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Adjustment algorithms for transversal equalizers derived from
least-squares cost functions are known to converge extremely fast.
While various simulation results confirming this fact abound in the
literature, a theory explaining the fast convergence has been lacking.
This paper reports on steps toward such a theory. For some commonly
used start-up data sequences it was found that algebraic properties
of the sampled signal vectors play a critical role in the transient
behavior of these algorithms; namely, successive signal vectors are
linearly independent for a large class of transmission channels in
the absence of notise. After N iterations (N being the number of taps),
the resulting coefficient vector is found to be related to well-known
equalizer coefficient vectors. If a single pulse is used as a training
signal, the zero forcing equalizer is obtained; if a pseudo random
noise sequence, with a period in symbols equal to the number of
coefficients is used, the steady-state solution of the cyclic equalization
is obtained. Thus, after only N iterations, the least-squares algo-
rithms yield a coefficient vector which is only asymptotically obtain-
able by gradient techniques.

. INTRODUCTION

Adaptive equalizers are important building blocks in modems for
digital data transmission over linear dispersive channels. They adap-
tively mitigate the adverse effects of intersymbol interference. A
critical parameter in the start-up performance of modems is the speed
of convergence of the equalizer adjustment algorithm. The overall data
throughput depends on it and, consequently, a high convergence speed
is desirable.

Various different equalizer structures are known at this time. In the
following, we concentrate on the frequently used transversal filter
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structure.’ Many equalizer update algorithms are based on the steepest
descent, or gradient technique, which minimizes the mean-squared
error (mse) between the equalizer output and the transmitted data
symbols.? In particular, the stochastic approximation of the gradient
algorithm with an mse criterion is used frequently. The convergence
speed of this algorithm was analyzed in Refs. 3 and 4. It was found to
be dependent on the number of coefficients used and, to a lesser
degree, on the eigenvalue spread of the channel autocorrelation matrix.

Several methods to improve the convergence speed of the gradient
algorithm were published in Refs. 5 to 8. In Ref. 5, prior knowledge of
the transmission channel is assumed and a transformation of the
received signal is proposed which reduces the effect of a large eigen-
value spread on the convergence speed, whereas in Ref. 6 a transfor-
mation of the correction vectors, yielding the same performance, is
proposed. Used in conjunction with a stochastic gradient algorithm,
these methods reduce the convergence time to the minimal time which
is obtainable with an ideal channel having an eigenvalue spread of one.
In Refs. 7 and 8 cyclic equalization was proposed as a means to speed
up the convergence time. The number of iterations required for con-
vergence of the algorithm is about the same as for the stochastic
gradient algorithm, but theoretically, the convergence time can be
reduced to the time required to fill the register of the equalizer.
Practically, however, the convergence speed is limited by the available
computational power of the implemented algorithm.

In Ref. 9, Godard cast the equalizer adjustment problem as an
estimation of a stationary state vector in Gaussian noise—a classical
Kalman filtering problem. This resulted in a new, powerful, and rapidly
converging equalizer adjustment algorithm. While this algorithm was
familiar in the area of stochastic approximation theory,' it was never
applied to equalizers prior to Godard’s work. It was shown by computer
simulations,? that this coefficient adjustment algorithm converges con-
siderably faster than the stochastic gradient algorithm and virtually
independently of the channel used. After about N iterations, where N
is the number of coefficients of the equalizer, the mse of the equalized
signal is generally close to the minimal obtainable. This is an improve-
ment by a factor of three to ten®'"'® compared with the performance
of the stochastic gradient algorithm. The exact improvement factor
depends on the channel involved and on the modulation scheme used.
Godard showed further that under certain modeling assumptions, the
excess mse converges asymptotically, as the inverse of the number of
iterations.

More recently, various methods were published'®'*! that reduce the
computational complexity in the implementation of the Godard algo-
rithm. These methods exploit the fact that only one new element,
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which may be a vector, is introduced in the vector of the received
signal at each iteration. They avoid the processing of large matrices
which are required in the Godard algorithm. Accordingly, the number
of arithmetic operations can be reduced. For the Godard algorithm
those grow quadratically, while for the algorithms described in Refs.
12 to 14 they grow proportionally to the number of equalizer coeffi-
cients—a considerable reduction for long equalizers. In Refs. 15 and 16
all these so-called least-squares algorithms are extended to include
fractionally spaced, complex equalizer structures. The least-squares
lattice algorithm was also extended to a decision feedback equalizer in
Ref. 17. Investigations regarding the implementation are reported in
Ref. 18.

The objective of this paper is to provide insight, on a fundamental
level, into the rapid initial convergence of the least-squares algorithms
relative to the stochastic gradient algorithm. Godard’s approach is
probabilistic and aimed at minimizing the ensemble mse as rapidly as
possible. He assumed that all the involved random variables have joint
Gaussian distributions. For this case, the Kalman filtering technique
gives the fastest possible convergence. Although these assumptions are
not generally satisfied in data transmission applications, a very pow-
erful algorithm emerged.

In Ref. 19, a general equivalence between Kalman filtering and least-
squares estimation techniques was exhibited. For the problem at hand,
it implies that the algorithm obtained, while not optimal in a proba-
bilistic sense, is the solution of a deterministic least-squares problem.
This fact was stated for equalizers in Ref. 12. The Godard algorithm,
as well as the ones proposed in Refs. 12 to 17, minimize the sum of the
squared equalizer output errors under the condition that the coefficient
vector remains constant from the start of the session to the current
time. Note that this particular cost function is not the mse. Therefore,
it does not explain directly why the actual mse converges so rapidly.

One obvious reason for the fast convergence of the least-squares
algorithms is that all the information available from the start of the
equalizer adaptation is stored and exploited in the update procedure,
while the stochastic gradient algorithm relies mostly on current infor-
mation. In Ref. 11, the Godard algorithm was interpreted as a sto-
chastic gradient algorithm, where the coefficient corrections are trans-
formed by an estimate of the inverse of the channel autocorrelation
matrix. The fast initial convergence was attributed there to “self-
orthogonalization” of the equalizer adjustments. However, this can
only account for part of the high speed. It cannot explain the fact that
the least-squares algorithms converge considerably faster than the
stochastic gradient algorithms under the best conditions, i.e., when an
ideal channel is involved or, equivalently, when the channel autocor-
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relation matrix is known exactly.

Here, we investigate the initial convergence of the deterministic
least-squares algorithms from an algebraic point of view and offer
alternative interpretations for the fast initial convergence. In Section
11, the problem is stated and certain algebraic properties of the com-
monly utilized pseudo random start-up sequences are derived. In
Section III, we relate the coefficient vector that results after N itera-
tions (N being the number of coefficients) to the zero forcing equalizer
and to the coefficients resulting with cyclic equalization.” The influence
of the added noise is taken into account in Section IV.

Il. THE OPTIMAL EQUALIZER COEFFICIENTS

Let [a(k)] denote the complex data sequence which is transmitted
at a signaling rate of 1/7 over a channel with sampled impulse response
h(nT) = h,. The samples £(nT) of the received signal, can be expressed
as

§nT) = Y a(k)h|(n+ M — B)T| + v(nT), (1)

h=—w

where »(nT) denotes the channel noise, and the equalizer length
N = 2M + 1 is an odd number.
Let x(r) denote the complex vector of the past N received signal

samples
x(n)" =[£| (=T, &l(n=1T|, --- {|(n = N+ 1)T|], (2)
and let c(k) denote the complex coefficient vector of the adaptive
equalizer. Then the equalizer output y(n) at time nT, using the
coefficient vector c(k), can be written as the scalar product
y(n) =c(k)*x(n). (3)

The * denotes conjugate transposed vectors (matrices) or conjugate
complex scalars.

2.1 The mean-square criterion

For the mean-square criterion, the equalizer coefficients are to be
chosen such that the equalizer output y(n) approximates the trans-
mitted data value a(n) as closely as possible. The optimum coefficient

minimizes the mse'?
e(k) = E[|c(k)*x(n) — a(n)|*], (4)

where E[ -] denotes ensemble averaging over the sequence [a(n)]. The
vector cop which minimizes eq. (4) is given by

Copt = ANy, (5)
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where

A= E[x(n)x(n)*] (6)
is the autocorrelation matrix of the channel, and

v=E[x(n)a(n)*] (7)

is the cross-correlation vector between the signal vector and the
transmitted data value. In eq. (5), Cop is the coefficient vector which,
on the average, will perform better than any other. Ref. 2 indicates
that the solution of eq. (5) exists if the absolute square of the transfer
function and the spectral density of the noise have no zeros.

2.2 The least-squares criterion

The least-squares algorithms®''~'® minimize the following cost func-

tion
z(n) = kgl le(n)*x(k) — a(k)|? (8)

i.e., the equalizer coefficient vector ¢(n) minimizes the sum of error
squares which resulted if c(n) was used from the beginning of the
transmission to the present instant n7T. Usually, this is performed
iteratively, i.e., c¢(n) is calculated recursively for n = 1 -.. . Note
that for n — o, time invariant channels, ergodic data sequences [a(n)]
and noise, the cost function approaches asymptotically the ensemble
mse, e(n). Also, the solution ¢(n) converges then to cop.

Differentiating eq. (8) with respect to ¢ (n) and setting the derivative
to zero yields the following set of linear equations for the coefficient
vector ¢(n):

kz x(k)x(k)*c(n) = kE x(k)a(k)*. 9)
=1 =1

Although the least-squares algorithms do not attempt to minimize the
mse, it was observed™''™'* that the mse

eln —1) = E[|c(n — D*x(n) — a(n)|?], (10)

which results if the equalizer’s coefficient vectors stemming from the
previous iteration at (n — 1)T is used, converges roughly when n
reaches .

To find reasons for this interesting property, we examine closely in
the following, the solution of eq. (9) after exactly N iterations and
derive relations between the coefficient vector ¢(N) and some well-
known equalizer coefficient vectors, namely, the zero forcing and the
cyclic equalizer.

In the noiseless case, we show that the vectors x(1), .-+ x(NN) are
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linearly independent of each other for the data sequences that are
usually used for equalizer start-up. Under this hypothesis of linearly
independent signal vectors x (n), it can only be that the linear combi-
nation

N
Y x(k)b(k) =0, (11)
k=1

if b(k) =0forallk =1 ... N. Then, it follows from eqgs. (9) and (11)
that

x(R)*c(N) = a(k)* k=1,... N. (12)

This means that ¢(N) equalizes the first N received signal vectors
ideally. All errors are zero and accordingly z(N) = 0. In the special
case where the channel transfer function is of the all-pole type and of
order N — 1, z(n) will remain zero for n > N and c(n) = ¢(N).
Therefore, the optimal coefficient vector is found exactly when n = N.
Although this is not the case generally, c¢(N) still has interesting
properties.

IIl. ALGEBRAIC PROPERTIES OF SIGNAL VECTORS AND PARTICULAR
EQUALIZER VECTORS WITHOUT NOISE
Using a notation which is similar to the one used in Ref. 4, it is
possible to express the N-dimensional vector x (k) in the noiseless case
as follows:

x(k) = Bd(k), (13)
N P TP T
where B = .. -i;_M . --'hu .. hM .. (14)
vihin eeohiip eechges

and

dR) =[--,alk+M), ---,a(k), -, alk = M), ---]. (15)
In eq. (14), B is a stationary N X L matrix, where L is at least the sum
of the channel memory plus (N — 1). The center part of length
N = 2M + 1 is shown in eq. (14). In eq. (15), d(%) is a stationary
L-dimensional vector.

The vectors x (1) - - - x(NN) are linearly independent, if they span the
N dimensional space. This is equivalent to the N X N matrix

[x(1)|x(@)] -+ |x(N)] = B[d(D)] -+~ | d(N)] (16)

having rank N. This can only be true if both matrices on the right-
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hand side have rank N. This is a necessary but not a sufficient
condition. Although eq. (16) has a very particular form, namely Toe-
plitz, it is not easy to find sufficient conditions for linear independence.
We, therefore, investigate two interesting special cases involving par-
ticular start-up data sequences; namely, a sequence consisting of just
a single pulse, and the other a periodic pseudo random noise sequence.
Before pursuing this line of attack, we need additional facts about the
matrix B.

For B to have rank N, the row vectors of B must be linearly
independent. A necessary and sufficient condition is Gram’s criterion:
N vectors by, -+« by are linearly independent if and only if

bhi*b bi*ba--- bi*by
ba* b by*by---  bo*bw

-------------------

# 0. (17)

We identify b,* as the first row of B and in general b,* as the nth row
of B. Consequently, the matrix in eq. (17) is the autocorrelation matrix
of the channel. Gram’s criterion then requires that the autocorrelation
matrix be nonsingular. This is the same condition as the one required
for the existence of a solution of eq. (5) in the noiseless case. Thus,
whenever an optimal coefficient vector (in the mean-square sense)
exists, then the matrix B has full rank N.

3.1 Single training pulse

Consider now the transmission of a single pulse at 2 = 1 + M. Then,
inserting egs. (13) to (15) into eq. (12) yields the following set of
equations for the equalizer coefficient vector after N iterations:

0
ho--  Bme-  hnoi|* :
hom-r ho-- hu c(N)=|1]. (18)
hin hm- ho :

0

This is precisely the equation which defines the zero forcing equalizer.'
In case the peak distortion of the channel impulse response is smaller
than one, i.e.,
1 o«
=— he| =1, 19
Tl o2 1] (19)

k0

D

the resulting equalizer minimizes the peak distortion of the overall
channel,’ and Gershgorin’s criterion guarantees a unique solution of
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eq. (18). This is a sufficient but not a necessary condition.

This example shows that the least-squares equalizer adjustment
technique yields the zero forcing equalizer in N iterations [if a unique
solution of eq. (18) exists], whereas the gradient technique only attains
this asymptotically in the steady state and practically requires a
multiple of N iterations to obtain a good approximation.

As the time instant approaches infinity, the n equations

x(B)*c(n)=a(k)* and k=1,.---n (20)

cannot be satisfied simultaneously any more. In this case, ¢(n) will be
determined from eq. (9). Inserting eqs. (13) to (15) into eq. (9) yields

0

0
lim BB*e(n) =B |1]|. (21)
nz=owx 0

0

Since BB * is proportional to A as defined in eq. (6) and the right-hand
side of eq. (21) is proportional to v as defined in eq. (7), with the same
proportionality constant, it follows that

lim ¢(n) = copt, (22)
i.e., the least-squares algorithms converge in the noiseless case to the
optimal coefficients in the mse sense.

3.2 Periodic pseudo random training sequence

While the technique of sounding the channel through isolated test
pulses is technically possible, a different method has found wider use.
In Refs. 7, 8, and 20, periodic pseudo random noise sequences (PRNSs)
were proposed and analyzed for equalizer training purposes. When
these sequences are used, the resulting equalizer coefficient vector in
the steady state is found to be different from the optimal one when
random data was used. Nevertheless, the former vector approaches
the optimal solution very closely even for short periods. If a PRNS of
period length P = N is used, then the vectors of the sampled signal are
periodic also and may be written as:

(k) = Bd(k), (23)
o+ An-ye-

where = | 29
hin ko
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ﬁn= E hn-i-kN, (25)

k=—o
and
d(k)T = |@rerty <+ - @y -+ Ah-m]. (26)

The rows of B and the vector d (k) have dimension N.

Analyzing egs. (24) and (25) reveals that B is a N X N circulant
matrix. It is well known from Ref. 7 that the eigenvalues of circulant
matrices are determined by the discrete Fourier transform of the first
row. Since the first row of the mentioned NV X N circulant is formed by
samples of the periodically repeated channel impulse response, it is
concluded that B has full rank N, provided that the discrete Fourier
transform of the periodically repeated channel impulse response has
no zero values.

This condition is very similar to the one stated for the existence of
an optimal coefficient vector in the mse sense,’ which, in the noiseless
case, requires that the absolute value of the channel transfer function
have no zeros.

From eq. (26) and the fact that the data sequence is periodic,
ie, a(k + N) = a(k), it follows that N successive data vectors
d(k) ---- d(k + N — 1) form an N X N circulant matrix. Arguing as
above, it follows in general that these vectors are linearly independent
if the dft of the data sequence has no zero values.

For pRNSs of period N in particular it is known that

d(k)*d(k) =N
dk)*d(j)=-1 k#j. (27)

The matrix in Gram'’s criterion (17) is then a circulant with eigen-
values
A] =

A=N+1 j=2...N. (28)

The determinant is (N + 1)¥~! 5 0; therefore, N successive data vectors
of a PRNS with period N are always linearly independent. This, together
with the fact that B has rank N, implies that any N different £ vectors
are linearly independent. Therefore, the coefficient vector after N
iterations is given as the solution of

Z(R)*c(N)y=d(k)* for k=1,-.- N (29)

and is guaranteed to exist. In Ref. 7 it was shown that for the particular
case of N = P, i.e.,, when the equalizer length equals the period P of
the PRNS, the solution of eq. (29) has an interesting interpretation in
the frequency domain: it equalizes the channel transfer function of the
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periodically repeated impulse response at N equidistant points. Again,
this solution is obtained by the least-squares algorithms after N
iterations, whereas the gradient technique obtains this only asymptot-
ically as the number of iterations becomes large.

If the equalizer length is smaller than the period of the PRNS, i.e.,
N < P no specific information on the nature of ¢(/N) can be obtained.
We, therefore, consider the solution ¢ (P) after P iterations. Inserting
eq. (23) in eq. (9) and using eq. (27) yields

-1

N - N -1 1

B(I-D)B*c(P)=B 1_31 Eat (30)
_1

where D is a matrix containing identical elements
1

i == 31
Dij=57 (31)
Using the fact that all rows of B have the same sum
N w®
> b= 2 kg,
K=1 K=—wx
it follows that
BB*c(P)=0+q, (32)
where ¢ is a vector with identical elements
2
1 L] N L]
=57 ‘ k_z_m he k§1 ce(P) — k_z_m he (33)
and
bi=h. (34)
Observe that
Y P
k=—o
and
N
Y c(P)!

k=1

equal the dc value of the transfer function of the sampled channel and

t cx(P) denotes the kth element of c(P).
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of the equalizer, respectively. In the absence of noise and for P = oo,
their product will be one. Then, according to eq. (33), g: = 0. Therefore,
g:; will be small even for finite P, and c(P) may be approximated as
follows

c(P) = (BB*)™'s. (35)

This result may be interpreted as the optimal solution in the mean-
square sense for a channel with an impulse response of finite duration
P which is identical to the periodically repeated impulse response in
the base interval |—-PT/2, PT/2|. If P is large enough to span the
channel impulse response, then it follows that ¢ (P) is very close to the
optimal coefficient vector after only P iterations.

IV. THE INFLUENCE OF NOISE

Generally, the channel noise is not negligible as assumed in the
previous section. In the presence of additive noise the vector w(k) of
the sampled signal can be written as

w(k) = x(k) + r(k). (36)

If only one single pulse is transmitted, x (k) is defined in eq. (13) and
r(k) is the noise vector. In this case, a coefficient vector ca(n) is
obtained after N iterations, which is the solution of the following
equation

0
0
|H + R|eq(N) = |1], (37)
0
0
where
ho hy - hnal*
H= . - - (38)
hin- - huy ho
and
V1 Pareees N *
R=|"0T (39)
Va_N *==*" n
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The difference between this solution and the one given in eq. (18)
equals

ca(N) = ¢(N) = H 'Rea(N). (40)

If c,(N) is used instead of ¢(N) to compute the value of the cost
function defined in eq. (8), we obtain

za(N) = |ca(N) — ¢(N) |*H*H|ca(N) — c(N)|. (41)

Substituting eq. (40) into eq. (41) and evaluating the expected value of
the cost function yields

E|z2:(N)| = E|ca(N)*R*Rca(N) | = ca(N)*E|R*R|ca(N), (42)

where E|R*R| is N times the correlation matrix of the random noise.
Using Parseval’s theorem, eq. (42) can be expressed in terms of the
transfer function C,(w) of the equalizer and of the power density
spectrum S,(w) of the noise »(n)
=/T
E|z.N)| = TN/2wf | Ca(w) |?Si(w)dw. (43)

—a/T

Thus, increase of the cost function is IV times the average noise power
after the equalizer. This means that the average squared error (12) per
equalized symbol is equal to the noise variance after the equalizer.

We now examine the solution of eq. (9) for n > N. In this case, the
equation for the equalizer coefficient vector becomes

B(n)B(n)* + i r(k)r(k)*| c(n) = B(n) |1{, (44)
k=1 0

0
where B(n) is similar to eq. (14) with row length equal to n. This
indicates that, as n becomes large, the influence of the noise grows
proportionally. Since B(n)B(n)* converges to the channel correlation
matrix A = BB*, which is stationary, it can be concluded that for very
large n the influence of the noise becomes dominant. Therefore, it is
not advisable to use the sounding technique for more than N to 2N
iterations.

If a PRNS with period P symbols is used during start-up and noise is
present, the coefficient vector after P iterations is not determined
anymore by eq. (35). Inserting egs. (36) and (23) into eq. (9) yields
instead
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P
P k§1 r(R)r()*| e(P) = 0, (45)
where it was assumed that cross products of r(k) and x(%) may be
neglected.

The matrix of eq. (45) will, in the mean, become the correlation
matrix of the channel plus the noise. Therefore, the solution will, in
the mean, be the optimal solution as given by eq. (5). Note that now
there is no danger in letting the algorithm run for an indefinite time,
since both terms of the matrix, as well as the right-hand side of the
equation, grow proportionally.

BB* +

V. CONCLUSION

The initial convergence of least-squares equalizer adjustment algo-
rithms was analyzed to determine why the least-squares algorithms
converge so much faster than the widely used stochastic gradient
algorithms. The algebraic properties of the sampled signal vectors
were found to be of crucial importance for the convergence behavior.
In particular, it was found that, for a wide class of transmission
channels and for commonly used data sequences, successive sampled
signal vectors are linearly independent. This ensures a unique equalizer
coefficient vector after exactly N iterations, where N is the dimension
of the equalizer. In the noiseless case, this coefficient vector was found
to correspond to particular equalizer coefficients which were reported
and studied earlier. If a single pulse is transmitted, the zero forcing
equalizer is obtained. If a pseudo random noise sequence with a period
in symbols equal to the number of equalizer coefficients is used, the
steady state solution of the cyclic equalization technique results. This
explains why the least-squares adjustment algorithms converge much
faster than the gradient techniques: the above-mentioned particular
equalizer coefficients are obtained after only N iterations, whereas
with the stochastic gradient techniques they are only approximated as
the number of iterations becomes very large. The influence of the
inevitable channel and measurement noises was evaluated. Approxi-
mations show that similar performance, as in the noiseless case, is
obtainable.
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