Copyright © 1981 American Telephone and Telegraph Company
THE BELL SysTEM TECHNICAL JOURNAL
Vol. 60, No. 10, December 1981
Printed in U.S.A.

Microprocessor Firmware Update Inventory
Model

By S. M. BRECHER
(Manuscript received June 10, 1981)

Microprocessor-based systems are used in many applications of
modern telecommunications. The controlling program of most micro-
processor systems is stored in firmware which is usually coded into
erasable programmable read-only memory chips (EPROM). As new
services are implemented, there is a continuing need to update the
firmware, a potentially expensive process. In this paper, a method is
presented for determining the resources necessary for updating
EPROM firmware from a centralized location by using a rotating
inventory scheme.

l. INTRODUCTION

Microprocessor-based systems are used in many applications of
modern telecommunications. The controlling program (firmware) of
most microprocessor systems, is coded into either read-only memory
(roM), programmable read-only memory (PROM), or erasable pro-
grammable read-only memory (EPRoOM) chips, which are mounted on
circuit boards. As new services are implemented in the microprocessor-
based systems, there is a continuing need to update the firmware.
Frequent updating of firmware is more effectively accomplished by the
use of EPROM chips, because they can be repeatedly erased by exposure
to ultraviolet light and reprogrammed by the use of a specially designed
unit. Typical EPROM circuit packs may require 0.5 hours for erasing
and 1.5 hours for programming.

One serious drawback to using EPROM firmware is that it cannot be
altered by means of a data link. A change in firmware entails the
removal and reinstallation of the memory circuit boards or packs.
Because of this manual process, updating a large number of micro-
processor systems may involve a long and costly procedure.

The object of this paper is to provide a quantitative method to

2293

determine the level of spare boards and programming units necessary
to achieve a predeterminated time span for updating all the micropro-
cessor-based systems.

1.1 Firmware update process

Typically, there are three conditions that could affect a firmware
module: (i) Program updates because of new feature introduction, (if)
program changes caused by fixing of “bugs,” and (iii) program changes
because of hardware updates. In general, a firmware update process
begins with a notice of a change sent by the microprocessor manufac-
turer to centralized programming sites where ultraviolet light pro-
gramming units and a spare inventory of circuit packs are kept. Over
a dial-up connection, the programming unit receives the latest program
version and writes it onto spare circuit packs taken from inventory.
When all spare circuit packs are rewritten they are shipped to specific
distribution sites associated with a subset of the microprocessor sys-
tems. From each distribution site, craft persons are dispatched to
install the updated boards. The removed circuit packs are then re-
turned to the centralized programming site for updating. The recycling
process continues until all the microprocessor systems in the field, plus
their allocated maintenance spares, are updated.

1.2 Basic model

The flow and assumptions of the basic update model, for a typical
process schedule, are shown in Fig. 1. The process of updating begins
when a firmware change message is received at the centralized pro-
gramming site. An initial period is used for administrative procedures,
unpacking of inventoried circuit packs, erasing, and reprogramming,
packing and crating, and shipping of the circuit packs to the distribu-
tion sites. Out of this initial time interval, it can be assumed that one
day will be needed for reprogramming the spare EPROM circuit packs.
If there are not enough programming units, a delay in the update
process could be incurred.

Once the rewritten boards arrive at the distribution sites, the asso-
ciated microprocessor systems are scheduled for update. The process
of coordinating the installation forces necessary for the update is not
immediate, and the following distribution can be assumed to charac-
terize the update interval: a proportion, i, of the updated boards are
installed and an equal amount of outdated boards are returned to the
centralized location for reprogramming in one week; a proportion, i,
of the updated boards are recycled in two weeks; a proportion, i3, in
three weeks, and so on until all the boards are recycled.

Once the outdated boards arrive back at the programming site, the
process of reprogramming begins again. This procedure continues until
all of the microprocessor systems in the field have been updated.

2294 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1981

FIRMWARE
CHANGE
MESSAGE

REPROGRAM
EPROM CIRCUIT
PACKS

SHIPPING EPROMs
TO0
DISTRIBUTION
BITE

MICROPROCESSOR
SYSTEMS
UPDATE

!

SHIPPING EPROMs

10%: 2 WEEKS
BO%: IWEEKS
30%: 4 WEEKS
10%: 6 WEEKS

TO
CENTRALIZED
SITE

: i

Fig. 1—Typical firmware update process.

Il. SYSTEM PARAMETERS

The system parameters to be determined are the update time, the
total update spares, and the number of programming units. Update
time, T, is defined as the interval in weeks between a change notice
and the time at which all the systems in the field, including mainte-
nance spares, have been updated. To determine T, it is necessary to
define the concepts of update spare, total update spares, total systems,
and spare ratio.

An update spare is defined as one complete set of EPROM circuit
packs for one microprocessor system. Since an update spare is defined
as one full set of boards, an update spare may be equated to a
microprocessor system and vice versa. Total update spares is defined
as the number of EPROM circuit packs at the centralized programming
site available for initiating the update process. Total systems is defined
as the total number of microprocessor-based systems in service and
their maintenance spares to be updated when a program change is
issued.

The spare ratio, S, is defined as the ratio of total update spares to
total systems; that is,

MICROPROCESSOR FIRMWARE UPDATING 2295

Total Update Spares
Total Systems

A spare ratio of one, S = 1, says that for each microprocessor system
in the field and its maintenance spares there is one set of update spares
at the programming site. In this case, T is the time required for one
pass through the basic flow shown in Fig. 1. Similarly, if S is 0.5, one
spare for every two systems in the field and their maintenance spares,
T is the time required for approximately two passes through the basic
flow. By following this reasoning, it becomes clear that 7' is a function
of S.

S=

Il. MODEL FORMULATION
3.1 Update time

The update time can be determined by considering the following
installation distribution mentioned in Section I and shown in Table 1.
In Table I, i; = proportion of boards updated in week j, w = number of
weeks required for returning all spares updated in week 0; ;; = 0, for
j=0andj > w, ie., no system can be updated in week 0 with spares
reprogrammed in that week. Then,

Y i=1,

Jj=0

which implies that after w weeks all the spares reprogrammed in week
0 are returned. Define g(n) as the quantity of spares updated in week
n, with n = 0, week of change message, and n = T, week by which all
systems are updated. The update distribution can be modeled by

g(0) = Total Update Spares = S X Total Systems,

q(2) = i2q(0) + i1q(1),
q(3) = i3q(0) + i2q(1) + 11q(2),

, and
n-=1
g(n) = ¥ tayq(J). (1)
i=0
Equation (1) can be rewritten as:
gn) = ¥ iiqgln =), (@)

j=0
since i, = 0, and with initial conditions
g(0) = Total Update Spares = S X Total Systems,
gn)=0, for n<0. (3)

2206 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1981

Table I—Distribution of
microprocessor systems

update
Week of Update Proportion
Process Updated
1 i
2 iz
3 Is
w b

Equations (2) and (3) are the difference equations describing the
microprocessor update process. To obtain the solution of the difference
equation, define the ratio of total update spares updated in week n:

q(n)

aln) = Total Update Spares’ “
where
0=<a(n) =1
Substituting g(n) from eq. (4) into eq. (2)
a(n) = ¥ jaln —j), (5)
j=0
and
a(0) = 1. (6)

Before solving eq. (5), notice that the update process ends when the
total number of updated spares equals the number of total systems;
that is,

T
¥ g(n) = Total Systems, (7)
n=1
where T is the update time.
Substituting eq. (4) into eq. (7) and using the definition of spare
ratio,
T

1
E] a(n) = . (8)
Expressions (5), (6), and (8) are the difference equations for the weekly
ratio of updated spares and T.

To obtain T, eqs. (5) and (8) must be solved. The solution can be
obtained using a computer simulation, or a closed-form technique such
as the z-transform. To use the z-transform method, recall the following
properties:'

MICROPROCESSOR FIRMWARE UPDATING 2297

(i) Translation property:

k-1
Zlf(n+ W] =2"F2) = 2" & f()z7,
i
where F(z) = Z[f(n)].
(if) Summation property:
[) f(n):| - F@+ = _2_ f(n).

(iti) Final value property:
lim f(¢) = linll(z - 1F(2).

t—o

Using property (i) in egs. (5) and (6) gives:

zw

AQ) =——, ©)
Y=Y pzv
i=1
where i and w were previously defined, and
A(z) = Z[a(n)].

Using property (ii) in eq. (8), and the initial conditions for a(n), gives
[¥ a(n)] = —A(Z) (10)
n=0
Substituting eq. (9) into eq. (10) and considering that i, = 0, gives

T Y iz
V-4 j=1
Z [¥ a(n}] =3 -
n=1 z 2w — E ijzw—.r

Jj=1

The inverse z-transform of egs. (9) and (6) gives the following relation-
ship between T and S:

1 z L vz

— j=1
§=Z ! — e P (11)
z¥ =y iz

J=1

The right-hand term of eq. (11) can be inverted using classical tech-
niques and z-transform tables.

An example can be used to show an application of the z-transform
technique. Consider the firmware update distribution shown in Fig. 1
and given in Table II.

2298 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1981

Table Il—Firmware
update distribution for a
six-week turnaround
interval (w = 6)

Week of Proportion
Update Updated
Process ij

3 0.10

4 0.50

5 0.30

6 0.10

Substituting the above values of i; in eq. (11),

1 _1{ z 0.1z° + 0.52% + 0.3z + 0.1 }

= 1
z—12°-0.12"- 052" - 0.3z - 0.1 (12)

S

Using the partial-fraction expansion technique for inverting eq. (12),
the closed-form expression for S as a function of T is

1
5= 0.22727T — 0.36983

+ 0.09374(—0.67495)7
+ 0.03228(0.45089) 7sin(2.27567T + 1.23494)
+ 0.32472(0.85369) "sin(1.41837T + 0.85769). (13)

A closed form solution to this transcendental equation in T is difficult
to obtain. An approximate solution is obtained when 7 is large. In this
case

1
5 = 0.22727T — 0.36983, (14)
or

T= 4—; + 1.62725, (15)

which is the expression for 7. Equation (15) satisfies all update times
with an error of less than 2 percent for T'= 10, and with a maximum
error of 7 percent occurring in week 7.

An integer solution can be obtained by making:

4.4
T=|—+16]|, 16
5 10] 1o
with a maximum positive error of 1 week. The [-] operator denotes
rounded-up approximation. Figure 2 shows the representation of the
update time as a function of the spare ratio for this example.

MICROPROCESSOR FIRMWARE UPDATING 2299

100

10+

UPDATE TIME T IN WEEKS

| | |
0 0.2 04 o8 o8 1.0

SPARE RATIO S
Fig. 2—Update time.

A more simplified approach was used for solving the original real-
life update time problem. From the given installation distribution, the
expected number of weeks required to program, ship, and install a set
of spares, i.e. one pass through the basic flow of Fig. 1, is

T=01x3+05%X4+03x5+0.1X6=4.4 weeks.

This means that one reprogramming process for the average micro-
processor system takes 4.4 weeks. The update time is determined by
the number of times this process will be repeated, plus the error
introduced by using the expected value approach. The number of
times the process is repeated depends on the spare ratio. Therefore,
the update time can be represented by the following equation:

4.4
T= 5 + error,

which agrees with eq. (16) for an error of 1.6.

The update time algorithm shows the dependency between T, S,
and the microprocessor’s update distribution. For an illustrative pur-
pose, assume that there are as many spare boards at the programming

2300 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1981

site as microprocessor systems in the field, i.e., S = 1. In this case,
T = 6 weeks. This period is the minimum time possible under the
given basic assumptions. On the other hand, if we have spare boards
available for only 50 percent of microprocessor systems in the field, S
= 0.5, the update time according to the algorithm is T'= 11 weeks. The
conclusion is that T is directly proportional to the installation distri-
bution and inversely proportional to S.

3.2 Total update spare requirements

The number of update spares necessary at the centralized program-
ming site is determined by the update time and the total number of
microprocessor systems. The update time determines the spare ratio
which, when combined with the number of systems, gives the number
of update spares as indicated in Section II:

Total Update Spares =[S X Total Systems]. (17)

For the example of Section 3.1, the update spare requirements for
implementing a firmware update system for 150 total systems in 20
weeks is computed as follows:

First, the spare ratio for 20 weeks from Fig. 2 is;

S =0.24.
Then, the number of update spares is given by
Total Update Spares = [0.24 x 1501 = 36.

3.3 Programming units

The number of programming units necessary for a centralized op-
eration can be determined as a function of their capacity. To determine
the number of units, two concepts must be used: weekly spares and
programming days.

Weekly spares, g(n), already defined in Section III, is the number of
spares returned each week to the site for reprogramming. The number
of weekly spares is a function of the installation distribution. Program-
ming days, P, is the number of days per week allocated to the erasing
and programming of EPROM circuit packs.

The number of programming units is the following function of the
weekly spares, the number of programming days, and the unit capacity:

. n 1
Programming Units = q_(_) X =, for all n,

P C
where C, microprocessor systems per day per unit, is the capacity
factor of the unit. The number of programming units can be computed
using the three following approaches.

An upper bound for the weekly spares can be used as a starting point

MICROPROCESSOR FIRMWARE UPDATING 2301

for determining the number of programming units. The number of
total update spares available at the site can be used for this purpose.
In this case, the number of units is:

. . g(o)
Programming Units = [P X C-" (18)
This algorithm overestimates the number of programming units be-
cause only in the initial week of the update process are weekly spares
equal to update spares. In the following weeks, the number of spares
returning vary according to the assumed installation distribution.

A second approach for determining programming units is to make
the weekly spares equal to the largest number of spares updated in
any week after the initial week of the update process. In this case, the
number of units is:

. o q(n)
Programming Units = rfllaaf;‘r Px C-" (19)

This algorithm reduces the number of units required and introduces a
delay in the first week of the update process.

A third approach is to make the weekly spares equal to the expected
number of spares returned each week for reprogramming. This is
equivalent to the steady-state of the discrete time process. This ap-
proach satisfies the programming assumption of one day in 50 percent
of the weeks and incurs a one-day delay during the other 50 percent.
Therefore, on the average, programming will require 1.5 days per week.
As a result, the nondelayed update time, which was derived assuming
one day per week for programming, must be increased by 10 percent
(one-half a day per five-day week). In this case, the number of units is:

T q]
Programming Units = [m , (20)

where @ = expected number of spares returned each week. To evaluate
@, the final value theorem can be used. Property (iii) of the 2-transform
methodology gives:

Q@ =g(w) = lim(z - 1)Q(2)

= Total Update Spares X lin}(z — 1)A(2). (21)

Substituting eq. (9) into eq. (21) yields:

—1)z¥*
@ = Total Update Spares X h'm(z—w)f—_,
z—1 Zw - 2 ijzu,-—_;
j=0

2302 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1981

w
which is indeterminate of the type 0 over 0, because }, i = 1. The
Jj=0
application of 'Hopital’s rule solves this problem.
For the distribution given in the example of Fig. 1, the expected

number of spares is:

; (z-1)z2°
Q= q(e0) = Total Update Spares x lz]_I.Ill 2%-0.12°-0.52"-0.32-0.1

= Total Update Spares X 0.22727
= Total Update Spares X A,

where A is the expected ratio of total update spares returned each
week. It can be seen that the reciprocal of A represents the average
number of weeks required for one pass through the basic flow of Fig.
1; that is,

For the example of Fig. 1, where one day per week is assumed for
reprogramming, and the unit capacity is three systems per day, egs.
(18), (19), and (20) become, respectively:

Fr -

Progr ing Units = otal Updaate Spares , (22)
) Total Update S i

Programming Units = (2 P 6& © opare? , and (23)
[Total Upd]

Programming Units = ° plaa;;e Spares . (24)

Comparing egs. (22), (23), and (24), it can be seen that eq. (24) reduces
the number of programming units by a factor of more than four, with
respect to eq. (22), with the introduction of a 10-percent delay in the
update time.

The algorithms discussed above are represented in Fig. 3. The
number of required programming units are shown as a function of the
number of total update spares. To contain the size of the plot, a scale
factor, N, was introduced. Also included is a parameter D, which is the
additional delay in the update time because of the reduced number of
programming units at the centralized site.

3.4 Example

To have a better understanding of the determination of the resource
requirements for the firmware update process, consider the following
example.

MICROPROCESSOR FIRMWARE UPDATING 2303

3.0

D: DELAY
N: SCALE FACTOR

N
o
I

JOTA DATE SPARES

D=0

PROGRAMMING UNITS/10Y
P
T

1.0~
TOTAL UPDATE SPARES
D = 1 DAY IN FIRST WEEK
05 |-

TOTAL UPDATE SPARES
I | ¥ A

D = 0.1 WEEKS/WEEK
0]] l 1
0 2 4 []] 10
TOTAL UPDATE SPARES/10M

Fig. 3—Programming units.

For a projection of microprocessor systems, it is desired to determine
the total update spares and programming unit requirements for the
years 1982 and 1983, for an overall update time of 10 weeks in 1982
and 15 weeks in 1983, under the assumption of providing the fewest
number of programming units. (See Tables III, IV, and V.)

IV. ECONOMIC IMPACT OF FIRMWARE UPDATE SCHEMES
4.1 Economic dependencies

Based on the obtained algorithms, an economic analysis of an update
scheme can be performed if the capital and expense costs associated
with the process are known.

The capital expenditures for the firmware update process are due to

2304 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1981

Table lll—Forecast of microprocessor

systems
Total Update Time
Year Systems Weeks
1982 26 10
1983 116 15

Table IV—Update spares from Fig. 2

Nondelayed Total
Update Spare Total Update
Year Time ratio Systems Spares
1982 9 0.59 26 15
1983 13 0.39 116 45

Table V—Programming
units from Fig. 3

(D =0.1)
Programming
Year Units
1982 2
1983 4

the total update spares and programming unit requirements. There-
fore, the capital is a function of the desired update time, the total
number of microprocessor systems, and the delay tolerated. If the
capital budget is exceeded, the total update spares and programming
units must be decreased to meet the dollar constraints, increasing the
update time. The update time is independent of the number of micro-
processor firmware changes; therefore, the capital is also independent
of the change rate.

The update expenses are due to the labor costs associated with the
programming unit operation, the installation efforts, and the costs of
crating and shipping. Since these tasks are performed for each micro-
processor system each time a program change occurs, the expenses are
dependent on the system market and program change rate. The
economic dependencies are shown in Fig. 4.

Using standard techniques, we can determine the economic feasibil-
ity of alternate memory schemes for microprocessor-based systems.
One alternative, for example, could be to determine the benefits of
replacing EPROM memory with random access memory (RAM) and

MICROPROCESSOR FIRMWARE UPDATING 2305

TOTAL J
UPDATE UPDATE || PROGRAMMING o cAPITAL

TIME SPARES

MICRO-
PROCESSOR
BYSTEMS

EXPENSES

FIRMWARE
CHANGE
RATE

Fig. 4——Economic dependencies.

magnetic bubble store as backup. This possibility, even though initially
more expensive, has the capability of being updated electrically via a
data link, and may offer savings over the life cycle of the system.

V. SUMMARY

Algorithms related to the EPROM firmware update process for micro-
. processor systems have been developed in this paper. They give the
update time, the number of update spares, and the numer of program-
ming units required at a centralized site for a given firmware installa-
tion distribution. The algorithms presented do not render policy deci-
sions, but enable the user to determine the economics and responsive-
ness of alternative administrative schemes.

REFERENCE

1. E. L Jury, “Theory and Application of the z-Transform Method,” New York: John
Wiley, 1964.

2306 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1981

