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In this paper we derive explicit expressions for the transient state
probabilities of the Kendall birth-death process, with and without
immigration, for any initial condition. We then propose this process
as a model for special services point-to-point demand, in which the
births represent circuit “connects” and the deaths represent “discon-
nects.” This choice of model is based on intuitive arguments and on
the fact that the model can represent the growth and turnover
characteristics of special services demand. Thus, the model provides
a means by which special services demand, with its inherent uncer-
tainty, may be approximately represented in various facility network
studies, to obtain, at the very least, useful qualitative results. In
particular, we evaluate the probability of a held order (i.e., the
probability that a service request is held for lack of spare facilities)
with Blocked Customers Held (BCH) as the queue discipline. We also
apply the model to capacity expansion problems, introduce the con-
cept of margin, the extra capacity needed to meet the demand within
a given held-order probability, and examine its sensitivity with re-
spect to growth, turnover or churn), and system size. We find that
aggregating small demands into a single larger demand produces
significant reduction of the margin, because of improved statistical
Dproperties.

Il. INTRODUCTION

In this article, the transient behavior of the Kendall birth-death
process* with immigration is examined, and some applications of the

* The Kendall birth-death process is one in which the transition rates are proportional
to the state.
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process to capacity expansion problems are discussed. The choice of
such a process was motivated by the search for a model for special
services point-to-point circuit demand, a model which would be used
as a tool for determining facility network circuit routing strategies.
Special services demand generally consists of demand for full-time
dedicated circuits (e.g., foreign exchange lines, WATs lines, data lines),
as opposed to the message-traffic offered load which consists of de-
mand for the use of common facilities for a relatively short period of
time. Thus, the system examined is characterized by the stochastic
process #¢t) with realizations (states) n = 0, 1, - - -, , where n might
refer to the number of working circuits or some other facility, rather
than to the number of busy trunks, as in the message-traffic case. By
definition, the birth-death process' allows transitions from some state
n to n + 1 via a birth (circuit connect), or to n — 1 via a death (circuit
disconnnect). The transition rates are A, for the births and p, for the
deaths, both of which are chosen proportional to n for the following
reasons.

It is clear, for special services, that the rate of disconnects, pn, is
state dependent. There are, in fact, indications® that u. is a monoton-
ically increasing function of n. The simplest such function is ny, which
implies that the probability of disconnects is proportional to the size
of the system. With this choice for the death rate, a number of possible
choices exist for the birth rate. Choosing it to be a constant causes the
mean number of circuits to saturate in time, while choosing it to be
proportional to n causes the mean to grow or decline exponentially.
Since special services are presently characterized by significant net
growth, it would seem that a plausible model for special services
demand is a birth and death process in which both the birth and death
rates are proportional to the state.

One consequence, however, of assuming A, = nA is that if the process
reaches the state n = 0 at any time, by a succession of disconnects, it
will stay there forever, since the birth rate is zero. To eliminate this
characteristic, the concept of immigration may be introduced by taking
A» = nA + B, where g is the immigration factor. The cases with and
without immigration will be discussed below.

It must be emphasized that it is not the intent of this paper to
validate the model based on an examination of actual special services
data. Such statistical data analysis is important for a final assessment
of the accuracy of the model and is currently being undertaken. For
the purposes of this paper, it shall be assumed that a study of the
proposed model is justified, based on the intuitive arguments given
above and on the fact that the model captures the growth and turnover
characteristics of special services (see Section 5.1). The model provides
a means by which special services demand, with its inherent uncer-
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tainty, may be approximately represented in various special services
facility network studies, to obtain, at the very least, useful qualitative
results.

Since the situation of interest is that of net growth, it is clear that
statistical equilibrium does not exist, and that it is the problem of the
transient solutions of the Kolmogorov birth-death equations that is of
prime importance. Much literature exists on the subject of transient
solutions for birth-and-death processes*'' and the case in which the
transition rates are state independent is completely solved.”® The case
in which A, and p. are proportional to the population is solved when
immigration is not included: The results for a specific initial condition,
namely starting from the state n = 1, are derived in Refs. 4 and 10 and
the expressions for the general initial condition are quoted in Ref. 10.
For the nonzero immigration case, the form of the generating function
for the state probabilities is known,'® but it seems that explicit expres-
sions for the state probabilities have not previously appeared in the
literature. In this paper, these expressions are derived for any non-
negative value of B.

In special services, if an order for service is delayed because of lack
of spare facilities, the order is said to be held. Thus, in order to study
capacity expansion problems, the probability of a held order is intro-
duced, as well as the concept of margin, the extra capacity needed to
meet the demand within a given held-order probability. This held-
order probability is similar but not identical to the transient time
congestion of the process (see Appendix B). The queue discipline
followed here is Blocked Customers Held (BcH), in which an arriving
customer spends a total time T (random variable) in the system, after
which he departs regardless of whether he is waiting to be served (i.e.,
his service order has been delayed) or is actually being served (i.e., he
has been assigned a circuit).

A fundamental difference between this analysis and teletraffic must
be emphasized. This difference arises because of the respective time
scales in the two cases. Whereas the mean lifetime of a call in traffic
(T = 1/p) is of the order of a few minutes, the mean lifetime of a circuit
in the process described here is of the order of a few years. It is this
fact, coupled with the relatively fast growth of special services demand,
that makes it impossible to even approximately treat the process in a
statistical equilibrium mode (no growth) with a slowly varying enve-
lope representing the growth. Thus, the transient aspect of the problem
is to be contrasted to the more conventional assumption, in teletraffic
theory, that statistical equilibrium prevails (it must be mentioned,
however, that some work has been done concerning nonstationary
telephone traffic with time-varying Poisson-offered load, e.g., Refs. 12
to 14). It must be further noted that, although the model is being
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proposed for special services demand, nevertheless, it may be applied,
with an appropriate choice of parameters A, 8, and p, to any process
that behaves in a similar manner.

The held-order probability having been defined and the concept of
margin introduced, questions concerning capacity expansion problems
are addressed. Capacity expansion is a problem that has been studied
by many. In this paper, optimal capacity-expansion policies are not
sought; only very specialized aspects of the problem are considered.
For instance, the effects of aggregating demands into a larger single
demand are examined, and the minimum capacity increment which
would meet the demand within a specified interval of time and within
a given held-order probability is determined. In addition, the relation-
ship between spare capacity and lead time is discussed (see summary
of results in Section II). Some relevant work has been done by
Freidenfelds'>'® in which the author computes first-passage times to
various levels of demand using a general birth-death process, and
discusses briefly fill-at-relief problems. Work by Luss and Whitt!’
studies the impact of both deterministic and stochastic models on
utilization. The authors use Brownian motion to model the stochastic
demand and follow a scheme similar to ours for determining the margin
needed at a future time.

The organization of this paper is as follows. Section II sets up the
problem and gives a summary of results. The explicit solutions for the
general case are derived in Section III, and their properties are exam-
ined in Section IV. In Section V, growth, turnover, and churn are
defined, the concept of margin is introduced, and some of its applica-
tions to capacity expansion problems are discussed. Finally, Section
VI contains the conclusions.

Il. BACKGROUND AND SUMMARY OF RESULTS
2.1 General birth-death equations

Consider a system described by a set of statesn =0, 1, .- -, o, and
a birth and death process defined by a set of transition rates {An, ga}.
The quantity A.8(p.8) + o(8)* is the probability of a birth (death) in
the small interval [¢, ¢ + 8], given that the system is in state n at time
t.! The probability of more than one birth or death in [, ¢ + 8] is o().
The probabilities P,(t) of finding the system in state n at time ¢ must
satisfy the well-known infinite set of difference-differential equations
(p. 454 of Ref. 1)

d
"&E Pn(t) == (An + ﬂ-n)Pn(t) + Arz—l n—1(t) + lHa‘l+14PJ'z+1(t)
[for n=0, P()=0, po=0] (1)

*o(-): R' - R'is such that]ﬂ%mﬂ_

60 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1981



If the initial number of circuits is no, the initial condition may be

written
P (0)= 8nng, (2)

where 8,5, is the Kronecker delta.

The particular birth-death processes considered in this paper are
the cases in which the transition rates are proportional to the popu-
lation, n, with or without immigration.>*'° The corresponding transi-
tion rates, defined for all nonnegative integers, n, are

An = nA + B, Un = N, (3)

where A, p, and 8 are nonnegative constants. In the following sections,
results for the case with no immigration may be easily obtained by
setting 8 = 0.

2.2 Mean and variance

It has been shown*'° that the mean, m(t), and the variance, v(), of
processes such as those described by egs. (1) and (3) may be obtained
without solving explicitly for the P.(¢). The resulting expressions,
satisfying initial condition (2), may be easily found to be

() Case A #

= ﬁ A—p)t _ B
m(t) (no A M)e Py , (4)

o(t) = ne Atp ORI — g~ Ow]
A=p

B

+ L [A** ' — (A + p)e? ™ + pl. (5)

(i) Case A =
m(t) = Bt + no, (6)
v(t) = )\Bt2 + (2Ano + B)L. (7)

2.3 Solutions for P,(t)
To simplify the notation, define the following quantities:

A=A-p,
A=At =m<—3‘5f‘:T’
At _
B =B() =A‘;,—_1F,
C = =E?‘—Tr (®)
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and

9

(r)=r(r-—1) e r=m+1)

m m!

This definition of the binomial coefficient is valid for any real number
r and any positive integer m (see p. 50 of Ref. 1). For m = 0, one defines
(5) = 1, and for negative integers m, one defines () = 0. The symbol
() is not used if m is not an integer. Denoting » = /A, where v is any
nonnegative real number, the solutions derived in this paper are

(f) Case A # p

min( } .

fark i n—i
PA® =1 (A—1)if no+v>0, (10)
Sno, if g+ v=0. (11)

(if) Case A = p

1 \[ A \"™ "“"“2’:‘“’“ no
1+ At/ \1+ At fr i

Pn(t)=- .(no+n+v—1,—1)(1 1),if no+p>0' (12)

n—i NE
6o, if no+rv=0. (13)

Equations (10) and (11) with no immigration (v = 0) are identical to
the results quoted by Bailey [Eqgs. (8.47) of Ref. 10].

2.4 Application to capacity expansion

In Section V, margin is defined as the capacity which must be built
in excess of the mean to meet certain service requirements, and the
percent margin is defined as the ratio of the margin to the mean in
percent. The following is a summary of the main results:

(i) By aggregating demands, less percent margin is needed than in
the nonaggregated case. This effect is especially significant for small
demands.

(ii) Given a minimum desired time, T, between successive expan-
sions, a procedure is established for determining the minimum capacity
increment which would meet the given service requirements.

(iti) Given a lead time, 7, between the moment facilities are ordered
and the time they are available for use, a procedure is established for
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determining the threshold value of the remaining spare corresponding
to the time at which new facilities should be ordered.

(iv) By introducing immigration, the absorbing zero state is elimi-
nated and the percent margin needed to meet the service requirements
is reduced for moderately large to large times (of the order of two years
or more for the particular values examined).

lil. DERIVATION OF THE STATE PROBABILITIES

The approach followed to solve the set of equations in (1) is the
generating function technique.”'® In Ref. 10, a differential equation for
the generating function, F'(s, t), defined below, is established and its
solution is derived. The results are quoted in Section 3.1. Three well-
known identities are given in Section 3.2 and are then used in Section
3.3 to derive explicit expressions for the state probabilities. The pro-
cedure followed in Section 3.3 is to identify F'(s, ) as the generating
function for a convolution of two functions.

3.1 The generating function

The generating function, F(s, t), is related to the state probabilities
through the following expression:

F(s t) = § s"P,(t), 0=s=<1 (14)
n=0

The differential equation for F(s, t), given in eq. (8.63) of Ref. 10 with
e’ =5, is
aF (s, t) oF (s, t)

+ H{(s)

at 3s B(S - l)F(35 t)) (15)

where
H(s) = —(s — 1)(As — p).

The solutions to this equation are

A \[b+as\™ A o 16
d+cs) \d+cs/ '’ # (16)

1 \(b+as\™ N an
d+és)\d+és)’ —

F(s, t) =

* An alternative approach for obtaining this result is to substitute A — A for p in the
A # u expression and to take the limit A — 0.
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where
O0=s=1,

a=A-—pe,

b=—u(l—e),

c= )\(1 — e,

d = Ae®* — u, (18)
a=1-—AXt,

b=At,

é ==\t

d=1+A\t (19)

The above solutions may be verified by direct substitution. Equation
(16) agrees with eq. (8.71) of Ref. 10 and eq. (17) with » = 0 agrees with
eq. (8.52) of Ref. 10.
3.2 Useful identities

In Section 3.3, use will be made of the three following well-known
identities.

3.2.1 Binomial identity

For any a and £ and for any nonnegative integer n, the following
identity holds (p. 51, Ref. 1):

(a+B)" = Z ( ) B (20)

m=0

3.2.2 Negative binomial identity

For any a and 8 such that | 8/a| < 1 and for any real number r, the
following identity holds (see pp. 51 and 269 of Ref. 1):

@=B"= % (- 1)"'( )B”‘ o,

m=0

If r is strictly positive, identity (12.4) on p. 63 of Ref. 1 may be used to
write
m=0 m

(a—B) "= 2 (J"+ m— 1)Bm‘x—(m+r)' (21)

3.2.3 Generating function for a convolution
Let F1(s) and F2(s) be the generating functions for the sequences
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{PP}n=01,- -+ and {PP} 0,1, - -, Tespectively,

Fi(s)= ¥ s"P{, Fai(s)= Y s"P2. (22)
n=0 n=0
The function F(s) = Fy(s)F:(s) is then the generating function for
{Pn}n=o0,1,- - -, the convolution of P{"” and P;?, and may be written as
F(s)= Y §"Pa, (23)
n=0

where

P.= ¥ PPPR, = ¥ PPPY,
i=0 i=0

The proof of this theorem is elementary (e.g., see Chapter 11 of
Ref. 1).

Note: This theorem applies to arbitrary sequences { P\"} and {P?}
(not necessarily probability distributions) as long as their respective
generating functions exist. Thus, the series in egs. (22) must converge.
For the purpose of this theorem, however, it is assumed that F(s) and
Fs(s) do exist.

3.3 Derivation of explicit expressions
3.3.1 Case A # p

The generating function in eq. (16) may be rewritten as follows:
F(s, t) = Fi(s, t)Fa(s, 1), (24)
where
Fi(s, t) = A"(d + cs)” """,

Fa(s, t) = (b + as)™.

(@) no+v>0

Applying identity (20), it may be seen that F(s, t) is the generating
function for a binomial type function,

Fis,t)= % (",,j)b"ﬂ'"(as)m

m=0

i s"PR(t), (25)
m=0
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where

(::)b"“"‘a"’, if m=no,

0 if m > no.

In a similar manner, it may be seen from identity (21) that F(s, t) is
the generating function for a negative binomial type function,

Fi(s, t) =A" Y ( not+v+m-— l)(_cs)md—tm+nﬂ+a)

m=0 m
= E_D s"Pn'(2), (27)

where
PY() = A"("’“ reame 1)(—c)'"d-“"+"«+“. (28)

It may be shown that | cs/d| < 1 for all values of t = 0,0 =s =1, and
A, u = 0. Thus, identity (21) applies in all the relevant cases.
It now follows from eq. (23) that F(s, t) is the generating function of

the convolution,

S PP () PLA(¢)

i=0

min {ng,n) o
£ [(7p
i=0 i

. [A,(nﬂ +v+n _ [— 1)(_c)n—id—(nn+u+n~il:| ., (29)

P (t)

n-—1

where the upper limit on the sum arises from the condition i < nq for
PP (t) established by eq. (26).
Rearranging, one obtains

A ¥ min {(ng,n)
P,(t) = (E) 2

i=0

() )@@ @

From the definitions of a, b, ¢, and d in egs. (18) and from egs. (8), the
above expression for P,(t) reduces immediately to eq. (10).

b)) no+v=20
For this case, F(s, t) = 1. From the definition in eq. (14), it is then
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apparent that all P,(¢) for n # 0 must be zero and that Py(¢) = 1,
which is the result shown in eq. (11).

3.3.2 Case A =

The solutions may be obtained by using the same procedure followed
in Section 3.3.1. The only difference is that the starting equation
should be eq. (17) rather than (16). Since eq. (17) can be simply
obtained from eq. (16) by letting A > 1, a > d, b—b, ¢ — ¢, and d
— d, it follows that the final results for the case A = i can be obtained
from the results of the case A # pu [i.e., eq. (30)] by making the above
substitutions. Alternatively, egs. (12) and (13) may be obtained by
taking the limits of egs. (10) and (11) as p — A. The procedure is the
following: Consider A to be a constant, then replace u by A — A wherever
it appears, and finally take the limits A — 0 using I'Hospital’s rule
whenever necessary. The results of this limiting procedure are found

to be
1 2

A
lim B(t) = ‘ , (31)
p—A 1+ At
lim C(¢) = 1 .
a—A 1+ At

IV. PROPERTIES

In this section, the zero-state probability and the cumulative prob-
ability distributions, for several choices of the parameters A, y, and 8,
are examined as a function of time. In addition, some cases in which
the state probabilities are especially simple are indicated.

4.1 Probability of ultimate extinction

The birth-death process without immigration is characterized by an
absorbing state at n = 0. If the system reaches that state at some time
to, it will stay there for all ¢ > ¢, since the birth rate is zero. The
probability of hitting that state at time ¢ is given by Py(¢). In the limit
t — oo, this probability tends to

[ e

rIim Py(t) = (32)
1, A<
Thus, for any p # 0, there is a nonzerc probability of ultimate extinction

APPLICATIONS OF BIRTH-DEATH PROCESS 67



1.00

0.80

0.80

0.70

0.60

Polt) 0.50

0.40

03

0.30 0a

0.20

0.10

0 + ) -
0 5 10 15 20 25 30
TIME IN YEARS

35

Fig. 1—Zero-state probability.

of the process, while for u = A, ultimate extinction is a certainty. This
feature may be removed, if desired, by introducing immigration. In
this case, the limiting value of Py(¢) tends to a nonzero value for A <
p and to zero for A = p,

lim Po(t) = (33)

t— 00

The effect of immigration on P,(t) is shown graphically in Fig. 1,
where Py(t) is plotted for various values of A, p, and », and for no = 1.
The case no = 1 was chosen for clarity of the figure, since the effect of
immigration is larger for smaller values of n,.
4.2 Cumulative probability distribution
The cumulative probability distribution is defined as
F.(t) = ¥ Pi(t).
i=0

In order that lim,_,.F.(f) = 1 for all ¢, it is necessary and sufficient
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that Y»-0 A.' diverges, which is the case for the process discussed in
this paper (see Theorem on p. 452 of Ref. 1). The function, F,(t), for
various choices of A, p, and 3, and for ny = 5 is shown in Figs. 2 through
5. The lowest curve plotted in each figure is Py(¢), and is consequently
a measure of the extinction probability.

The values of A (0.6) and u (0.3) chosen in Figs. 2 and 3 correspond
to net positive growth (see discussion of growth in Section 5.1). As
may be verified from eqs. (32) and (33), the lim,_... Po(¢) is nonzero in
Fig. 2 and zero in Fig. 3. In addition, for each n > 0, the lim,_.. P.(¢)
= 0, although the lim, ... ¥ 7-1 P.(¢) is nonzero. Thus, for any n > 0,
the lim,_.. F,(¢) is nonzero for 8 = 0 and zero for 8 # 0, reflecting the
fact that the extinction probability is nonzero in the first case and zero
in the second. (The n = 0 curve in Fig. 3 is essentially flat and is hard
to distinguish on the graph.)

The case in which the death rate is larger than the birth rate is
shown in Figs. 4 and 5. This situation corresponds to negative growth.
As may be verified from eqgs. (32) and (33), the lim, ... Po(¢) is 1.0 in
Fig. 4 and 0.5 in Fig. 5. It may be shown that, for the 8 = 0 case,
lim,_ P, (¢) = 0 for all n > 0, while for the 8 # 0 case, lim, ... P.(t) #
0 for all n = 0. In both cases, however, the lim,_..F.(¢) is nonzero,
reflecting the fact that the extinction probability is nonzero.

Finally, the case A = pu, 8 = 0, is similar to Fig. 4 (with extinction
probability equal to unity), and the case A = p, 8 # 0, is similar to Fig.
3 (with extinction probability zero). These cases are not shown.

0.80

0.60

Frlt)

0.40

0.20

TIME IN YEARS

Fig. 2—Cumulative distribution without immigration (A > p).
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Fig. 3—Cumulative distribution with immigration (A > p).

For certain initial conditions, the general solutions reduce to simple
analytical forms. For no = 0, the interesting process is the one including
immigration (» = 1). The state probabilities of eq. (10) may then be

1.20

1.00

0.80

Fnlt) 0.60

0.40

0.20

TIME IN YEARS

Fig. 4—Cumulative distribution without immigration (A < p).
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Fig. 5—Cumulative distribution with immigration (A < p).
written
n+v—1
P.(t) = C"(?\B)"( 1 ) (34)

For no = 1, the process without immigration becomes interesting.
Equation (10) with » = 0 reduces to the well-known form**°

Pﬂ(t) = F’Br
P.(t) = (uB)(AB)"A = (1 —AB)(1 - pB)(AB)""'  (n#0). (35)

V. APPLICATIONS TO CAPACITY EXPANSION

In this section, the A, p, and B parameters of the model are related
to more physically intuitive quantities such as growth and turnover
(or churn). The concept of margin, the extra capacity needed to meet
the demand within a given held-order probability, is introduced. The
effects of randomness and immigration on the margin are then exam-
ined, and finally, several capacity expansion problems are addressed.

5.1 Growth, churn, and turnover

The model described in the preceding sections is completely speci-
fied once the parameters A, g, and B are known. In this section,
quantities that are more physically intuitive than the birth and death
rates, namely growth and turnover (or churn), are introduced and
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related to A, p, and B. First define the following quantities:
b(t) = EB(t) = mean number of births in [0, £], (36)
d(t) = ED(t) = mean number of deaths in [0, ¢]. (37)
Then,
m(t) — no = b(t) — d(t)
= mean net population increase in [0, ¢], (38)
where E refers to the expected value and where m(¢) is the mean value
of the population, as defined in eqs. (4) and (6). Differential equations
for b(t) and d(t) are derived in Appendix A and exact analytical
solutions for these equations are found.
The annual rate of growth, g, is defined as the change in the mean

number of circuits in one year divided by its value at the beginning of

the year. Thus,
m(t+ 1) — m(¢)

g(t) = i) . (39)

From egs. (4) and (6) it may be seen that
’ [n0 + B/ (A — p)]e™M4(e* — 1)

for A#p,

[no + B/(A — p)]e* " — B/(X — p)
g(t) = (40)

for A=p.

no + Bt

By observation, it may be noted that if 8 = 0, the growth is time
independent, whereas if 8§ > 0, the growth depends on time. A time
average value of the growth may be defined to be

t) di 41
T_m T J’ () dt. (41)
It may be easily found that
0, for A<p, B#0,
g=10, for A=y, (42)
et r—1 for all other cases.

When A = p, it must be borne in mind that £ = 0 does not necessarily
mean no growth. In fact, for the 8 > 0 case there is linear growth at
the rate B [recall eq. (6)]. Thus, it is the immigration factor that
represents the growth in this case.

In summary, throughout this paper, the last expression in (42) will
be used as the definition of growth with the provision that it is the
variable 8 that actually describes the growth in the A = pu case. The
case A < p and 8 > 0 will be disregarded.
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Churn may be defined in various ways. Its purpose is to quantify the
“activity” of the process, i.e., to compare the number of “connects”
with the number of “disconnects.” For instance, churn may be defined
as the ratio of the mean number of total connects in one year to the
mean number of net connects in the same period. This ratio has also
been called in-to-net, or in-to-gain ratio.'” Thus,

_ bt+1)—b(t) N
" mt+ 1) —-m(t) NET

c(t)

(43)

This quantity has the easy interpretation of being the expected number
of connects in one year for a net increase of one circuit. For instance,
a churn of four (which seems to be a typical number'®) means that
four connects are expected for every net increase of one circuit. Of
course, it follows that three disconnects are also expected for consist-
ency. The problem with this definition of churn is that for low-growth
cases (i.e., when the net increase is almost zero) the ratio of total
connects to net may become a very large number. Furthermore, in the
case of negative growth, this ratio becomes negative. Thus, the range
of values which the churn may take is very large, which makes it a
difficult number to work with in data analysis.

For this reason, an alternative definition of churn is introduced and
is called turnover. Turnover is the expected number of connects
(disconnects) needed to replace the number of disconnects (connects)
that occurred in one year, divided by the expected number of circuits
in place at the beginning of the year. The words outside the parentheses
refer to the positive-growth case in which there are more expected
connects than disconnects, and the words in the parentheses refer to
the negative-growth case when the reverse is true. The turnover may
be written as

1IN + OoUT — |IN — OUT|

a(t) = 2 MEAN (44)
where
IN=b(t+ 1) — b(t),
out = d(t + 1) — d(b), (46)

MEAN = m(?).

Thus, a turnover of 0.3 with positive growth indicates that over the
next year the expected number of disconnects will be equal to 30
percent of the mean at the beginning of the year. The expected number
of connects depends on the growth and will be greater than or equal to
the disconnects. (Note that it is not necessarily the same circuits that
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are connected and disconnected.) From the expressions in Appendix
A, eq. (44) may be written as

} (newe® — B/A) '[nexe(e* — 1) (A + p)/A
— 2Bu/A — nge®|(e® = D[] (A #p),

a(t) = (47)
1208t + M8 + 2\no A=)

2 n0+ﬁt ’

where

Neit = No + N — P .

Again, by observation, it may be noted that if 8 = 0, the turnover is
time independent, whereas if 8 > 0, it is time dependent. As in the
case of the growth, a time-average value of the turnover may be
defined to be

1 (T
a= lim — a(t) dt. (48)
T—w T

It may be easily found that

Plet=1 if A>p

A
A

a= K(e“—l) if A<p, B8=0, (49)
m for all other cases.

Throughout this paper, the above expressions for the turnover will be
used. As mentioned before, the case A < p and 8 > 0 will be disregarded.

From preliminary data analysis, it has been found that typical values
of growth and turnover for special services fall into the range —0.15 to
+0.15 for the growth and 0 to 1 for the turnover. Nominal values of &
= (.1 and @ = 0.3 were chosen in this paper.

To do a study using stochastic special services demand, numerical
values of the parameters of the modeil are needed. Accurate values, if
such values exist, may only be found by careful data analysis of
historical demands. Approximate values, however, may be found as
follows. First equate the mean [egs. (4) or (6)] to the special services
forecast to obtain values for A and 8. Then equate the variance [eqgs.
(5) or (7)] to some measure of the forecast uncertainty to determine
A and p. For some cases, given below, one may conveniently use egs.
(42) and (49) to write the mean as a function of growth alone, and the
variance as a function of both growth and turnover. The results are as
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follows.
(£) Exponential growth with no immigration (A # u, 8 = 0)

m(t) = no(1 + g)', (50)

v(t) = no (2570 + 1) 1+270+8"'-1]

where the positive (negative) sign refers to A > p (A < p),
(ii) Linear growth (A = p, 8 = 0)

m(t) = Bt + no, (51)
v(t) = aBt* + (2ano + B)t.
5.2 Margin and minimum capacity increments

Define the quantity A(¢) as the probability of a held order, i.e., the
probability that at least one service order is delayed due to lack of
spare facilities. Then

h(t) = E P.t)=1-— Fd(t):
n=d+1
where d = d(t) is the total number of servers (facilities) at time £. The
quantity A(t) is similar but not identical to the transient time conges-
tion function (see Appendix B). Computationally, d(f) may be deter-
mined from the state probabilities by requiring A(¢) to be less than or
equal to some predetermined number, h. Thus

d(t) =min{d=0,1, ---| ¥ Pa(t) <h)}. (562)
n=d+1

Of course, the actual sum involved in the computation is not infinite,
since the condition in eq. (52) is equivalent to Ya-o P.(f) =1 — h. The
level d(¢) can be viewed as the sum of the mean number of circuits
and a quantity which may be called margin. Thus, given any time ¢ >
0, the margin is the capacity which must be built at £, = 0 in excess of
the mean m(t), in order to meet the demand, within the maximum
held-order probability, h.

A significant quantity is the ratio of the margin to the mean in
percent which will hereafter be referred to as the percent margin.
Figure 6 shows a plot of this ratio as a function of time for various
values of growth and no immigration. Turnover has been taken to be
0.3, the initial number of circuits 5, and the maximum probability of a
held order 0.05. As may be seen, the percent margin increases with
time, and generally less percent margin is needed for larger growth
rates. The sensitivity of the percent margin with respect to turnover,
for a growth of 0.1, is shown in Fig. 7. It may be seen that the larger
the turnover, i.e., the larger the “activity” in the network, the more
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Fig. 6—Sensitivity of percent margin to growth (no immigration).

margin one has to build to provide the same maximum held-order
probability.

The concept of margin has several applications, one of which is the
determination of an appropriate capacity increment at each expansion.
Given a minimum desired time, T, between expansions, it would be
useful to determine the minimum capacity increment, ¢, which, if
installed at time ¢, will exhaust in [¢, ¢ + T'] with a probability that is
no larger than h, or equivalently, the increment which will last the
interval T with a probability greater than or equal to 1 — h. Thus, the
condition on ¢ may be written as

Prob{ A (t+ ¢) =no+c| A (t) =no, YEEO, T} =1-h. (53)

Since the A and p coefficients are time independent, the process is time
homogeneous. Consequently, changing the origin of time does not
affect the problem. Choosing it to be at ¢ is equivalent to setting £ = 0
in the above expression, and determination of ¢ reduces to finding

min{c=0,1,--- n"an(g)zl-h, vge[o,T]}. (54)
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Tables may be set up permitting direct reading of the values of ¢
corresponding to the growth, turnover, initial state parameters, and to
the time interval 7. Some typical results are plotted in Fig. 8.

For completeness, it must be mentioned that in problems of the type
described above, questions about service-order queue disciplines must
be entertained. A careful consideration of this aspect of the problem is
beyond the scope of the present analysis, and the queue discipline
implicitly followed has been Blocked Customers Held (BCH). See
Appendix B.

5.3 Effect of randomness: Aggregation benefits

An inspection of Fig. 6 shows that the percent margin needed is
large, for the particular case examined. Since the initial state consid-
ered is rather small (no = 5), an interesting question is to find out
whether the percent margin can be reduced by combining demand to
form larger quantities, in the hope that the statistics of the aggregated

300
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ng =5 e

v=20 /
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S
—

PERCENT MARGIN

TIME

Fig. 7—Sensitivity of percent margin to turnover (no immigration).
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process will be better behaved, i.e., less susceptible to fluctuations. Our
studies have shown that benefits are indeed obtained by aggregation.
Figure 9 illustrates the results. The time evolution of the percent
margin is plotted as the initial state of the system is varied, for fixed
values of growth, turnover, held-order probability, and for no immigra-
tion. Two important observations may be made. The first one is the
fact that the percent margin decreases as the initial state of the system
increases. An implication of this behavior, for example, is the following:
Suppose demand between two points is being satisfied by two inde-
pendent routes (with initial number of circuits n{"’ and n{”, respec-
tively). Benefits would be obtained by combining the two demands on
one route (with initial number of circuits n{" + nf”) because the
margin one would have to build in this case is less than in the
nonaggregated case, the held-order probability being the same. The
second observation is that the change in the percent margin with
respect to n is larger for small values of no. The implication is that the
benefits will be especially significant when aggregating small demands.

It must be mentioned that the conclusions about aggregation
benefits in the example given above were based on an examination of
Fig. 9. The implicit assumption was that the combined process would
obey the same birth and death equations as each single process, and
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Fig. 8—Minimum capacity increments.
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that it would be described by the same pair of transition rates, A and
1. This assumption is only true if all the individual processes are of the
same type, i.e., if they all have identical transition rates. It turns out,
however, that the method for determining margin described in the
previous sections may be extended with little additional effort to the
general case in which there are M simultaneous processes characterized
by a set of transition rates {\’, u'} fori =1, ..., M. Since the processes
are independent, the joint probability distribution is the product of
the individual distributions,

Pringoongg(8) = PR(OPI(E) --- PO(2). (55)

The probability of being in some level 7, regardless of the composition
of that level, may then be written

Pat) =33 - T PROPE@) -+ P),

n; ng (56)
n+n:+ - +npy=n.
The sums are over all values of n;, n2, ---, ny such that n, + n, +

.-+ + ny = A. The primes over the summations are an indication of
this restriction. The margin for the combined process may then be
determined from the mean i (t), and the quantity d(¢), analogous to
that defined in Section 5.2. The mean for the combined process is
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simply the sum of the individual means,
m(t) = mi(t) + ma(f) + + - - + mu(t), (67

and d(¢f) may be obtained from an expression similar to eq. (52),
namely,

J(t)=min{d=0, 1, ---

i Pi:t) < h}. (58)
A=d+1

5.4 Effect of immigration

Immigration affects the problem in several ways. First, it eliminates
the absorbing state at n = 0, and consequently the probability of
extinction, for all cases except the A < p, 8 # 0 case. Furthermore, the
lim; . Pn(t) = 0 (n > 0), for all cases except the case mentioned above,
for which the limit is nonzero. Finally, a nonzero value of 8 gives the
model flexibility to represent linear growth (for A = p) as well as
exponential growth (for A # y). It is interesting to note that for the A
> u case, immigration actually reduces the percent margin for moder-
ately large to large times, as seen in Fig. 10. This behavior is due to the
fact that introducing immigration increases the mean (which tends to
decrease the percent margin) faster than it increases the variance
(which tends to increase the percent margin).
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Fig. 10—Effect of immigration on percent margin.
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5.5 Other applications: Spare threshold

In capacity expansion problems, a question that arises is when to
expand. If facilities could be installed instantaneously, the expansion
time would be simply the time at which remaining spare exhausted.
However, there usually is a lead time, 7, between the moment facilities
are ordered and the time they are actually installed. If existing spare
can be monitored, it would be useful to determine a priori what the
particular level of spare would be at the time when new facilities
should be ordered. This information would then yield the order time,
since as soon as that spare level is attained, it is time to order. This
value of spare, or spare threshold, o, is the amount of remaining
capacity which will exhaust in [¢, £ + 7] with a probability that is no
larger than h, or equivalently, the amount of capacity which will last
the interval T with a probability greater than or equal to 1 — h. If the
last expansion occurred at ¢, providing a total capacity of C(t) (see
Fig. 11), the constraint on ¢ may be written as

Prob{A4"(t + £) = C(ty) |

N (t)=C(t) —0, YEE[O, 7]} =1 —-h. (59)
Time homogeneity of the process allows setting £ = 0 in the above
expression, as discussed in Section 5.2, and the determination of o

reduces to finding
Cltg)

Y Pu§)=1-h, V£€[0,'r]}, (60)

n=0

min{a=0,1,
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where o appears implicitly in the initial condition used to evaluate the
state probabilities P,(£). Again, tables may be set up permitting the
direct reading of the values of o corresponding to the growth, turnover,
capacity levels, and the lead time, 7. Some typical results are plotted
in Fig. 12, where o is shown as a percentage of the total capacity.

Vi. CONCLUSION

A summary of the main results has been given in Section II. Explicit
solutions for the birth-death process in which the births and deaths
are proportional to the state have been derived, and some of their
applications to capacity expansion problems have been discussed. A
method for determining margin has been described in detail for the
case in which one birth-death process exists with exponential growth
characterized by a pair of transition rates, A and p, and it was shown
how to extend the method to cases in which there were several
simultaneous processes.

In addition to its applications to capacity expansion problems, the
proposed model is useful in assessing the potential of routing strategies
for special services. It has already been shown, for example, that
benefits are to be expected by aggregating small demands. These
conclusions were based largely on service robustness considerations.
To obtain more comprehensive results about routing strategies, it is
clear that cost robustness considerations must be addressed as well.
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APPENDIX A
Expressions for b(t) and d(t) (Section 5.1)

As indicated in Section 2.1,
A8 + 0(8)* = Probability of a birth in [¢, ¢ + 8] given that
the system was in state n at time ¢,
p1-8 + 0(8) = Probability of a death in [¢, £ + §] given that
the system was in state n at time ¢£.

Letting .4 (t) be the random variable representing the number of
circuits at time ¢, the total probability of a birth in [¢, ¢ + §] may be
written as

Prob{a birth in [, ¢ + 8]}

= Y Prob{a birth in [¢, ¢ + 8] and A(¢) = n}

n=0

= Y Prob{a birth in [¢, ¢ + 8§]| A7(¢) = n}Prob{A'(t) = n}
= 3 [Aad + 0(8)]Pult), (61)

where the certain event and Bayes’ rule were successively used. Simi-
larly, the total probability of a death in [¢, ¢ + 8] is ¥ [psd + 0(5)]
P, (t). With this information, a differential equation for b(#) may be set
up as follows:

b(t + 8) = b(¢)[Probability no event or a death]
+ [b(t) + 1][Probability of a birth] + o(d),
where o(8) is the contribution of more than one birth.
bt +8) = b(O[{1 - X (8 + u:b + 0(8) Pr)

+ Y (b + 0(8)) P, ]

+ [b(2) + 1] Y [A8 + 0(8)]Pa(t) + o(d). (62)

*o(-): R' = R'is such that lims ., Dgn =0.
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In the limit § — 0, eq. (62) becomes
d o
7 b(t) = ¥ APal?). (63)
t n=0

In a similar manner, the following differential equations for d(¢) and
for m(¢) may be obtained:

d x

240 = 3 mPa(@), (64)

d o0

E m(t) = 2 (An— [-l-u)Pn (2). (65)
t n=0

Since

m(t) = ¥ nP.(t),
n=0
one can use relations (3) to write eq. (65) as a differential equation for
m(t). Its solutions have already been given in eqgs. (4) and (6). With
knowledge of the mean, eqs. (63) and (64) may be solved for b(f) and
d(t), respectively. The results are easily found to be

% new(e® — 1) — % (A # p),
b(t) = 2 (66)
MU ottt (A=),
¢
gn,.ﬂ(em -1) - BT“ (A 5 p),
d(t) = 2 (67)
ML+ hnot \ =),
where
Nesr = No + g
and
A=A—p
APPENDIX B

Queue Discipline and Held-Order Probability

In the model described in this paper, the queue discipline followed
is Blocked Customers Held (BcH). Let the random variable T denote
the sojourn time of the customer, i.e., the total time he spends in the
system, either waiting for service or being served. The assumption
inherent in the BCH queue discipline is that the customer will spend
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time 7 in the system, after which he will depart, regardless of whether
he has been served or is still waiting for service. The choice of y, =
n p implies that the sojourn times have a negative exponential distri-
bution.

In special services, if the sojourn time distribution is in fact negative
exponential, then the queue discipline used here should be correct. If,
on the other hand, it is the service-time distribution that is negative
exponential, then the BCH queue discipline assumed here may still be
approximately correct if the average waiting time of a customer is
much smaller than the average service time.

To compute the held-order probability, care must be given as to
whether the held order is seen by an outside observer or by an arriving
customer. For processes with Poisson input, it is well known that the
distribution P.(¢f) seen by an outside observer is identical to the
distribution 7,(£) seen by an arriving customer (see Section 3.2 of Ref.
3), and hence the distinction is unimportant. For the process described
in this paper, however, the distributions are different. Define

P,(t) = Prob{A'(t) = n}, (68)
7 (t) = Prob{ A4 (t) = n|a customer arrives at ¢*}. (69)
Expression (69) is the probability that a customer who arrives at ¢
finds n other customers being served or waiting to be served. Letting
the event A refer to the arrival of a customer in the interval (¢, ¢ +

8], and using conditional probabilities, one may write 7.(f) as the
following limit, if it exists:

lim Prob{A"(£) = n, A}
n(t) = 22
i lim Prob{(A}
&0

— lim Prob{A | .#(t) = n}Prob{A4(t} = n}
50 ¥ Prob{A| A(t) = j}Prob{A'(t) =}

Jj=0
Since Prob{A | .#'(t) = n} = A:8 + 0(8),* one obtains, with the help of
(68),

an(t) = 2Pt (70)

Y APs(t)

=0
The held-order probability may thus be defined as

o

h(t) = Y P.(t) asseen by an outside observer (71)
n=d+1
*o(-): R' > R'is such that limﬁ_.,}@= 0.
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or

T APa(t)

W as seen by an arriving customer, (72)

h'(t) =

where d is the number of servers. Expression (72) is the conditional
probability that if a customer were to arrive at ¢, he would find all the
servers engaged. This quantity is known in congestion theory as the
transient call-congestion function.'® Expression (71) is the probability
that at least one customer is waiting to be served. This quantity is
similar but not identical to the transient time-congestion function,
S(¢), which is the probability that all servers are busy at time ¢, and
which may be written as '

S(t) = Ed Po(t). - (73)

For Poisson input (A, = A), it may be shown that
h'(t) = S(t) > h(t).

For the Kendall process, the relationship is
R (&) > S(t) > h(?).

For the Poisson input case, since S(f) is equal to A’(¢), the time-
congestion function may be used as a meaningful measure of the held
orders. For the Kendall process, on the other hand, S(¢) does not
describe the held orders as seen by either an arriving customer or an
outside observer. Consequently, the time-congestion function is not
believed to be a meaningful measure of the held orders. Throughout
this paper, expression (71) was used for the held-order probability,
although eq. (72) could have been used instead.

Both A(t) and A'(f) are instantaneous quantities. Since the Kendall
process with A > p is not ergodic (i.e., space averaging is different than
time averaging), a space average must be made when measuring either
of these quantities. Thus, one cannot measure A(t) or 2'(f) by exam-
ining one sample for a long enough time; rather, one needs an ensemble
of samples. Because of these measurement difficulties, an open ques-
tion remains as to whether this type of held-order probability is the
best measure of the provided service, or whether other quantities such
as the time average of A(f) or A’(t), or the duration of the held order
might be more meaningful. Nevertheless, it is clear that egs. (71) and
(72) are some measure of the provided service and, as such, are useful
when comparing different special services provisioning methods meant
to provide the same level of service.
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