (47)
=0

If we sum on i in (5), we obtain
[az(1 = 8jn,) + nalrj = azrji-1 + na(l = djn,)rin, (48)
for n. + 1 =Jj < k». It follows that
nolj = Qarj—, ne+l=sj=<k.. (49)

Hence, since L; = ry,, from (29) and (47),

rj = (E) Lg, No Sj = kZ- (50)

Then, from (30) and (33), with the help of (63), we obtain
Q: = [¥,,(0) — 1]Le, (51)

and Rs» = A2@-, as is to be expected. Also, from (34) and (42), it follows
that

1@=m(§)h. (52)

This completes the calculation of expressions for the steady-state
quantities of interest.
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APPENDIX
We define s;(A, @) by the recurrence relation

(@+ i+ Nsi(\, a) = a(l = 8o)siaa(A, @) + (i + 1)sina(A, a);
s0(A, @) =1, (63)

fori=0,1, - - -. Thus s.(), @) is a polynomial of degree n in both A and
a, and it may be related to a Poisson-Charlier polynomial.”® However,
we give here the properties of s.(), @) which we will need. An explicit
formula is' _ .
] A . =r
s, a) = 3

Sord(i=r)

(54)
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where
A =1, A)yr=AA+1) --- A+r-—1), r=1,2 -.-. (55)
It was also shown' that
(i + )sie.(A, @) = asi(\, @) + Asi(A + 1, a) (56)
and
siA, @) =sA+ 1, a) — (1 —8p)sia(A + 1, a). (57)
From (57) it follows that

Y silA, @) = s.(A + 1, a), (58)
i=0
and, from (56) and (58), we deduce that

Y (n—i)siA, @) = (1 — dno)sar(A + 2, a). (59)
i=0
We now turn our attention to the Chebyshev polynomials of the
second kind,” Ui(x). They may be defined by the recurrence relation
2xUi(x) = Upalx) + Ura(x); U-i(x) =0, Uslx)=1, (60)
for/=0,1, ---. From (15) and (60) it follows that

(az + nay — p)Wilp) = a2¥i1(p) + n2¥ia(p),
¥_1(p) =0, Yo(p) = 1. (61)

From (16) and (61) we deduce that
[@2(1 = 8x,) + n2 — plei(p) = asdi—1(p) + na(l — Gjn,)js1(p), (62)
for j < k. Also, from (61), it may be shown by induction that

l r
¥(0) = 3 (@) (63)

=0 \ a2
Next, from (11) and (60) it follows that
(a1 + ny + p)ulp) = arfi(p) + nii-1(p),

Q) =0, Qolp)=1. (64)
In particular, it is found by induction that
1 r
(0) = ¥ (E) . (65)
r=0 a,

Since s;(0, @) = a'/i!, from (54), it follows that
sn](oy al)gl‘(o) - Snl—l(o, al)ﬂl—l(o) = SHJ(O, a]), l= 0, 1, svew, (66)
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Next, from (9) and (10), we deduce that

Ry
p Eo ai(p) = (n1 + plax,(p) — arar,1(p). (67)
Then, with the help of (12), (56), (57), and (64), it may be shown that
ky
'Eo ai(p) = sn (1 + p, @1)Qq,(p) — Sn-1(1 + p, @1)g,1(p),  (68)

for p # 0. Moreover, this result holds for p = 0 also, from continuity.

REFERENCES

. J. A. Morrison, “Analysis of Some Overflow Problems with Queuing,” B.S.T.J., 59,

No. 8 (October 1980), pp. 1427-1462.

. J. A. Morrison, “Some Traffic Overflow Problems with a Large Secondary Queue,”

B.S.T.J., 59, No. 8 (October 1980), pp. 1463-1482. R

. G. M. Anderson, “Facilities Design for Automatic Route Selection with Queuing,”
unpublished work.

J. H. Rath, “An Approximation for a Queueing System with Two Queues and
Overflows,” unpublished work.

. L. Kaufman, J. B. Seery, and J. A. Morrison, “Numerical Results for Some Overflow

Problems with Queueing,” unpublished work.

. L. Kleinrock, Queueing Systems, Volume I: Theory, New York: Wiley, 1975.

. A.Erdélyi et al., Higher Transcendental Functions, Volume II, New York: McGraw-

Hill, 1953, p. 226.

. J. Riordan, Stochastic Service Systems, New York: Wiley, 1962.

. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the

Spegéal Functions of Mathematical Physics, New York: Springer-Verlag, 1966,

p. 2

[I=e -} -1 o e (4] [ =N

12 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1981



