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Coherent phase-shift keying (cpsk) and differential phase-shift
keying (DPSK) are widely used modulation methods in digital com-
munications. Bandwidth efficiency, good noise immunity, constant
envelope, and simplicity of implementation make these schemes par-
ticularly attractive for use over the satellite, terrestrial radio and
voiceband telephone channels. While system analyses abound in the
literature, treatment is usually restricted to the additive Gaussian
channel. Important issues determining ultimate performance, such
as the joint effect of intersymbol interference and the acquisition of
carrier phase have not been adequately addressed. The main purpose
of this paper is to develop analytical tools that can be used to assess
system performance under practical operating conditions. Pure co-
herent demodulation schemes such as cpsk are ideals which are
rarely achieved in practice, and carrier phase must be estimated
prior to and/or during data transmission. This requires start-up
time, as well as added equipment, and the fidelity of the phase
estimate ultimately determines performance. In contrast, DPSK is
independent of carrier phase, since decisions are made on phase
differences. However, this comes at a price, and it is known that ideal
multiphase DPSK suffers an asymptotic performance penalty of 3 dB
in signal-to-noise ratio (s/n) over ideal cpsk. We develop a new
rigorous method for calculating the error rates of both cpsKk and
DPSK, under a variety of operating conditions. In particular, we find
that the intersymbol interference penalty for quaternary DPSK is about
1 dB worse in s/n than for cpsk. We demonstrate that the detection
efficiency of cPSK approaches the ideal, provided that the s/n of the
phase-recovery circuit is about 10 dB more than that at the receiver
input. Alternatively, for the same s/n, a 10-baud phase-locked loop
integration ltime is required to achieve near-ideal performance.
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I. INTRODUCTION

Coherent phase-shift keying (cPsk) and differential phase-shift key-
ing (DPSK) are two techniques often used in digital communications
over channels such as satellite, terrestrial radio, and voiceband tele-
phone. The literature abounds in analyses of their performance under
a variety of conditions. A sample collection of some of this literature
may be found in Ref. 1. The chief reasons for the widespread use of
these techniques are simplicity of implementation, superior perform-
ance over the additive Gaussian noise channel, minimal bandwidth
occupancy, and minimal envelope variation.

The relative performance of cPsk and DPSK systems is well under-
stood only in the presence of additive Gaussian noise. In this case, the
detection efficiency of DPSK is known to be about 1 dB (in s/n) below
that of cpsk for binary modulation and this degradation approaches 3
dB for multilevel systems. In applications where a 3-dB loss in s/n is
important, such as in down-link satellite, space communications, and
terrestrial radio under deep fading conditions, cPsK is the preferred
method. In cpsk, however, the generation and extraction of a local
carrier-phase reference at the receiver is required. A coherent phase
estimate is usually obtained by using phase-locked loop (PLL) tech-
niques, and because of frequency instabilities and phase jitter inherent
in transmitter and receiver systems, carrier recovery loop bandwidths
cannot be made arbitrarily small. Consequently, in practice a noisy
phase estimate is obtained and only partial coherent reception can be
claimed. The reason for using DPSK is its immunity from slow carrier-
phase fluctuations; therefore, the phase recovery problem inherent in
cpsk is avoided. However, the detection efficiency of DPSK may ap-
proach that of cPsk under noisy phase estimation conditions and
intersymbol interference (1s1). The need to understand this phenome-
non on a fundamental level is the principal objective of this paper.

As bandwidth occupancy is always important, the effects of 1sI
generated by the use of band-limiting filters must be taken into account
in any analysis of these systems. Because of the linear nature of the
demodulation process in cpsk, the effect of 1s1 has been treated in
great detail. Since ppsk demodulation is inherently nonlinear, the
analysis of performance is very difficult and no adequate analytical
methods are currently available. Also, the combined effects of imper-
fect phase estimation and 1sI on cPsK must be determined so that the
relative detection efficiencies of band-limited pPSK and cpsk can be
fairly assessed.

In Section II of this paper, we describe a technique for determining
the degradation in M-ary cPsK operating in the presence of 1s1, additive
Gaussian noise, and imperfect carrier phase. In Section III, we consider
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the performance of M-ary DPSK subject to 1s1 and additive Gaussian
noise.

Il. COHERENT DETECTION
2.1 System description of CPSK

Figure 1 shows the M-ary cpsK system that we consider. The signal,
s(t), before the transmit filter can be represented as

s(t) = Re{Ax(¢t)exp[i 2nft + W]}, i = V-1, (1)
where the baseband modulation signal is

-]

x(t) = kz exp(iap)rect[(t — kT)/T], (2)
and the constants A, f;, and p are the carrier amplitude, frequency (in
Hz), and phase, respectively. Also, rect(-) is the rectangular window
function, T the signaling interval, and the sequence of discrete phases
[ax] corresponds to the data sequence to be transmitted. Without loss
of generality, we assume that the M phase values of a; are uniformly
distributed with equal probability between (—=, 7). So, ax takes on
value in the set azeA,
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Fig. 1—M-ary cPsK receiver, M > 2.
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We also assume that the data phases in different time slots are
statistically independent.

In our model, the transmit filter, transmission channel, and receive
filter are linear and time invariant. Therefore, the complex envelope,
y(t), at the output of the receive filter may be written as

y(t) = x(t) ® h(t) + n(t) + in(t)
h(t) = hr(t) ® he(t) ® hr(t),

where hz(t), he(t), and kg (t) are, respectively, the impulse response of
the transmit filter, the channel, and the receive filter. The symbol
® denotes convolution. Also, n(t) + it (¢) is the complex envelope of
the Gaussian noise passed through the receive filter. For symmetrical
filters, n (¢) and 7 (t) are independently and identically distributed (iid)
Gaussian random variables with mean zero, and variance

o® = No J | Hr (f)|*df,

where N, is the double-sided spectral density of the original white
noise and Hz( f) is the baseband equivalent transfer function of the
receive filter.

2.1.1 Detection in CPSK

Assuming that the recovered carrier is exp[i (27 f.t + i )], where i is
an estimate of p in eq. (1), the detector operates on the signal, w(t),
represented as

@

w(t)= Y z(t— kT)expli(ar +€)]+ &+ in, (3)

k=—x
where £ and 7 are iid gaussian random variables with mean zero, and
variance o,
E=Q N,
is the phase error, and

z(t) = hr(@) ® he(t) ® ha(t) ® rect (%)

To estimate the transmitted phase, ap = ®eA at ¢ = 0, an ideal CPSK
detector measures the phase 6 of w(t) at t = t, and a correct decision
results when

T ™
P-—<l<®+—,
M

M
# = phase angle of w (%),
w(t) = w(t) I (4)
a=®
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2.1.2 Error rate for M-ary CPSK

Here, we briefly review some known results for cPSK and then
develop new results applicable to our more general model.

Error-rate calculations for ideal cpsk in added Gaussian noise can
be found in Refs. 2 to 7. References 8 and 9 provide numerical methods
for calculating the probability of error in the presence of 1s1. Reference
10 takes into account 1s1 and demodulation phase error, but the results
are restricted to only binary and quaternary systems. We now gener-
alize these results.

Using the union bound and the representation of the received signal,
eq. (3), it follows from eq. (4) that the probability of error, Pe(| D),
given that the phase ® is transmitted, is

max (P, P;) < Pe(|®) < P, + P,,

P = Pr[sin(a -®+ 3%) < 0]
= Pr{h_n w(to)exp[—i(@ - M’i)] < 0},
P, = Pr[sin(ﬂ -0- %) > oil
- Pr{Im w(tq)exp{—i ((I) + %ﬂ > o}. (5)

Note that the average symbol probability of error Pe is

where

1
Pe = 'H ¢§A Pe(]q))

But, since the signal constellation is assumed to be circularly symmet-
ric, Pe(|®) is independent of ®.
For convenience, we shall now assume that ® = #/M. Hence,

P, = Pr(lm[ruexp[i(ﬁo + % + e)]
+ E’rkexp[i(ﬁk + ar + E)]} + < 0), (6)

rkexp(iﬁk} = Z(to - kT)

and )}’ denotes the exclusion of the term % = 0. A similar expression
can be written for Po.

where
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Accurate estimations of P, and P; are easy to obtain in the presence
of only Gaussian noise, but are more difficult when 181 is added and
are even more tedious when the distribution of carrier-phase error, e,
must be taken into account.

In the next section we derive an exponentially tight upper bound on
these quantities for a fixed carrier-phase error and then perform
asymptotic [large signal-to-noise ratio (s/n)] analyses on these upper
bounds for a given distribution of carrier-phase error.

2.1.3 Bounds on the error rate

We begin by writing eq. (6) as

P=< PI[I(E) +< —ro,sil.'l(“.!,l—“';r + fo + e) ]>(, (7)
where ( ). denotes expectation with respect to €, and where,
I(€) = Y're sin(Br + ar + €). (8)

Before we can proceed with eq. (7), we need specific information on
the probability density function (pdf) of the demodulating phase error
¢. We shall assume that the phase reference is derived from a pure
tone by a first-order pPLL. It is well known' that the resulting pdf for
the phase error, ¢, is

exp(A cos €)
AV |e| = 9)

where A is the s/n at the input to the pLL multiplied by the reciprocal
of the pLL bandwidth,

De(e) =

G

A= :
NpBL

(10)

In eq. (10), G is the average power in the carrier, N, is the double-
sided noise spectral density, and B, is the noise bandwidth of the
linearized PLL. Also, in eq. (9), Io(x) represents the modified Bessel
function of the first kind and of order 0. For a second-order PLL, the
pdf of € is also approximately given by eq. (9). We shall use this density
to obtain bounds on P:.

Since € is a symmetric random variable, eq. (7) yields

P, =% (V(© + V=),

where

rosin[(m/M) + Bo + €] + 3 risin(ax + Bi + e)] (1)

1
Vie) & 3 erfc[ %a
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Using upper bounding techniques and Laplace’s method,'! we show in
Appendix A that

P, < Jia + Jaa,
where
J exp{—p*[sin’[ (7/M) + Bo — €] + D(1 — cos e)]}
1a¥3 {cos € + (2/D) cos 2[(7/M) + Bo — €]} />
exp{—p? sin’[ (m/M) + Bo]} _ rs o1,
T+ @/D) cos 2A/M) + B} 2 |"° ~ 2007+ 07 >
A
=y 2, D =3
oi=Y'rk PE
o (i) 1-Zcos2 (T4 + D>1
eo—Dsm i Bo Bcos u Bo e |, .
and

Joa = (1 - g) V27Dp?® exp[—Dp*(1 — cos §)], 8 = % + fo.

Note that p? is the s/n of the system. Also, D can be regarded as the
ratio of s/n in the phase recovery circuit to that in the PSK system or
the integration time in bauds.

Similarly, we can show that

P; = Jyg + Jag.

In summary, the average symbol probability of error, Pe, for M-ary
CPSK system can be upper bounded by

exp{—p*[sin’[(7/M) + Bo — &] + D(1 — cos &)]}
{cos € + (2/D) cos 2[(m/M) + Bo — €]}/

exp{—p? sin’[(7/M) + Bo]}
{1+ 2/D cos 2(m/M + Bo)}'"*

+ 2 ':1 —wj’ V2rDp?

Xexp{—Dp'z’:l—cos( +Bo):l} pi>1,

1 . 2
eo=Bsm2(ﬂ—7;+Bo)[l——cos2(%+ﬁo) + ---],D>> 1.

This upper bound becomes

P=<2 expl:—p2 sin’ (% + ﬂo)j|, (12)
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when phase estimation is perfect, D — . Equation (12) is the well-
known Chernoff bound for M-ary cpsk."
If the observation interval of the PLL is large, D >> 1, and if M > 1,

1 . 2
€ ==Bsm 2(%+Bo)[l —Ecos 2(1‘14+ Bo)],

and

P= exp(—pzsinz(% + ﬁo)
x{l - 2eoslln/M) + o [1 -2 cos 2(% + B)]})
+ exp[-pzsinz(% + ﬂo)]
~ exp(—pzsinz(% + Bo)

g o))

N
2(a* + of)
Comparing egs. (12) and (13), we see that the degradation in s/n

because of imperfect phase estimate for multiphase CPSK systems is

asymptotically given by

o= (1= el )l ool )}

where G — 1 as D —  as it should.

2

p L, pi> 1, M>2,D>1. (13)

2.2 Example of quaternary (M = 4) CPSK system

Let us consider a quaternary (M = 4) cpsk system and assume that
the channel is ideal.

If 4-pole Butterworth transmit and receive filters are used, the
resulting average symbol probability of error is plotted in Fig. 2. Note
that the bound is fairly tight and when the s/n of the phase recovery
circuit is about 10 dB more than at the receiver input, the detection
efficiency of CPSK is essentially determined by 1sI alone. Alternatively,
we can say that, for the same s/n, a 10-baud PLL integration time is
required to achieve this 1s1-limited performance. For this filter, the 1s1
penalty is about 1 dB.

If M > 2, it is well known that the penalty in s/n because of Gaussian
noise alone is asymptotically given by 1/[sin*(m/M)].
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Fig. 2—Probability of error for quaternary phase-shift keying (Qpsk) with rectangular
signaling, noisy carrier-phase recovery, and 4-pole Butterworth transmit and receive
filters. The s/n in decibels is defined as 10 logo[ T/2No], where IV, is the double-sided
noise spectral density and the ideal received signal power has been normalized to unity.
Parameter D is the ratio of s/n in the phase recovery loop to that in the Psk system.
The double-sided 3-dB bandwidth of the transmit filter is 2/7 and that of the receive
filter is 1.06/T. Sampling time is 1.747.

The upper bound in eq. (13) indicates that if the definition of s/n is
modified to take into account the 1S1 power o7, the additional penalty,
because of imperfect phase estimation, is

G = [sinz(% + Bo)

<1 Zeot(70 )1 -%cosz(%+ﬁo)}}]".

This quantity is plotted in Fig. 3. We observe that the s/n penalty

PHASE-SHIFT KEYING 2315



20 — T T 1 T 17 + 1 T 1T T T 1T
QPSK
18 — —
16 — ~—M=16 —
//
— ﬂ
4
woqg - ﬁ:{
[3] _
& L D—ec0 _
z
c
=
< | -
4
w
o
o 10— ,f"‘ﬁ —
= P'-—-.__________
: £ _
7
s 7=
’
i _
E| - D—e=00 -
-l
<
z 61 -
Q
@
- —
A '/,/’—4 _
‘___.____
= —7
/
2 p—eo00—~
S T I T I T T S S
5 7 9 1 13 15 17 19

SIGNAL-TO-NOISE RATIO D

Fig. 3—Signal-to-noise ratio penalty for M-ary cpsk with imperfect phase estimation.
Parameter D is the ratio of s/n in the phase recovery loop to that in the PSK system.

because of 1sI is independent of M. In Fig. 3, also note that G: —
1/[sin*(m/M)] as D — oo,

Il. DIFFERENTIAL DETECTION
3.1 System description of DPSK

The M-ary DPSK system is shown in Fig. 4. As before, the baseband
modulated DPsK signal can be represented as

x(t)= Y exp(ian)rect[(t — kT)/T]. (2)

hk=—o
Here, however, the sequence of phases [8:] = [az+1 — ax] corresponds
to the data sequence to be transmitted. Again, we assume that M
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Fig. 4—M-ary DPsK system.

phase values of 8, are equally distributed over the interval [0, 27) and
choose

Bx=(20-1) % 1< I=< M, modulo 2.

As in cPsK, we represent the set

7 37 T
[EZ:EZ:"'!(2A{_'1)EZ}

by [A]. Also, we shall assume that the phase symbols, 8,’s, in different
time slots are statistically iid.

If the received phasor at time f is indicated by z and the one in the
succeeding interval is indicated by zq4, the detected phase difference
measured by an ideal differential detector is

0 = angle of w, w A z*z,,
where * represents the complex conjugate. For the system shown in
Fig. 4,

z= Y (gr+ ipexp(iaz) + n. + ins, (14)
k

-——0

and

za= Y (8r + ipri)exp(ior) + n., + in,,, (15)

h=—cc

where g: and p; are real,

&k + ipr = f h(to — pt)rect('u _TkT) dp. (16)
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As before, h(t) is the overall impulse response of the system with
transfer characteristic

H(f) = Hr(f)Hc(f)Hr(f). (17)

In egs. 14 and 15, n., n,, n.,, and n, are iid real Gaussian random
variables with mean zero and variance

02=Nuf | Hr(f)|*df,

where N,, is the double-sided spectral density of the added white
Gaussian noise. In eq. (17), Hr is the transfer function of the transmit
filter, Hg, of the receive filter, and Hc( f), the transfer function of the
channel. The assumption that the Gaussian noise at #, is independent
of the noise at & — T can be justified if the receive filter bandwidth is
small compared with 1/7. Most of our analysis can be extended if
these two noise samples are correlated.

3.1.1 Probability of error for M-ary systems

If the transmitted symbol associated with the time index 2 = 0 is
®eA, a correct decision is made when the received phase difference ¢
is such that

T m
O-—<f<®+—.
M M

As before, the following bounds apply:
max (P, Ps) = PE(l(D) =P+ Pz,

where

P = Pr[sin(a -® +ﬂ—7;) < o},
Py = Pr[sin(o —® - %) > 0}. (18)

These statements are identical to the ones that apply to CPSK, but here
@ represents a “differential phase” and, therefore, the estimation of
these probabilities becomes extremely involved. Good estimates are
only available when Gaussian noise is the sole source of impairment.

We proceed to analyze P; and observe that a bound on P, also
provides a bound on P,. Since the calculations are extremely tedious,
we relegate the details to appendices and strive to develop only the
main ideas here. Therefore, from eq. (18), we get
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P(|®) =

ofufe-er3))
el nf-1(0-5)

- Pt 2"z —i (0 - 7)]<)

= Pr{Re (z)*zdexp[—i (q) —5it g)] < 0}

= Pr(Re z{z: < 0), (19)

where

21 =2

- —i(e-—Z 4T
23 = zqexp| —i sl

and z and z, are given in eqs. (14) and (15). Since

2 2
Re 2tz = }2‘;2’* - {21;22 , (20)
eqs. (19) and (20) yield
Pi(|®) = Pr(|un| < |w2)), (21)

where

21+ 2 2+ zaexp — i[O — (7/M) + (n/2)]

T 2
=1 . .
=Y 3 {(gk + ipr) + (8k—1 + ipe1)
k=—w
X exp[—i(fb — % + g)}}exp(iak} + £+ s
21— 22 2= zqexp — i[® — (7/M) + (7/2)]
Wwe = =

2 2

1 -
¥ 3 {(gk + ipr) — (8r—1 + iPr—1)

k=—m

x exp[—;(fb - ﬁ_4’+ 2)]}6Xp(iak) + -+ in-,

and where £, 14, {-, and n- are Gaussian noise terms, given by
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_n + Re(ne + insqe) exp — i[® — (v/M) + (7/2)]

§+ 2

e = n. + Im(n. + insg) exp — i[® — (7/M) + (7/2)]
T 2

= ne — Re(nea + insg) exp — i[® — (/M) + (%/2)]

2

and

o = ns — Im(nea + inea) exp — i[® — (/M) + (7/2)]
= 5 .

It can be verified that the above Gaussian random variables are iid
with mean zero and variance ¢%/2.

3.1.2 Exact computation of probability of error

For a given symbol sequence, the conditional probability of error is
seen from eq. (21) to be given by the probability that a particular
Gaussian quadratic form exceeds another. This is a well-known prob-
lem and the answer can conveniently be expressed in terms of the
tabulated Marcum @ function.” Thus, after some algebra, eq. (21) can
be shown as"

P, (|, symbo! sequence)

o )]
ot + o3 Ji + 3 Vi + a3

O’% ( a- a4+ )
+ y——, 22
T+d \VArd Vol )

where

Qla, b) = Jm exp(— L ; xQ)Io(ax)xdx,
b

and I.(-) is the modified Bessel function of the first kind and of
order n, .

a+ = |(w1)g+,7,+|,

a- = |[(wa)e |,

oi = (&) = (1}) = ¢*/2
and

o= (&)= (") = /2.
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The major difficulty at this point is clearly carrying out the averages
in eq. (22) over all possible symbol sequences. In general, a- and a+
contain an infinite number of 1s1 terms and the averaging process is
difficult. Clearly, for a small number of 1s1 terms, it can be carried out
by enumeration. But, in general, the number of terms in computing
the average explodes exponentially and enumeration becomes intrac-
table. For example, for 10 181 terms and a quaternary DPSK system, the
number of terms is about a million! So, we obviously need more
efficient methods of estimating these averages.'®

In this paper, we assume that the number of dominant ISI terms
contained in a. and a- is not large and that they become insignificant
when 151 samples are far away from the desired sample. Assuming that
the same number N indicates the number of dominant preceding and
succeeding 1s1 samples (total significant 181 terms is 2NV), our approach,
then, is to obtain upper and lower bounds on P, as a function of N and
demonstrate that these bounds coincide with N — oo,

For any N, the evaluation of these bounds requires M*" computa-
tions. This can be carried out with modest effort on a high-speed
digital computer. The error becomes smaller when N is increased.

We show in Appendix B that the error probability can be bounded
as

x1(N) = Pi(| D) = x2(N),

where

1
1+ (1-4)°

x{1 _ <Q[ V2a. , V2a_(1 - A) }>}
oVl + (1—A)P) oVl + (1-A)°
L 1-ay @[ V2a (1 - A) Vaa. ]>
1+ (1-4)° ov1+ (1 =47 oVl + (1- A2

[ B el

k>N

A2p2
— - 23
4exp( 5y I (23)
h<-N
k>N

XI(N) =

and

PHASE-SHIFT KEYING 2321



1
1+ (1+A4)°

x{l _ <Q[ V2a, , V2a_(1+ 4) ]>}
\ Lov1l+ (1+4)% oVl + (1+A)*
L0+ A)? @[ V2a_(1 + 4) V2a_ >]
1+ (1+4)° oV1+ (1+ A2 ovl+ (1+A4)

[ G2l

k>N

AZ 2
+4 exp(— TS I Z,p Hi)' (24)
k<—N
k>N

In egs. (23) and (24), A and p are arbitrary, 0 < A <1, and
1 . . .
Gy = |§ {(gk + ips) + (ghor + zpk_l)exp[—z(q) - %+ g)]}

H, = [1 {(g,, + i) — (gh + ipkl)exp{—i(@ -Is 3)]} .
2 m 2

For any N, we can choose A and p by trial and error so that the
difference between the upper and lower bounds is a minimum. Since
this optimization is not critical to our method, we choose

20k ((a®) ? \1”
(R (Fmge)]

of = max( Y Gi ¥ Hﬁ).
k<—N k<—N
k>N k>N
For A < 1, the difference, Z, between the upper and the lower bounds

can be shown as

Z= ZA[I

+
+8 exp(_

X2(N) =

where

ai = a?,
al oz ({(a?) &
p )ﬁ( p ““?RA)

)
A (a?) o
S| (T nge) |}

{
k>N

2
+8 exp{— EAH§ [O%z((zz> + m;ﬁa)]}, (25)
k<—N

k>N

+ 8 expy —
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where

Pi(|®, N)

AL )
1)

and a; and a- contain only the first 2N significant terms. When N —
o, Z in eq. (25) can be seen to approach zero.

Since a+ and a- in eqgs. (23) and (24) contain a finite number of 1s1
terms, we can use the direct method to evaluate the averages and then
compute the bounds. We choose the initial N so that ok < 1, A =
Jo_n. We then increase N so that the desired accuracy of computation
is achieved.

3.1.3 Upper bound on the probability of error

Since the exact evaluation of P,(|®) is difficult—though we have
developed in the last section numerical techniques which can be used
to compute P, with any desired accuracy—we attempt to derive an
upper bound on P;,.

Although our bounding approach seems reasonable, the final bound
that we obtain turns out to be loose. Our purpose in including this
section is to alert readers about this approach and to emphasize the
importance of the tedious, but necessary, computations outlined in
Section 3.1.2.

To facilitate our bounding techniques, we need the following rela-
tions. For any two random variables x and y and any two real numbers
a and A, we can show (see Fig. 5) that

Pr(x>a + A) — Pr(y < —-A4)
=Pr(x+y>a)
=Pr(x>a—A) + Pr(y > A). (26)
Equations (21) and (26) yield
Py(|®) = Pr(|w:| — |unr| > 0)
= Pr(|w:| > A) + Pr(—|un| > —-A)
= Pr(lw:| > A) + Pr(|w:| < A), (27)

where A is arbitrary. We choose A > 0 so that the upper bound in eq.
(27) is a minimum. The method of choosing A will be discussed later.

Now, for any complex random variable z = x + iy, we can show (see
Fig. 6) that
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x+y>a

N

A / %

0 a-A a x4 1] a 2+ AZ x

x>a-A y<—-A

(a) (b)

Fig. 5—(a) Upper bound on Pr(x + y > a), x and y, any two random variables and A
is arbitrary. (b) Lower bound on Pr(x + y > a), x and y, any two random variables and
A is arbitrary.

Pr(|z| > a)
< Pr(|Re z| > a1) + Pr(|Im z| > va® — aJ).
Hence,
Pr(| wz| > A)
= Pr(|Re wz| > A)) + Pr(|Im w:| > A2), A} + A3=A% (28)

where

Rew:=¢( + ¥ Creos(ar + Ap)

h=—x

Im w; = n- + E Crsin(ay + Az)

h=—x
1
Cy= IE {(g% + ipr) — (gr—1 + ipk—l)exp[—i(dl - %+ g)]} |
and
Ciexp(i\) = = { (s + ips) — (gacs + ipa_s)exp| —i @ — =+ T
ReXP(IAg) = 9 k Dk k—1 IPr—1)€Xp 1] H 5 .

Since the real and imaginary parts of w, are the sum of a Gaussian
random variable and a set of interference terms, various methods given
in Refs. 16 to 18 and 19 to 27 can be used to bound Pr(|Re w:| > A,)
and Pr(|Im wz| > A), A} + A3 = A”. Even though the other bounds
are sometimes claimed to be tighter, we shall use the simpler Chernoff
bounds.
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Appendix C shows that

2 _ 2
Pr(|wzl>A)52exp[— ;2+02_1 ]+2exp[—%%’_ﬂl—:|,

where
@
A=Ac ( . 2M)
A=A (4 2M)
Cin1 = max{[Cocos(ao + Ao) + Cicos(az + A1)]}

— g = —

M
Caz = max{[Cosin(ao + Ao) + Cisin(a; + A1)]}

m™

M
¢ =3"C}
and
zn é Z .
k=—mx

ke

Also, for any complex random variable z = x + iy, we can show (see
Fig. 7) that
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-—-|[mt|<a W‘ = Re z
>
/

|Re z|< a

Fig. 7—Upper bound on Pr(| z| < a).

Pr(|z| <a) =Pr(|Rez|<a, |Imz|<a)
Pr(|z| < a) = Pr(|Re z| < a)
Pr(|z| < @) = Pr(|Im z| < a).

Hence,

Pr(|w.| < A) = Pr(|Re w,| < A).
Since

Re wy = |Re w,|,
Pr(|Re w:| < A) = Pr(Re w: < A),

and

Pr(|w:| < A) = Pr(Re w, < A).
We write

Rew, =&+ + Y Dicos(ar + 8)

k=—m

Imw, = n+ + 2 Dysin(ay + 8r),

k=—=

1
3 {(gk + ipx) + (g + ipk-ﬂexp[*'i(q’ - _Il_; + g)]} ',

Diexp(idy) = _;. {(g:. + ipy) + (gr—1 + i}?k—])EXP[—i(‘I’ - A_-r; + g):l};

Dy =
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and

Y Dicos(ax + 8x)
k=—o
= Dycos(ao + &) + Dicos(ar + 81) + X" Dycos(ar + 8z).
Using Chernoff bounding techniques, it can be shown that
(Dy — A)E]

Pr(lun| < A) = exp[—W

where

Dy = min[ Docos(ao + 8) + Dycos(a; + 81)]

— o =
o1 o ——M
o = 3D}

The upper bound on Pi(| 8o = #/M) can, therefore, be written as
T (A1 — Can)?
Pl( BO = H) =2 exp[—ﬂ:l
(A2 — Ca)’ (Dy — A)°
+2"xp[ EEET 2 R -
A —Cm=0,A;— Cry=0,Dy— A=0,AT + A3=A% (29)

The bound is minimum when A, A, and A; are chosen so that the
derivative of eq. (29) is zero. This can be found by using well-known
numerical methods.

3.2 Example of quaternary (M = 4) DPSK system

Let us consider a quaternary (M = 4) DPSK system and assume that
the channel is ideal.

If 4-pole Butterworth transmit and receive filters are used, the
bound given by eq. (29) is plotted in Fig. 8. The bound with zero 1sI is
plotted in Fig. 9. The exact probability of error with 1sI is plotted in
Fig. 10. With or without Is1, the bound is unfortunately not very tight.
Actually, one can show that the penalty as predicted by the bound
with zero 18I is about 4.6 dB worse than the actual penalty for a binary
system, and 8.3 dB worse for a quaternary system. This is inherent in
our techniques and not the result of using Chernoff bounding methods.
In our opinion, obtaining tighter bounds is still an open problem.
Comparing Figs. 2 and 10, we note that Is1 penalty for quaternary
DPSK is about 1 dB worse than for cpSK. We needed 9 1sI terms to
compute Pe with 5 percent accuracy.
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SIGNAL-TO-NOISE RATIO IN DECIBELS

Fig. 8—Upper bound on the probability of error for differential QPsk (DQPsK) with
the same transmit and receive filters as in Fig. 2. Other assumptions are as in Fig. 2.

IV. SUMMARY AND CONCLUSIONS

For multiphase M-ary cPskK, we develop an analytical procedure for
determining detection efficiency when the system is subject to additive
Gaussian noise, 18I, and imperfect carrier-phase estimation. For a large
s/n, we provide a simple formula for calculating the combined penalty
caused by 18I and noisy phase recovery. For multiphase DPSK, where
the detection is inherently nonlinear, a rigorous method is developed
for calculating the error rate in the presence of 1s1 and additive
Gaussian noise. Using these analytical techniques, it is possible to
compare the performance of cPSK and DPSK and examine various
parameter trade-offs. Numerical examples are provided to illustrate
our methods.
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Fig. 9—Upper bound on the probability of error for nQrsk with zero 181.

APPENDIX A

Chernoff Bound on the Probability of Error

From Section 2.1.3,

1

P, = 2j [Vie) + V(—e€)]p.(e)de

=J [ Vie) + V(—e€)]p.(e)de

=J] +Jz,

where
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Fig. 10—Probability of error for pqQPsK with the same transmit and receive filters as
in Fig. 2. Other assumptions are as in Fig. 2. Note that 9 1s1 terms were needed to
compute Pe with 5 percent accuracy.

5
gy =J [Vie) + V(—€)]pele)de
0
Jy = J' [V(e) + V(—e)] ple)de, (30)
f)

and where V(¢) is given in eq. (11). Note that sin(7/M + Bo — €) > 0 for
0=<e<a/M+ By, also, sin(w/M + Bo+¢€) >0for0=e< 7 — (7/M
+ fo). Hence, sin(n/M + Bo + €) > 0 for 0 < € < §, where

5=min|:%+,30,1r— (ﬂ%wo)}.
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Since
0 = erfe(x) = 2,

0=[Vie) + V(—e)] = 2,
and, therefore,

Jo=2 j Dp.(e)de = Pr(|e| > §).
8
Now, from eq. (11),

Vie) = Pr[—n — I(e) > rosin(;% + Bo + e) } (31)

where 7 is a zero mean Gaussian random variable with variance o* and
I(e) is given in eq. (8). )
Using the Chernoff bound

Pr[x > a] < exp(—pa)(exp(ux)), L=0,
eq. (31) yields

Vie) = exp[—)\rusin(% + o + e) ]exp{-—)\[n + I(€)]}. (32)

For a given ¢, I and 7 are independent, and since the data phases
a;, in different time slots are iid,
D .
exp{—A[n + I(e)]} = exp 5 [T (exp[—Aresin(Be + ar + €)])a,. (33)

We shall now assume that M is an even number so that if ®eA,
(m + ®)eA. Hence,

(exp[—Arsin(Br + ax + €)])a,, 0=oar<2m
1
= 3 (exp[—Arwsin(Br + ax + €)]

+ exp[—Arsin(Be + 7 + ar + €)])a,, O<apr<m

= (cosh Arsin(flx + ax + €))a,, O=ar<m.
Since

cosh x < exp(x?/2),

(exp[—Arsin(Br + ar + €)])a,, 0=<ap<2r7

Ny,
= (exp —2—5111 (Br + ar + €) [Vay O=ar<wm

AQ 2
= exp (%) (34)
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From eqs. (32), (33), and (34),

2
Vie) = exp[-—)\rosin(% + Bo + e)]expl:-);— (o + o?)], A=0,

where
or=Y'ri.
Similarly,
7 A2
V(—e) < exp[——?\rosin(ﬂ—l + B — e)}expli; (® + o?)}.

Hence, for 0 < e < /M + By, sin(n/M + Bo — €) > 0, and

oo <] RG]

Also, for0<e<a — (n/M + Bo), sin(z/M + o + €) > 0, and

risin’[(m/M) + Bo + €]
V(e) = exp| — e '
Hence,
2 2.2
Vie) + V(—¢) = exp[— rosin [(ZTI;M_: :%)BU + f]}
. _ risin’[(n/M) + Bo — €]
exp 5+ o) ,

= exp’:—pzsinz(% + fo + e)i|

+ expli—pzsinz(ﬂldr + Bo — e) },

o T8
TP

0$e<8=min[%+ﬂo, ™ — (%+Bo)]. (35)

of=Y'ri,

The parameter p” is the s/n of the system.

Note that 8, is the phase angle of the complex overall impulse
response evaluated at ¢ = f. In a well-designed system, it is usually
small, and eq. (35) shows that the optimum value of 3, is zero. Also,
since B, is usually small and we are interested in M > 2, § is usually
a/M + Bo.

Thus, from egs. (9), (30), and (35), we conclude that
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8
_ 1 —o2in( _
Ji=da= AT J; {exp[ p~sin (M + Bo e)]

+ EXP[—FFSiHQ(% + o + E)]}EXp[Dpzcos elde, (36)

where the quantity D can be regarded as the ratio of s/n in the phase
recovery circuit to that in the PSK system or the integration time in
bauds.

We have not been able to evaluate eq. (31) in closed form but, if
desired, numerical techniques can be used. To obtain physical insight,
we shall assume that p® > 1 and use Laplace’s method to evaluate eq.
(36); the technique is an application of the following theorem: If h(t)
is a real function of a real variable t, has a unique maximum at t =
a, a1 =< a < az, and if x is a large positive variable, it can be shown
that

ag _ 1/2
flx) = f g(t)exp[xh(t)]dt = g(a)exp[xh(a)] (ET:J) .

From eq. (36),
_ 1
"~ 2nl(Dp?)

&
Jp = J exp{p{D cos € — sinz(e - % - 30)]}de, (38)
1]

]
Je= J’ exp[ pz[D cos € — sinz(e +— 4+ Bo)j“de. (39)
. M

The saddle point € at which the exponent in eq. (38) reaches its
maximum in (0, §) is given by the solution of
sin € _1
sin 2[(7/M) + Bo—«] D’

Jia {Jop + I}, (37)

(40)

The transcendental eq. (39) can only be solved numerically. However,
we can obtain a series solution for e by using Lagrange’s reversion
formula.?” If a function f(z) is regular in a neighborhood of 2, and if
f(20) = wo, f'(20) # 0, then it can be shown™ that

flz2)=w
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has a unique solution

% - 2 dn—l
2=20+ Z_: w n'wﬂ) {dzn—l [(I)(z)]"} , (41)
where
Z2— 20
D(z) _—f(z) m——

Choosing zp = 0, egs. (40) and (41) yield
1 .
€ = B sin 2(1“14 + Bo)

2
x[1-50052(5+ﬁ0)+---j|, D> 1, 0=e <.

From Laplace’s formula and eq. (38)

Iy = exp{—pz[sinz(ﬂ—q; + Bo — 60) — D cos e]}

1/2
kia
><{2,02[JD cos € + 2 cos 2(m/M + Bo — Go)]} - @

Similarly, it can be shown that the exponent in eq. (40) reaches its
maximum in (0, §) at e = 0 and

J. = exp{—pz[sinz(l% + Bu) - Dj|}

1/2
a
x[2p2[D + 2 cos(n/M + Bu)]] - W3

Forp’>1,D>1,
exp(Dp®)
27Dp” ‘
From egs. (37) to (39) and (42) to (44)
I = 1 (exp{—pz[sinz[(w/M ) + Bo — €] — D(1 — cos €)]}
T2 [cos € + (2/D)cos 2[(n/M) + Bo — €)1
exp[—psin’[ (m/M) + Bo)] )
[1 + (2/D)cos 2[(7/M) + Bo]]V?)

I)(Dp®) = (44)

Also,
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T

S < Joa =2 f pe(e)dt

8

1 w
 — 2
D) L exp(Dp?cos ede)

T 8 exp(Dp®cos 8)
I Io(Dp*

(1 - g) V2w Dp* exp[—Dp*(1 — cos 8)]

u

pi>1, D>1.

APPENDIX B
Upper and Lower Bounds on the Probability of Error in DPSK

Let us write
2=2n+n.+ in, + 2r

Za = Zan + N, + INg, + 24r,

where
zav= Y (gr+ ipr)exp(iaz)
k=—N
k=N
2p = 2 (g& + ipk)exp(iak)
k<—N
k>N
ZdN = E (gk—l + ipk—l)exp(iak)
k=-N
k=N
and

Zar = ) (gr-1+ ipr-1)expliaz).
ey
Note that zny and zan contain a finite number of 1s1 terms, whereas zg
and z4g contain an infinite number. Without loss of generality, we shall
also assume that g, and p; are monotonic decreasing functions of | k|.
N is an arbitrary positive number.
Now

Py(|®) = Pr(|wwv + wir| < |wen + war|), (45)

where
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[ . ™ ™ 1
zZn + zanexp| —1 (‘D——+§)

win = — + £+ iy,

+ zqrexp| —1i d)—w+w-I
ZR T+ Z4drexXp 4 M2 |

Wr = 2 y
ZN — szexp_—i ({I) - ]%+ g)_
Wan = 3 + &+ in-
and
. T oow
zZp — zdnexp[—a (@ ~ M + 5)}
Wwrr = 2 .

Note that winy and wan contain a finite number of 1s1 terms, and £+ +
in+ and £~ + in- are independent zero means complex Gaussian
processes.

For any two complex numbers s and ss,

|81i—|82|_<.|51+82|5|31|+|82|. (46)
Hence, eqs. (45) and (46) yield
Pr(|winv| < |wen| = |wir| — |wer|) = Pi(| @)

= Pr(|wwv + wir| < |wen + w2r|)

= Pr(|wn| < |wen| + |wir| + |wer|)

or
Pr(.l_wil.( 1 _M) <= Pl(l@)

| wan| | wan |
_ Pr(|wm| -1 +|_WI_’=MR_I),

| wan| | wan |
Using the bound in eq. (26), eq. (46) yields
+
Pr(lw‘”l <1- A) - Pr(M'il-> A ) < Py(|®)

| wen| | wan|

+
< Pr(:w”"l <1+ A) + Pr(Mf—'> A), (47)

Wwan I | WwanN |

where we choose 0 = A< 1.
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For any two random variables x and y and any a > 0,
Pr(xy > a) = Pr(|x| >§) + Pr(|y| > p), (48)
where p > 0 is arbitrary. From eqs. (47) and (48),

Pr(lwwl <1- A) — Pr(|wan| < p)

|wan|

= Pr(|wir| + |wer| > Ap) = Pi(|®)

< Pr(lww[ <1+ A) + Pr(lwan| < p)
IEU2N|

+ Pr(lwir| + |war| > Ap).  (49)

Since wiv and wzy are independent complex Gaussian processes,
from Ref. 13,

2
Pr(—l wil gy A) o

| wan | "o+ ol(1 £ A)

a+ a-(1£A4)
X{1—-< , ’
{ @ [Ja% + 03(1 £ A)? Voi+ o3(1 % A)2] >}

o¥(1 £ A)?
ol + 03(1 £ A)?
a-(1£A) as ] s . O
x<@ : , 01 =03=—, (50)
[Ja¥+o§(1im2 Ja+aaxa2l” L 2

where a. and a- are the appropriate truncated values of a, and a-
defined in Section 3.1.2. Also, from Ref. 13,

gz 02

a-
Pr(lwen| <p)=1-<@ (—, £)>. (51)
Using Chernoff bounding techniques, we can also show that

A%ﬂ

Pr(|wir| > Ap) = 4 EXP(— m) (52)
k<—N
k>N

2.2
Pr(|wer| > Ap) = 4 exp(- ”—pH%—), (53)

k<-N
k>N

where

1 . ‘ '
o sl (353
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and
1 : ; '
Hi=|3 {(g,, +ip) — (8o + ka_,)exp[—’- (q) - %Jr g)]}l

Equations (49) to (53) yield

x1(N) = Py(| D) = x2(N),

where
N)=— L
XN =1 a4y
{ [ V2a. V2a_(1 - A) ] }
x{1-<@Q , >
ov1+ (1—A)? ov1+ (1—4)°
. (1-A)? [ V2a_(1 - A) V2a, ]
1+ (1-4)° aﬁ+(1—A)2’aJ1+(1—A)2>
-[1-<e(B= )
g a
A2p2 A2p2
—4dexp|——wF7 | —4eXp [~ =
2 H
k<E—N Gk 2 k-:Z—N k
k=N k>N
and
(N) —__1_
X =T+ A

x{1—<Q[ V2a. V2a_(1 + A) ] }
it oIt 0+l

N 1+ A4)? Q[ V2a_(1 + A) V2a, ]
14 (14 A)? ovVi+ (1+A)?% ovi+ (1+A)7° >

fcof ) )

a

A2p2 A2p2
+4exp [-——=—5 |\ t4exp |~
2 Gi 2 H; |’
kc:Z—-N * k<z—:N g
k>N . k>N

where A and p are arbitrary.
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APPENDIX C
Upper Bound on the Probability of Error

Now,
Pr(|Re w:| > A;) = Pr(Re w: > A;) + Pr(—Re w» > A))
and
Pr(Re w; = A)) =< exp(—pA.) (exp(n Re wo))
= exp(—pA,) (exp(u Re w:)).
Since the Gaussian random variable £ is assumed to be independent
of the interference

(exp(n Re ws)) = exp(p’0”/4) exp[u ¥ Crcos(ax + )\k)].
= o

Since B = ax+1 — ax, and we assume that 8)’s are iid, we can assume
that a;’s are independent, and

ar € A, k even
27 4w

3 M! M!

that is, the signal constellation for odd (even) k can be obtained by a

simple rotation of the constellation for even (odd) k.
Let us now assume that the transmitted symbol @ is 7/M so that

Py(|®) = P, (|ﬁo=%)

1
=]|,_42 P1 (Im —ao=%).

ake[o --,(w—z)%}gz\s, % odd;

Noting that

Y Creos(axr + Ax) = Cocos(ao + Ao) + Cicos(a; + A1)
h=—o
+ E" Creos(ay + Ak),
2 2

uwo

PI(RE Wy > A1|a1 —op = %) = exp{—,u.Al +
+ p[Cocos(ao + Ao) + Cicos(ar + ?\1)]}

X (exp[u Y" Crcos(ax + Ap)]).

We use the notation ” to indicate that 2 = 0, and £ = 1 terms are not
included.
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Now,
(exp[p 3" Crcos(ax + A)]) = [I" (exp[uCicos(ax + Ax)])
= J]” (exp[uCrcos(ax + AD)

even

X 1" (exp[pCrcos(ar + Ax)]).

odd

Most often, M = 2%, L an integer, and since this assumption simplifies
our bound, we shall assume that M is an integer power of two. (A
slightly more complex bound can be derived if M #* 2") Now,

17 (exp[pCrcos(ar + Ar)]) oyl —r<ar=m

even

= [I” (cosh[pCrcos(ar + Ax)]) oyl 0=ar<m)

even

1
= [I” = <cosh[pCrcos(ar + Ax)]

even

+ cosh[,uCkcos(g + ap + ;\k) }>
(u;lﬂ(n.ﬁ;—)

" < cosh[,uCkcos ; cos(ak + A + E)}

even 4

X cosh|:,uC;esinE sin(a;, + Ar + ;) ] > .
4 (a.\0<m_;—)

Since
cosh x =< exp(|x|),
and

cosh x = exp(x?/2),

(COSh[uCkCOS % COS(dk + A + g]

X cosh[kacos % sin(ak + Ar + E)] > =< exp(pCh)

4
(a. | 0<m£2—)

and

<cosh[,uCkcosE cos(ak + A + ;)]

202
X cosh uC,;u':OE‘:E sin{ ax + Ax + il > =< exp it
4 4 (o | 0=as=m/2) 4
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Identical bounds can be derived when % is odd. Therefore, we have
u?
(exp[pY” Crcos(ar + Ax)]) < exp (u Y Cr+= ¥ CE),
ke, 4 reng
where ; is a subset of [---, —2, —1, 2, 3, --.]. For simplicity, we
choose £, to be the null set.
Choosing optimum g,

™

Pr(Re we > A, lm - = ﬂ)

- _ {A: = [Cocos(ao + Ao) + Cicos(ar +A1)])*
= exp {0_2 + 2” C%} ’
A, — [Cocos(ap + Ao) + Cicos(ar + A1)] > 0.

Similarly, we can show that
ki

Pr(—Re ws > Ar|an — a0 = Jl_ff)

= _ {Al - [CUCOS(HO + An) + C]_COS(al + Al)]}z
— exp (0,2 + EH C%) L
Ay + [Cocos(ao + Ao) + Cicos(en + A1)l =0,

Pr(lIm w| > Az|en - o =%)

- a {A2 — [Cosin(ap + Ag) + Cisin(en + ?\1)]}2)
- exp (0_2 + 2” C%)

N {4 + [Cusin(ao + Ao) + Cisin(en +A1)])*
exp Z+3" Ch) ’
A + [Cosin(ao + Ao) + Cisin(a +A)] =0, A+ A3=A7%

and
(A1 — Can)? (Az — Cro)®
Pr(lu&l >A) =2 exp(—Tﬂzl + 2 exp —ﬁ N
where
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Cin = max {[Cocos(ao + Ao) + Cicos(ar + A1)]}

T
ap — 0p = ﬂ:
Ciz = max{[Cosin{ao + Ao) + Cisin(ay + A1)]}
— = —
ag o = M!
a2 =YY" Ci.

For zero 1s1, it can be shown that optimum values of A, and A: are

A=A cos(E + —W—),

4 2M
A2=Asin(;+%).

Even when there is 151, we shall use these values of A, and A..
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