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A uniformly distributed (iid) binary source is encoded into two
binary data streams at rates R, and R,, respectively. These sequences
are such that by observing either one separately, a decoder can
recover a good approximation of the source (alt average error rates
D,, D,, respectively), and by observing both sequences, a decoder can
obtain a better approximation of the source (at average error rate
Dy). In this paper a “converse” theorem is established on the set of
achievable quintuples (R., R», Do, Dy, Ds). For the special case R, =
Ry =1/2, Dy = 0, and D, = D, = D, our result implies that D = 1/5.

I. INTRODUCTION

Let {X:}%-1 be a sequence of independent drawings of the binary
random variable X, where Pr{X = 0} = Pr{X = 1} = 1/2. Assume that
this sequence appears at a rate of 1 symbol per second as the output
of a data source. (Refer to Fig. 1.) An encoder observes this sequence
and emits two binary sequences at rates R,, R» < 1. These sequences
are such that by observing either one, a decoder can recover a good
approximation to the source output, and by observing both sequences,
a decoder can obtain a better approximation to the source output.
Letting D, D», and D, be the error rates which result when the streams
at rate R,, rate R», and both streams are used by a decoder, respec-
tively, our problem is to determine (in the usual Shannon sense) the
set of achievable quintuples (R,, R2, Do, D1, D). Our main result is a
“converse” theorem which gives a necessary condition on the achiev-
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Fig. 1—Communication system.

able quintuples. This paper extends a previous one on the same sub-
ject.! This paper, however, is self-contained.

This problem is an idealization of the situation in which it is desired
to

(i) send information over two separate channels, as in a packet
communication network, and

(if) recover as much of the original information as possible, should
one of the channels break down.

To fix ideas, let us say that Ry = Ro =1/2, Do =0,and Dy = Dy = D.
Thus, the source sequence at rate 1 is to be encoded into two sequences
of rate 1/2 each, such that the original sequence can be recovered from
these two encoded sequences with approximately zero error rate (i.e.
Dy = 0). Our question then becomes: How well can we reconstruct the
source sequence from one of the encoded streams—that is, what is the
minimum D? A simple-minded approach would be to let the encoded
streams consist of alternate source symbols, which will allow Dy = 0.
In this case, D = 1/4, since by observing every other source symbol a
decoder will make an error half the time on the missing symbol. Is it
possible to do better? El Gamal and Cover® have looked at this problem
and have a theorem which can be used to show that we can make
D = (v2 — 1)/2 = 0.207. In a previous paper' it was shown that (with
R, = R, =1/2, Dy = 0) D = 1/6. The new result given here specializes
to D = 1/5 = 0.200. The exact determination of the best D remains
an open problem.*

Il. FORMAL STATEMENT OF PROBLEM AND RESULTS

Let B = {0, 1}, and let du(x, ¥), X, y ¢ BY, be the Hamming distance
between the binary N-vectors x, y; ie., du(X, y) is the number of
positions in which x and y do not agree. A code with parameters

*In Ref. 3, Witsenhausen proved a closely related result which encourages the
conjecture that D = 0.207 is, in fact, the best possible.

\
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(N, My, Ms, Dy, D, D) is a quintuple of mappings (fi, f2, g0, £1, &2)
where,

fuBY > (1,--- M)}, a=1,2 (1a)
g.:{1,2 -+, M,})—->B"a=12 (1b)
8o: {ll 2: v !Ml} x {1: 2r e )M2}_)BN- (].C)

The source output is a random vector X uniformly distributed on B”.
Define

Y = gi°fi(X), (2a)
Z = g»of(X), (2b)
and
X = 2l (X), £(X)]. (2c)
Then the average error rates are
1
D] = ﬁ EdH(X, Y), (33.)
1
D, = N Edu (X, Z), (3b)
1
Do = 5 Edn (X, X). (3c)

We say that a quintuple (R, R, do, di, dz) is achievable if, for
arbitrary € > 0, there exists, for N sufficiently large, a code with
parameters (N, My, Ms, Do, Dy, D:), where M, < 2%*9N o =1, 2, and
D.=d, + ¢ a =0, 1, 2. The relationship of this formalism to the
system of Fig. 1 should be clear. Our problem is the determination of
the set of achievable quintuples, and our main result is a converse
theorem.

Before stating our result, let us take a moment to state a positive
theorem by El Gamal and Cover” as it specializes to our problem.
Theorem 1. The quintuple (R., R, dy, di, ds) is achievable if there
exists a quadruple of random variables X, X, Y, Z, which take values
in B, such that Pr{X =0} = Pr{X =1} = 1/2, and

Edu(X, X) < do, (4a)
Edy(X,Y)=d,, (4b)
Edu(X, Z) < d, (4c)
and
R =IX;Y), (5a)
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R.=I1(X; Z), (5b)
Ri+R.=IXXY 2+ I(Y; 2), (5¢)

where I(-;-) is the usual Shannon information.

For the special case of R, = Ry = 1/2, do = 0, it can be shown that
d, = d» = (V2 — 1)/2 = 0.207 is achievable.

We now state our converse result.
Theorem 2: If (R, Rz, do, d1, d2) is achievable, then in all cases

R i+ R:=1- h(do), (6a)
furthermore, if 2d, + d2 < 1, then

2
R1+R222—h(do)—h(2d1+dg—12d:i), (6b)
- 2
and if di + 2d: < 1, then
2d3
Ri+ Ry =2~ h(do) —h{di+2d —7—), (6¢)
- 1

where

0, A=0,
A(A) =1 —AlogaA — (1 — Mloga(1—2), 0<A=1/2
1 A=1/2.

All logarithms in this paper are taken to the base 2. As (6a) is obvious,
and (6¢) follows from (6b) by symmetry, we need only prove (6b).

In the special case of R, = Ry = 1/2, do = 0, and di = d; = d,
inequality (6b) implies that

2d*
h(Bd—l_d)al,

’

or
_2d® 3d(1-d)-2d’
(1-d)  (1-4d)

which implies that d = 1/5 = 0.200.

3d

1
==,
2

ll. PROOF OF THEOREM 2
We start from the standard identity
HUy; Uz Us) =1(Uy; Uz) + I(Uy; Us| Uy), (7)
for arbitrary random variables Uy, Us, Us. We say that Uy, Us, Us is a
“Markov chain” if U, Us; are conditionally independent given Us; i.e.,

U, depends on U, Us only through Us. If Uy, U, Us is a Markov chain
then I(Ul, U3I Uz) = 0, and from (7)

2284 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1981



I(Uy; Us) = I(Uy; Uz Us) = I(Uy; U). (8)

Note that the hypothesis for (8) holds when Uj is a function of Us. A
sequence {U,} is a Markov chain if, for all n,

(' .. Un—2, Un—l), Un, (Un+l, Un+2, b ')

is a Markov chain.
Let us now suppose that we are given a code (fi, fs, 8o, &1, 82) with
parameters (N, M\, Mz, Dy, Dy, D;). We can write

log M, + log M. = H(fi(X)) + H(f:(X)) 9)
= I(((X); (X)) + H(A(X) /(X))
= I((X); (X)) + I(X; A(X) (X)) (10)
= I(£(X); £X)) + I(X; X, Y, Z), (11)

where (9) follows from the fact that f;(X) takes its values in a set of
cardinality M;, (10) holds because the pair f,(X) f2(X) is determined by
X and (11) holds because X, Y, and Z depend on X only through f£,(X)
f2(X) so that (8) applies.

Now (11) is getting close to (5¢) in the direct theorem.
In fact, using (8) twice, we can underbound I[fi(X); fo(X)] by
I(Y; Z). Now the components of the source vector X are independent,
and if the components of either Y or Z were also independent, we
could make use of standard techniques to establish the necessity of
(5c). But alas, we cannot assume that either the {¥Y,} nor the {Z,} are
independent, so that another tactic is required. The key idea is the
definition of another random vector V= (V3, - .. , V,,) the components
of which are in fact independent.

For 1 = k = M,, define the set

A= {x: ilx) =k} = f1' (k). (12)

Let the cardinality of A be . Let the random vector V be defined by

its conditional distribution given X:
-1
PriV=v|X=x}= {g’:ﬁm] 4 V€ Afx,

otherwise. (13)

Thus, given X € A, V is uniformly distributed on A,. It follows that
the unconditional distribution for V is

Pr{V=v} =27 veB",
and the components of V are independent, as desired.* Furthermore,
Z, f(X), X, f1i(X), V is a Markov chain, so that, using (8),

* In effect, V is obtained from fi(X) by a channel with transition probabilities
Pr{X = xJ fi(X) = k} so that the distribution of V is the same as that of X, hence, iid.
This is valid for any distribution of X.
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I{A(X); £(X)) = I(V, A(X); £(X),Z) = I(V; Z). (14)
Combining (11) and (14), we obtain

1 1
ﬁlOng-Fﬁ

1 1
log M = I(V; 2) + IX;X,Y,2)

1 1
ZﬁI(V, Z) +ﬁ

0 Edy(V; Z) Eduy(X, X)
2 o[ ZE | [P

=2 — h(4d) — h(Do), (15a)

IX; X)

where
_ Edn(V; Z)

N (15b)

A

Step (1) follows from the “rate-distortion bound” which states that
if U is a random vector uniformly distributed in BY (as are V and
X), and U is an arbitrary binary random vector, then I(U; 0 =
1-h %EdH(U, ﬁ)]. (See Ref. 4.)

We will now obtain an upper bound on A in terms of D, and D,. As
a “warm up,” let us observe that from the triangle inequality,

A= % Edy(V,Z) = % [Edu(V,Y) + Edu(Y, X) + Edu(X, Z)].

Now
Edy(Y, X) = D\N, Eduy(Z, X) = D:N, (16)

Furthermore,
Eduy(V,Y) =Y E[du(v, Y)|V =v] Pr{V =v}.

Now suppose that we are given V = v € Ax. Then, Y = gi(k). Since
Pr{V=v}=27",
M,

Edu(V,Y) =Y ¥ 27"dulv, gi(k)]

k=1 veA,
M,

= ¥ ¥ Pr{X=x}dulx, g(k)] = ND.. (17)

k=1 xeAy,

Thus,
A=2D, + D.. (18)
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Substitution of (18) into (15a) yields that for achievable
(Rh R2l dﬂs dh d2)

R, + Ry =2 — h(2d, + d2) — h(db), (19)

which is the result reported in Ref. 1.
We will now establish a tighter bound on A, namely, for D, +
2D, =1,

1 2D}
A—EEdH(V,Z)SD2+2D1—-(T_—'I)-J, (20)
so that (15) yields that for achievable (R., Ro, do, di, d2),
2a!2
Ri+R:=2—hl|ds; + 2d, — — h(db), (21)

which is (6b), the inequality required for Theorem 2.

Upper bound on A: We establish inequality (20) as follows. Let %,
1<k =< M, be fixed. Let A; be as defined in (12), and let its cardinality
px = p. Let the members of A, be the N-vectors {X,}m-1. Let y = gi(k).
Thus, when X = x € A, then Y = y. Now, form a p X N
array, A, with mth row

an = (Qm,, Ay, **+ , AmN) = X @y, (22)

where @ denotes modulo 2 vector addition. Thus, ., = 1, when the
nth coordinates of x,, and y are different, and @, = 0, otherwise. Note
that

1
N Eldu(X, Y) |A(X) = £]

11 ¢k

11k X
=EEE dH(xm,Y)_ E= gﬂ

1 N
N Z Sn, (23a)

where for1=n <N,

i

n = — Qmn 23b
s .um2=1 (23b)

is the fraction of 1’s in column n of A.
Next, for 1 = m < p, let z, = g°fa(Xn) be the value of Z which
results when X = x,,. Let B be the p X N array with mth row

bm = (bmlg bm2, ey, me) =ZIn @ Y. (24)
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Then,
%E[dH(X, 2)|£(X) = k]

11
ﬁ ’: mgl dH(xm, zm)

du(am, br)

,U- m=1

z
1 Y12
= E - E [amn(l - bmn) + bmn(l - amn)] 3 (25)

where the last equality follows from the fact that for a, be{0,1},
a(l — b) + b(1 — a) =0 or 1 according as a = b or a # b. Let 1, be the

expression in braces in (25). Then,

1 M
Th = = 2 [amn + bmn - 2amnbmn]
B m=1

1
= ;2 [@mn — Bmn + 285n(1 — @ma)]

1
E—E(amn_bmn)=sn_tn

}LE [bmn = Amn + 2amn(1 - bmn)]

1
2;2 (Bmn = Gmn) = tn — 8n,

m

where

1+
th==3 bmn, 1=n=N,
.um=l

and s, is given by (23b). We conclude that 7, = |#, —

(25) yields
%E[dy(x, Z)|(X) = k] >— 5 |t
n-l

Finally, consider
1
-ﬁE[dH(V, Z)| i(X) = k]

(26a)

(26b)

8a|, so that

(27)

- é iE[dH(V, Z)|X = x0]
=Ni 3 Eldn(V, 2) | X = x]
=Ni” é S du(v, 7) P(V = V| X = xa).  (28)
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Now, from (13) which defines V,
-1
= = = "L 4 v G Ak,
Pr{V =v|X = xn} {0, otherwise.
Thus, (28) yields,

%E[dﬂ(v, 2)| A(X) = k]

||M’=

1 13
Nl

n

du(Xm', Zm)
1

3 2 . dH(am‘: bm)

1
= N7, 2, L [ann(l = b + (1= ana) o]
1

N
= 2 [8a(1 — £a) + ta(1 — s0)). (29)

Now make the dependence of s, and ¢, on % explicit by writing s.s
and £y, respectively. Then, on averaging over %, (23b) becomes

M,
D1=%E{dH(X, Y)} = T PrA(X) = k}“ 5, su
k=1

n—l
M, N

=3 ¥ Pn, k)su, (30a)

k=1 n=1

1
where P(n, k) = Pr{ A(X) = k} X N Similarly, (27) becomes

M, N
D, -——E{dH(X Z)Y=Y ¥ P(n, k)|t — snl- (30b)
k=1 n=1
Finally, (29) becomes
1
A= E(dn(V, Z))
M, N
= ,,E Y P(n, B)[sar(1 — tae) + tna(l — sna)]. (30c)
=1 n=1

We now apply the following inequality, the proof of which is given
in Section IV:

Let S, T be random variables such that 0 = S, T< 1, and E{S} =
D, E{|T - 8|} = D,, with 2D, + D; = 1. Then,

2D3

- 42

E{S(I—T)+T(1—S)}SD2+2D1—1 (31)
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Let S, T be the random variables which take the value sn, tn,
respectively, with probability P(n, k), then (30) and (31) imply that,
for 2D1 + D2 = 1,

2D}

- —_——
A—D2+2Dl 1_D2’

(32)

which, when substituted in (15) gives (6b), proving Theorem 2.

IV. PROOF OF THE INEQUALITY

Define @ (Dy, D;) as the supremum of E{S(1 — T) + T(1 — S)}
over all distributions of (S, T) on the unit square [0, 1]* for which
E{(S}=D,E{|T—- S|} = D..

Theorem 3. (a) For 2D, + D> < 1 one has

2D3
1-D,’
with @(0, 1) = 1. (b) For 2D, + D: = 1 one has

Q(Dy, Do) = 2Dy + D, —

QD Dy) = %

To establish this, introduce for S, T, x, y in [0, 1], y # 1, the
function*

FS T x,y)=S1-T)+T(1-8)
4x 2x?
+ -2|S8-x)+|——-1|(|S—-T|—2»). (33

(1__y )( x) [(1—y)2 jl(l | J’) ( )
Lemma: For2x+ y =<1, y <1 the maximum of F(S, T, x, y) over all
(S, T)in[0, 1P is 2x + y — 2x%/(1 — y).
Proof: For fixed S, the maximum of F over T must, by piecewise
linearity, be at either T'= 0, S, or 1.
() If T =0, then

2
F=S+( 4x —2) (S—x)+[-L—1] (S—y),
1-y

- (1-y)
and this is maximized over S at either S =0 or S =1.
(a) ForS=0
4x® 2x%y
F=2x——4+y———
1-y (1-y)?
2x? 2x? 2x%y 2x*
=2x+y— - - =2x+y-— .
YTy 1y @y Y 1oy

* This choice of F' comes from the duality theory of convex hull formation, as
described, e.g., in Section VA of Ref. 5.
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(b) ForS=1
4x(1—x) 2x°

F=1-2+4+2x+ + —1+4y
| 1—y
2x* 4 2x?
=2x+y—1fy—2+1jys2x+y—%,using2x+ys1.
(@if) If T = S, then
4x 2x%y
F=28-28"+ —2) S—x)+y———03.
(1—y G=0+y=g=p

The maximum over S of this quadratic is at S = x/(1 — y) which is in
[0, 1]if x = 1 — y and this holds as x =< (1 — y)/2 = 1 — y. Hence, the
maximum is

2x 2x2 + dx 2) ( x x)
1-y (1-y° \1-y 1-y
2x%y 2x*

+y——2 _=92x4+y-— )
YT Oy Y1y

(iti) f T =1, then

4x 2x?
F—l—S+(1_y—2) (S—x)+[—-——(1_y)2—1] (1-S-y),

which is maximized by taking S either 0 or 1.

(a) ForS=0
4x® 2x? 2x%y
F=2x+y- + -
YTy A=y -y’
22
=2x+y-— ad
1-y
(b) ForS=1,
4x 4x° 2x%y
Fooxty+—s 2 o XY
YTy 1y 1-9y7
2x? 2x? 4x 2x%y
=2x+y-— - + —2-
YTy 1y 1y 1—-y)7°
2
- —_
=2x+y =y

since 4x/(1 — y) < 2.
Thus, the maximum is as stated and is attained for T'= S = x/
(1 = y) and for T = 1, S = 0. This completes the proof of the lemma.
Turning to the proof of Theorem 3, consider any distribution of
(S, T) on the unit square for which
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E{S} =x, E{|T-S|} =y, 2x+y=1 (34)

If y = 1, then x = 0 from which it follows that S = 0, T' = 1 almost
surely, giving E{(S(1-T)+T(1-S8)} =1.
If y < 1, one has, by the lemma,

2x?

1-y

If one chooses the distribution T = 1, § = 0 with probability ¥ and
T =8 = x/(1 — y) with probability 1 — y, equality is attained. This
determines the maximum of E{S(1 — T) + T(1 — S)} subject to (34).
As 2x + y — 2x*/(1 — y) is monotone increasing (for 2x + y < 1) in
both x and y, the maximum is unchanged if one allows all x, y with
0=<x =< D, 0=<y=< D, This establishes part (a) of Theorem 3.

For part (b), it suffices to observe that @ is monotone nondecreasing
in both arguments by its definition and that on the boundary, where
2D, + D, = 1, one has @(D,, D:) = (1 + D.)/2. This establishes part
(b). (It could easily be shown that @(D,, D.) = (1 + D.)/2 for all
(D1, D.) in the unit square satisfying 2D, + D> = 1.)

E(F(S,T,x,y)) =E{S01-T)+T(1-S)} =2x+y—
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