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We consider the behavior of a general type of system governed by
an input-output operator G that maps each excitation x into a
corresponding response r. Here excitations and responses are R"-
valued functions defined on a set T. To accommodate both continuous
time and discrete time cases, T is allowed to be either [0, ») or
{0, 1,2 -+.}. We address the following question. Under what condi-
tions on G and x is it true that the response r is L-asymptotically
periodic in the sense that r = p + g, where p is periodic with a given
period 7, and q has finite energy (i.e., is square summable)? This type
of question arises naturally in many applications. The main results
given (which include a necessary and sufficient condition) are basi-
cally “tool theorems.” To illustrate how they can be used, an example
is discussed involving an integral equation that is often encountered
in the theory of feedback systems.

I. INTRODUCTION

In this paper we consider the behavior of a general type of system
governed by an input-output operator G that maps each excitation x
into a corresponding response r. Here excitations and responses are
R™-valued functions defined on a set T. (As usual, n is an arbitrary
positive integer.) To accommodate both continuous time and discrete
time cases, we allow T to be either [0, ) or {0, 1, 2, ---}. As in L,-
stability theory,'® each x is drawn from a family E(L) of functions
whose truncations belong to a set L of finite-energy (i.e., square
summable) functions (the details are given in Section 3.1), and G is
assumed to map E (L) into E(L).

We address, and give in Section 3.2 results concerning, the following
question. Under what conditions on G and x is it true that the response
r is L-asymptotically periodic in the sense that r = p + g, where p is
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periodic with a given period 7, and g has finite energy?{ This type of
question arises naturally in many applications. OQur results are basically
“tool theorems” which appear to be widely applicable. An example is
given in Section 3.4.

Il. MOTIVATION AND BACKGROUND MATERIAL

To provide motivation for considering an abstract input-output
operator (G, and also to describe some earlier results related to those
of Section III, we begin by recalling that an important example of a
type of equation that arises in the study of physical systems (such as
feedback systems or networks containing linear lumped and/or distrib-
uted elements, as well as memoryless, possibly time-varying, nonlinear
elements) is the integral equation

t
x(t) =r(t) + J’ k(t — o)y[r(o), olds, t=0 (1)

0

in which x and r take values in R" (whose elements we take to be
column vectors), k is an n X n matrix-valued function, and Y maps
R"™ X [0, o) into R". In eq. (1), typically x takes into account initial
conditions as well as inputs, and r is the output (i.e., is the intermediate
or final output) corresponding to x (see, for instance, Ref. 2, pp. 8724
for a specific application). Discrete-time counterparts of eq. (1) (see
Ref. 7, pp. 449-51, for example) also arise often in system studies.

Much is known about the properties of eq. (1), e.g., see Refs. 2, 8§,
and 9. In particular, if n = 1 and the “circle criterion” of Ref. 2,
together with certain associated conditions concerning &, ¢, x, and r
described in the reference, are met; if (-, ¢) is periodic in ¢ with some
period 7; and if x = x; + x, with x; bounded and r-periodic and with xo
bounded and such that x¢(¢) — 0 as ¢t — o, then we have r =p + g in
which p is periodic with period 7, and g(¢) — 0 as t — = (see Ref. 2,
Theorem 4).%

This result generalized to arbitrary n is proved in Ref. 6 by first
showing that there is a 7-periodic p defined on (=, ) such that, with
x; extended periodically for negative values of ¢, the auxiliary equation

t
xi(¢) = p(t) + J k(t — o){[ p(o), o]do, t>—co0 (2)

+In contrast, it is standard (see, for example, Ref. 6, p. 195) to mean by r is
asymptotically periodic that r = p + g with p continuous and as indicated, and with ¢
continuous and such that its values go to zero as time approaches infinity. It is often
possible to show without much difficulty that r is asymptotically periodic if r is L-
asymptotically periodic and some natural additional hypotheses are met (for an example,
see Section 3.4).

1 The earlier related circle criteria in Refs. 10 and 11 address different issues.
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is satisfied. Then, using eq. (1) and the fact that eq. (2) gives

0
x1(t) —I k(t — o)y[ p(0), o]do

= p(t) + J k(t — o)y[p(o), o]do, =0,

it is proved that when x = x; + xo, we have r(t) — p(t) — 6 as t — oo,
in which 4 is the zero element of R”. A similar proof shows that if
n = 1 (for the sake of simplifying a statement of a result) and both xo
and s, where s(t) = [7 | k(c) | do for ¢ = 0, have finite energy, then under
the conditions indicated above, r — p has finite energy [see Ref. 2,
Corollary 1(a)]. The proofs in Ref. 2 are of a functional analytic nature.
For material related in a general sense concerning systems of differ-
ential equations, and in which a Lyapunov-function approach is used,
see Ref. 12, pp. 210-23. Concerning more recent material, a result along
the same lines as the one described in the preceding paragraph for
interconnected systems® governed by a somewhat different class of
integral equations, is proved in Ref. 13. There, too, an auxiliary-
equation approach is used.f

Under reasonable conditions on & and ¢ (see Section 3.4), the set
E(L), previously described (and defined in Section III), contains ex-
actly one solution r of eq. (1) for each x € E(L). We now introduce the
typically trivial restriction that only solutions r of eq. (1) contained in
E(L) are of interest to us. Thus, under reasonable conditions, there is
associated in a natural way with eq. (1) a map G:E(L) — E(L) such
that r = Gx for each x € E(L). Of course, many other examples can be
given in which such a map G arises.

Assuming that y(-, o) in eq. (1) is independent of ¢ and that
¥(8, 0) = 6, notice that the G associated with eq. (1) has the property
that it is time invariant in the usual sense that the response to a
delayed input is the delayed response to the original input. (For a
precise definition of time invariance, see Section 3.3.) This type of
property of G, rather than the concept of an auxiliary equation, plays
a central role in our approach in Section III.

ll. L-ASYMPTOTIC PERIODICITY, TIME INVARIANCE, AND
PERIODICALLY-VARYING SYSTEMS

3.1 Preliminary notation and definitions

Throughout the remainder of the paper the following notation and
definitions are used.

+ The method used in Ref. 13 to show the existence of a periodic solution of the
auxiliary equation is very different from that in Ref. 2.
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The symbol T denotes either [0, =) or {0, 1, 2, - - .}. Elements of R"
are taken to be column vectors, v’ denotes the transpose of an arbitrary
v € R", and @ stands for the zero element of R".§

If T = [0, ), then L denotes the set of Lebesgue measurable
functions v from T into R" such that

f v (vt dt < .
(1]

Alternatively, when 7' = {0, 1, 2, ---}, L stands for the set of maps v
from T into R" such that

E vV'(Hu(t) < oo,
t=0

The norm | v| of an arbitrary element v of L is defined by

o 1/2
I|v||=(J’ v’(t)v(t)dt) if T =[0, ),
0

and

t=0

o 1/2
||v||=(zu'mu(t)) e (0,13 0],

With this norm, L is a Banach space of finite energy (i.e., square
summable) functions.

For v:T — R" and w € T, v, denotes the map from T into R"
defined by v, (¢) = v(t) for t € T with ¢ = w, and v,(t) = @ for t € T
such that ¢t > w. We use E(L) to denote the “extended set”
{v:T - R"|v, € L for w € T}, and #g stands for the zero element of
E(L). [Note that E(L) is the set of all maps v:T — R" when T = {0,
1,2 -]

We say that a map H:E(L) — E(L) is causal (see Ref. 2, p. 888) if
we have (Hv)(, = [HV(,]w) for each v € E(L) and each w € T.

For any v € E(L) and each 7, € T, v(- + 70) denotes the element w
of E(L) defined by w(t) = v{t + ), t € T.

The symbol 7 denotes a fixed positive element of T, and P stands for
the set of periodic functions {v € E(L)|v(t + 7) = v(t) for t € T}.

A central role is played by the set S defined by S = {v € L |there is
a v* € L with the property that

K
Y v(- + k7)) > v*
k=1

as K — o}, where — v* means convergence in norm to v*.

I We have repeated the definitions of T and & for the reader’s convenience.

2362 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1981



Finally, for each w € T, the “delay map” D:E(L) — E(L) is defined
by (D.v)(t) = v(t — w) for t = w, and (D,v)(¢) = 8 for ¢t < w.

3.2 L-Asymptotic periodicity

We shall use the following hypothesis:

H.1: Gis a map from E(L) into E(L) such that for any v € E(L), we
have (GD,v)(t) = (D,Gv)(t) for t € T with t = 1.

This hypothesis is satisfied whenever G is a causal map of E(L) into
itself that is either time invariant or periodically varying with period
7 (see Section 3.3). Our main result is the following:

Theorem 1: Assume that H.1 holds. Let x € E(L), and let r denote
Gx. Then r has the form p + q with p € P and q € L if and only if
(Gx — GD.x) € 8.

Proof: Suppose first that (Gx — GD.x) = v for some v € S. Let v* €
L be such that

K
v(- + k1) > v*

E=1
as K — o, We shall use the proposition that

v*(- + 1) + (- + 1) =0v*(.), (3)
which follows from the inequality
lo*(- + 1) +v(- +7) = v*(-)}|

K
v¥(- + 1) = Y v(- + k1)

k=2

K
Y v(- + k1) —v*(+)

k=1

= + (4)

for K = 2, and the fact that the right side of inequality (4) approaches
zero as K — o,

Let po denote r + v*, which is clearly an element of E(L). Since
r(t) = (GD,x)(t) + v(t) for t € T, by H.1, we have r(£) = r(t — 7) + v(f)
for t = 7. Therefore, for t € T, po(t + 7) = r(t + 7) + v*(t+ 1) = r(t)
+ v(t + 7) + v*(¢ + 7). On the other hand, using eq. (3), r(¢) + v(t + 7)
+ vt + 1) = rt) + v*t) = po(t) for all t € T if T =
{0,1,2,--.}, and for almost all ¢ € T if T = [0, ). Therefore,
with p the element of P defined by p(t) = po(t) for t € [0, ) N T,
we have po(t) — p(t) =fforallt € Tif T= {0, 1,2, ---} and for al-
most all ¢ € T if T=[0, ), and clearly r = p + (po — p — v*) in
which (po — p — v*) € L.

Suppose now that r = p + g with p € P and ¢ € L, and let u =
(Gx — GD.x). For t = 7, u(t) = r(t) — r(t — 7y = p(t) + q(t) —
p(t— 1) — q(t — 1) = q(t) — g(t — 7) which, together with u € E(L),
shows that u € L.

Let u'®’(+) in L be defined by
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K
u®(t) =Y u(t+ kr)
k=1
for ¢ € T and any positive integer K, and let JJ be an integer such that
J > K. Using u(t + kr) = g(t + k1) — q[t + (R — 1)7] for k. = 1 and
t € T, we have, fort € T,

J K
u () —u®(t) = Y ult+ k) — ¥ ult+ k1)
k=1 k=1

J

= Y u(t+ k)

k=(K+1)

= q(t + Jr) — q(t + K7).

Thus, ¢ — u®| < | q(- + J7}|| + | g(- + K7)|. Since | g(- + K7)||
— 0 as K » o, {u®}¥ C L is a Cauchy sequence, and, by the
completeness of L, there is a u* € L such that |u'® — u*|| — 0 as
K — o, This concludes the proof.

3.2.1 Comments

The following example shows that S is a proper subset of L. Let
G be the identity operator on E(L), take n = 1, and let x € E(L)
be defined by x(¢) = In 2 for ¢ € [0, 2] N T, and x(¢) = In ¢ for
t€(2,0) N T Let r=1. Then, (Gx — GD.x)(t) =r(t) —r(t —1) =
In[t(t — 1)7'] for ¢ € [3, ®) N T. Using the inequality In(1 + ¢) < o
valid for 0 =0, we see that In[¢(t — 1) ]<(t— 1) fort€[3,0) N T,
and therefore that v, defined by v(t) = (Gx — GD.x)(t) for t € T,
belongs to L. Since here Gx cannot be written as p + ¢ with p € P and
q € L, it follows from the theorem that v & S.

It is not difficult to verify that the proof given of the theorem can be
modified to show that H.1 can be replaced with the following somewhat
weaker hypothesis.

H.1’: G:E(L) — E(L) is a map such that for any v € E(L), there is an
s € S such that (GD,v)(¢) = (D,Guv)(t) + s(¢) for t € T N [, ).

The simple example: n = 1, (Gv)(t) = v(t) + e for ¢ € T and each

v € E(L) is one for which H.1’, but not H.1, is met.

3.2.2 Corollaries (the use of weighting functions)

In this section, and in the Appendix, w denotes any function from T
into R" such that there is a constant 8 > 0 for which w(¢) = (1 + 8t)*
when ¢ € T, and such that w is measurable on T and bounded on
bounded subsets of T if T' = [0, ). By wv, where v € E(L), we mean
the element of E (L) defined by (wv)(t) = w(t)v(¢) for t € T.
Corollary 1: Suppose that H.1 is met, that x € E(L), and that
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w(Gx — GD,x) € L. Then Gx = p + q for some p € P and some
g€ L.

Proof: Let h=w(Gx — GD.x), and let s denote (Gx — GD.x). Observe
that s € L. For any positive integers J and K with J > K,

J K J
Y s(-+k)— Y s(-+k)| =) ¥ s(-+k7)
k=1 k=1 k=K+1
7
= T lis- + k0|
k=K+1

J
= 2 (1+ kB'r)_2||h(- + k1) |
k=K+1
J

Y (1 +EB0)|R],

k=K+1

IA

which shows that
J K

s(+ + k) — Y s(- + k1)
k=1 k=1

-0

as J and K approach infinity. By the completeness of L, we have
s € S and the corollary follows.

In Corollary 2, below, w(- + 7)[x(- + 7) — x(-)] denotes the element
of E(L) whose values are w(t + 1)[x(f + 7) — x(£)].
Corollary 2: Assume that H.1 is met, and that there is a positive
constant p such that

|w(Gu = Gv)w| = pllw(u — v)wl (5)

for uand vin E(L) and w € T. If x € E(L) is such that w(- + 7)
Jx(- + 1) = x(-)] € L, then Gx = p + q for some p € P and some
ge L.

Proof: We have |w(Gx — GD.x) (|| = p||w(x — D.x) )| for w € T and
any x € E(L). When w(- + 7)[x(- + 7) — x(.)] € L, it follows that
sup.er| w(x — D,x) | < o; hence, w(Gx — GD,x) € L. By Corollary
1, Gx = p + g with p and q as indicated.

3.2.3 Comments

The condition that w(- + 7)[x(- + 7) — x(-)] € L is met if
suprer[w(t + 1) /w(t)] < o and x = po + go with po € P and wqo € L,
and of course supier[w(t + 7)/w(t)] < o is satisfied if, for example,
w(t) =eMfor t € T or w(t) = (1 + At)® for t € T, with A a positive
constant. Input-output stability theory techniques can frequently be
used to show, in specific cases, that eq. (5), with an appropriate w, is
met.

Regarding the case in which T'= {0, 1, 2, ...}, since 7 could have
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been taken to be unity, Theorem 1 and Corollaries 1 and 2 provide
conditions under which r is L-asymptotically constant in the sense
that r = ¢ + g with ¢ € L and ¢ € C, where C is the set of constant R"-
valued functions {v € P|v(t) = u for t € T and some u€ R"}.
Corresponding results for T' = [0, =) are given in the Appendix.

3.3 Time invariance and periodically-varying systems

Hypothesis 1 plays a prominent role in Section 3.2. Here we give
definitions which make precise the essentially self-evident proposition
that H.1 is met if G is a causal map of E(L) into itself that is either, in
the usual sense, time invariant or periodically varying with period 7.

Let H be an arbitrary causal map of E(L) into E(L).

Definition 1: H is time invariant if (i) there is an element » of R" such
that (H8g)(t) = v for t € T, and (ii) for any x € E(L), we have

(HD.x)(t) = », te[0,0)NT
= (D, Hx)(t), tE€E[w, )N T
for each w € (T — {0}).

Definition 2: H is periodically varying with period  if (i) Hfg = » for
some v € P, and (if) for each x € E(L) and any positive integer %,

(HDy,x)(t) = v(2), te[0,kr)NT
= (Dr, Hx)(t), tE[kr,0) N T.
Notice that H is “periodically varying” with period 7 if H is time
invariant. A related definition is the following:

Definition 2': H is periodically varying with period 7 if (£) Hfg = v for
some » € P, and (it) for any x € E(L), we have

(HD,x)(t) = »(¢), tefo,nNT
= (D.Hx)(t), te([r,e)N T

To see that Definitions 2 and 2’ are consistent, we observe the
following: If H meets the conditions of Definition 2, then obviously H
satisfies the conditions of Definition 2’. On the other hand, if H meets
the conditions of Definition 2/, and x € E(L) is given, and if

(HDg-x)(t) = »(t), te[0, k)N T (6a)
= (D Hx) (1), tE [kT,0)N T (6b)

for some k, then, by the conditions of Definition 2’ with x replaced
with Dy.x,

(HDy+1).) (t) = v(t), tef0,nNT
= (D:HDy,x)(t), te[r,o)NT.
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Since HD,.x has the values given by egs. (6a) and (6b), we see that
(HD+1)-x)(t) = »(t), te[0,(k+1))NT
= (Dg+1)-Hx)(t), te[(k+ 1)r,o)NT,

which shows that the conditions of Definition 2 are met.

Notice that our assumption that H is causal is not explicitly used.
That assumption restricts the class of operators H so that the defini-
tions given above are appropriate and natural.f

3.4 An example
Let T = [0, =), and consider eq. (1) which is repeated below.

¢

x(t) = r(t) + J k(t — a)y[r(o), oldo, t=0. (1)

0

Assume the following, in which L, denotes the set of functions from
[0, ) to R' that are summable over [0, o).

A.l1: x € E(L), k is a measurable real n X n matrix-valued function
defined on [0, ) such that each k;; is bounded and belongs to L;, and
¢ is a map from R" X [0, ») into R" with the properties that
Y(6, o) = @ for 0 = 0, and

(i) there is a constant ¢ > 0 such that |¢(u, ) — ¥(v, ) =
clu-— v| for all u, v € R" and all ¢ = 0, in which |- | is some norm on
R" and

(ii) Y[2(-), -]is measurable on [0, ) whenever z € E(L).

Since x € E(L) and each k;; € L, it follows that u defined by

t
u(t) = J E(t — o)y[x(0), oldo, t=0
(1]

is an element of E(L). Also, since each k;; is bounded, there is a
constant ¢ such that | k(t — 0)[¥(z1, 0) — Y(22, 0)]| = co| 21 — 22| for all
nonnegative ¢ and o such that ¢ = o, and for all 2, and 2 in B". These
two observations show that a proof given by Tricomi (see Ref. 8, pp.
42-7) can be modified to prove that E(L) contains a unique solution r
of eq. (1).F

Let G be the map of E(L) into E(L) defined by the condition that
for each x € E(L), r = Gx is the solution in E(L) of eq. (1). Since

t Although the concepts involved are obviously well known, it appears that Defini-
tions 2 and 2' have not actually been given earlier. Also, Definition 1 is not entirely
standard. For example, in Ref. 4, p. 20, time invariance requires that » = 8.

1 The integral on the right side of eq. (1) can easily be shown to be an element of R"
for each t whenever r € E(L). Since the value of the integral for a given ¢ is unchanged
if r is replaced by any element of E (L) that agrees with r almost everywhere, eq. (1) has
a solution if there is an element E(L) that satisfies the equation almost everywhere,
and, moreover, any solution r € E(L) is unique and not merely essentially unique.

L-ASYMPTOTICALLY PERIODIC RESPONSE 2367



Y@, t) = @ for ¢t = 0, it is easy to see that H.1 is met when
Y(z,t+7) =Y(z,t) fort=0and z €E R".
Now consider four additional assumptions.
A2 Y(z,t) =Yz, t+ 1) fort=0and all z€ R".
A.3: For any z, and z, in E(L), there is a measurable real n X n
matrix-valued function D defined on [0, ) such that (i) each D;; is
bounded on [0, ®), (if) Y[2.(t), t] — Y[zs(t), t] = D(t)[za(t) — 24(2)] for
t = 0, and (ii7) the relation
t
xo(t) = ro(t) + j k(t — a)D(o)ro(o)do, t=0 (7)

0

implies that we have r, € L whenever ry, € E(L) and x, € L. (See Ref.
2, pp. 876-8 for conditions under which A.3 holds when ¢ has a certain
important specific form.)
A.4: For each i and j, t’k;; € L, forp = 1, 2.1
A.5: Concerning eq. (1), x = u, + uz with vy, € P and tu, € L for
p=0,12.

We shall prove the following.
Theorem 2: If A.1 through A.5 hold, then E(L) contains a unique
solution r of eq. (1), and we have r = p + q for some p € P and some
geL.
Proof: As indicated earlier, A.1 implies that there is a unique solution
of eq. (1) in E(L). Let r and s denote Gx and GD,x, respectively, and
let D satisfy [r(t), t] — Y[s(t), £] = D(¢)[r(¢) — s(t)], ¢t = 0 with D such
that (f) and (i) of A.3 hold. Then, withA=r —sand v =x — D,x,

4

v(t) = A(2) + f k(t — 0)D(0)A(0)do, t=0.

0

Note that v(¢) = x(¢) for t € [0, ), and v(¢) = us(t) — us(t — 7) for t =
1, from which it easily follows that (1 + t)’vE L forp =0, 1, 2.
By A.3, A € L. In addition, observe that we have

(1+ o) = (1 + HA@)

+ f k(t — 0)D(o)(1 + o)A(o)do
0

+ f (t — o)k(t — 0)D(o)A(o)do, t=0.
0

Since tk;; € L, for all { and j, I, given by
T By ¢"k;; we mean, of course, the map from [0, ) into R' whose value at ¢ is t°k;,(t).
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!
I(t) = f (t — o)k(t — o)D(o)A(o)dT, t=0

belongs to L. Thus, by A.3, (1 + £)A € L. Similarly,

t

(1+ 8)%(t) = (1 + *A@) + j k(t — a)D(o)(1 + ¢)*A(o)do

0

+ 2 J’ (t — 0)k(t — 6)D(o)(1 + 0)A(o)do

+ j (t = 0)*k(t — 0)D(o)A(0)do, t=0,

together with the hypothesis that A.3 holds and that t°ki; € L, for all
i and J, shows that (1 + #)’A € L. By Corollary 1, r = p + g with p and
q as indicated.

3.4.1 Comments

Under the conditions of Theorem 2, it can be shown that the integral
on the right side of eq. (1) depends continuously on ¢ for ¢ > 0. Thus,
if 1, and u. of Theorem 2 are continuous, then so is r.

Concerning the standard concept of asymptotic periodicity (see Ref.
6, p. 195 and refer to the footnote in Section I), arguments of the kind
used in Ref. 14 show that r is asymptotically r-periodic whenever x is
asymptotically r-periodic, the conditions of Theorem 2 are met, and £
satisfies the additional assumption:

A.6: Each tk;; is bounded on [0, «).T

More specifically, let A.6 and the conditions of Theorem 2 be met,
and let p and g be as described in Theorem 2. Then, with Y[ p(0), o]
defined on (—oo, 0) by periodically extending Y[ p(a), o] on [0, 7), the
integral

t
f k(t — o)Y[ plo), o]ldo

exists as an element of R" for each ¢ (see Ref. 14, pp. 2852-3). This
integral is periodic in ¢, and it can be shown to be continuous in ¢
These facts can be used to verify that when A.1 through A.6 are
satisfied,

f k(t - UH’[P(U) + Q(U), a]dal
0

1 This hypothesis and A.5 imply that each (1 + ¢)%;; is square summable over [0, o).
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which is continuous in ¢ for ¢ > 0, can be written as v; + v with v,
continuous and r-periodic and with vs(¢) — 8 as t — oo. The rest is
obvious.

The proof of Theorem 2 involves the use of a quadratic weighting
function w. A similar result can be proved using an exponential
weighting function. Specifically, suppose that A.1 holds, that there is
an « > 0 such that A.3 is met with & replaced with e*’k, and that A.5
holds with the integrability conditions on u; replaced by the require-
ment that e*‘u; € L. Then, since

t
e*'v(t) = e™A(t) + J’ e““k(t — a)D(c)e*A(o)do, t=0

0
we have e*’A € L.t

IV. APPENDIX

Throughout this appendix, § denotes an arbitrary positive constant,
C stands for the subset of E (L) whose elements are constant R"-valued
functions, T' = [0, =), P(w) denotes the set of periodic functions
{ve E(L)|v(t + w) = v(¢) for t € T} for each w > 0, and S(w) is de-
fined by S(w) = {v € L|there is a v* € L with the property that

K
Y v(- +kw) —> v*
k=1

as K — o} for any w > 0.

Consider hypothesis H.2 below.

H.2: T=]0, »), and G is a map of E(L) into E(L) with the following
property: For each v € E(L) and each w € (0, §), we have
(GD,v)(t) = (D,Gv)(t) for t = w.

Theorem 3: Let H.2 hold, and let x € E(L). Then Gx has the form
¢ + q with ¢ € Cand q € L if and only if (Gx — GD.x) € S(w) for
w € (0, 8).

Proof: By Theorem 1, (Gx — GD. x) € S(ro) for any 7o € (0, ) when
Gx has the form indicated.

On the other hand, suppose that (Gx — GD,x) € S(w) for w € (0, §),
and let 7o € (0, 8). By Theorem 1, Gx = p., + q,, with p,, € P(7) and
g, € L. Similarly, for any integer m > 0, and with 7, = 7o/m, we have
Gx = p,, + g, for some p,, € P(r;) and some q,, € L. Notice thatp.,
and, therefore, (p., — p.,) belong to P(7), and hence have Fourier
series expansions. Since (p., — p-,) also belongs to L, and m > 0 is
arbitrary, it easily follows that there is a u € R" such that p, (f) = u
for almost all £ = 0. This completes the proof.

+ Both quadratic and exponential weighting functions have been used earlier for the
different purpose of obtaining criteria for the boundedness of solutions of equations (see
Refs. 2 and 7, and, for example, Refs. 5 and 6).
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Theorem 3 and the material in Section 3.2.2 can be used to imme-
diately obtain the following two results.

Corollary 3: Assume that H.2 is met, that x € E(L), and that
w(Gx — GD.x) € L for w € (0, 8) (w is defined in Section 3.2.2). Then
Gx=c+quwithceCandqg€L.

Corollary 4: Suppose that H.2 is satisfied, that w (see Section 3.2.2)
satisfies supo[w(t + w)/w(t)] <  for w € (0, 8), that there is a
constant p > 0 such that | w(Gu — Gv)w || < pl|lw(u — v)w || for u and
vin E(L) and w > 0, and that x = co + qo with ¢o € C and wqo € L.
Then Gx = ¢ + q for some ¢ € C and some q € L.
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