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We study a time-compression (or expansion) technique for possible
application in communication signal processing, e.g., broadcast-
quality TV transmission through satellites. The method uses a linear
chirp, a linear dispersive filter realized by surface acoustic wave
devices and an envelope detector. This technique is heuristic and can
be viewed as a quasistationary model of the FM wave involved.
Numerical results show that excessive distortion is created, and its
application to TV transmission is not suitable unless some kind of
equalization is provided. One such form of equalization is the chirp
transform processor which involves considerably more complexity.
Simpler equalizations may be possible but do not seem to be straight-
forward.

. INTRODUCTION

We study a time-compression technique motivated by the long-
standing interest in transmitting multiple broadcast-quality color Tv
signals through a single satellite transponder, i.e., a usable RF band-
width of 36 MHz in a communications satellite such as COMSTAR.
This can be done by the use of frequency division multiplexing (FpDM).
However, the nonlinearity of the transponder can cause serious intel-
ligible crosstalk and intermodulation interference between the Fm
carriers unless the satellite power amplifier is backed off substantially.
Such a backoff, in turn, leads to a reduction in the downlink carrier-to-
noise ratio. As a result, there exists an optimum trade-off between the
crosstalk and s/n’s, which limits the overall system performance, and
achieving broadcast-quality Tv transmission becomes difficult.

It is possible to time compress each scan line of a color TV signal by
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the use of a linear chirp, a linear dispersive filter (LDF) and an envelope
detector. Two or more time-compressed scan lines from different, but
synchronized, Tv signals can then be time multiplexed together in the
time duration of an ordinary Tv scan line. This concept of time-
compression multiplexing (TCM) is not new,'? but recent advances in
fast analog-to-digital converters, digital-to-analog converters and
charge-coupled devices have greatly facilitated the implementation of
time compression or expansion. However, because of their present
limitations on bandwidth and speed, time-compression factors for
achievable Tv signals are only 2 or 3. For large time compressions,
LDFs realizable by surface acoustic wave (SAw) technology are prom-
ising candidates because of their large time-bandwidth property. In
addition to high speed, the TV application also requires extremely high
signal fidelity. There are other applications on the high-speed time
expansion (or compression) of waveforms where the distortion require-
ment is less stringent than the TV transmission case. In the specific
case of multiple TV transmissions through a single satellite transponder,
there are many advantages in using TcM, e.g., higher transponder
efficiency, no intermodulation, no crosstalk, possible compatibility
with time division multiplex (TDM) operations, etc. The crucial ques-
tion is, of course, how much distortion the compression/expansion
process would introduce on the signals. This paper gives both analysis
and numerical examples that illustrate the method.

The study revealed that considerable distortion is introduced by
these operations, and its application to broadcast-quality TV transmis-
sion would require saw filter performance beyond the present state of
the art. However, if the distortion requirement can be relaxed some-
what, then the present approach is advantageous because of its sim-
plicity. On the other hand, if high signal fidelity is required, then some
kind of equalization is needed for the present technique. This has
motivated the study of an extension of the present method which is
capable of producing high signal quality with saw filter requirements
within the present state of the art even at compression factors of 10 or
more, but at the expense of higher complexity. This latter development
is not discussed here but is covered in Ref. 3. The remainder of the
paper covers the theoretical analysis and computer simulation. How-
ever, the discussion of either subject by itself is not adequate for the
complete understanding of the system. The theoretical analysis estab-
lishes that although the basic concept was derived heuristically
through physical interpretations, it can be viewed as a quasi-stationary
approximation to the time-compression process. The computer simu-
lation, on the other hand, provides the quantitative results that lead
to the conclusion that the resulting distortion is excessive for today’s
sAw filter parameters.
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Il. THEORETICAL ANALYSIS

In this section, we describe and analyze the proposed compression
method using TV as an example. We first describe a heuristic argument
of how the technique is supposed to work. We then derive the impulse
response of a general LDF—the understanding of which is important to
the subsequent analysis and simulation. A brief step-by-step analysis
of the compression process is shown, and its result reveals that the
technique can be interpreted as a quasi-stationary approximation of
the chirp signal. The mathematical expressions describing the time
compressor are complicated; thus, numerical results are obtained using
a computer simulation discussed in Section III. Various other proper-
ties are also discussed.

2.1 A physical interpretation

A block diagram is shown in Fig. 1. The input signal v(¢) consists of
successive scan lines, each with a duration of T, seconds, and the
voltage is biased to be positive. It is multiplied synchronously by a
periodic chirp signal c(f) with a center frequency f, and a chirp range
of Af.. The instantaneous frequency of c(¢) sweeps linearly from
(fo—Af./2) to (fo + Af./2) over each scan line duration 7. The lowest
frequency of the chirp signal is assumed to be much greater than the
highest frequency in the Tv signal. The input x(¢) to the LDF is then
an amplitude-modulated chirp waveform. For simplicity, let us restrict
our attention to a single scan line, say (0, T}). In this interval, x(¢)
chirps from (fo — Af./2) to (fo + Af./2) with the TV signal as the
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Fig. 1—Time-compression filter.
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envelope modulation. As for the LDF, we assume that it has a band-
width Af centered at fo, and Af = Afe.

Again, for the purpose of a simple illustration, let us assume that
Af = Af. and, over its passband, the LDF has a constant gain and a
linear group delay characteristic decreasing from Ar to zero, where Ar
is the delay dispersion of the LDF. At the time instant ¢ = 0, x(¢) has
an instantaneous frequency (fo — Af./2) and an envelope magnitude
proportional to v(0). This “envelope piece” is delayed by Ar as it
transits through the LDF. Similarly, at ¢ = T}, the instantaneous
frequency of x(t) is the highest chirp frequency which gives a zero
delay for the passage through the LDF. In between these two end
points, the envelope of x(¢) is delayed linearly from Ar to zero.
Equivalently, the envelope of x(¢) over the interval (0, T}) is time
compressed into (A7, T}) in the LDF output. An envelope detector is
then used to retrieve the time-compressed TV signal. Similar compres-
sion occurs for all the other scan lines, and as a result, the envelope
detector output consists of a sequence of compressed TV bursts. If we
denote the duration of each burst by T, the ratio (T:/T.) is called the
time-compression ratio (TCR).

It is easy to show that, in general, for a given set of T}, Ar, Af, and
Afe,

Ar
T.= Tz—A—fAfc. (1)
where 0 < T. < T}, Af. < Af, and the compression ratio is
Ar AL\
TCR_(l-A_ng) . (2)

It is clear from the above description that time expansion is also
possible by the use of an increasing delay characteristic in the LDF,
and in such a case, the filter will become a time-expansion filter.

2.2 Impulse response of a general LDF

We consider the general case of an idealized LDF as shown in Fig. 2a.
The bandwidth of the filter is A f centered at f;. The group delay varies
linearly over the passband as shown in the diagram. The transfer
function of the filter, using analytic-signal notation, is

a _£)\2
EXP{_fZW[(f" foyto + _(f_2a@ + ¢1] },

L0, elsewhere, (3)

H(f) =
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Fig. 2—Characteristics and impulse response of an LDF. (a) Transfer function.
(b) Impulse response.

where
Af
AL
*= Ar’
7o is the group delay at fo, and ¢, is a constant. The inverse Fourier
transform of H(f) gives the impulse response A(t). The derivation for

h(t) is given in Appendix A. Neglecting some small envelope and phase
perturbations, a good approximation (sufficient for our present consid-

eration) for A(t) is
Af a,
cos 2#[(1’ —2-)1,‘ + 3 t* + @],

(4)

h(t): Tﬂ_?TStSTﬂ+-—éI,

0, elsewhere, (5)

where the multiplying constant has purposely been dropped, and ¢ is
a constant. A sketch of A(t) is shown in Fig. 2b. It is a linear chirp
waveform starting at 7o — Ar/2 and ending at 7o + Ar/2, with the
instantaneous frequency varying from f;, — A f/2 to fo + A f/2 at a chirp
rate of a.

2.3 Analysis of time compression

In this analysis, we again restrict our discussion to a single scan line
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for simplicity. We denote this input scan line by A(¢) in the interval
(0, T)). Referring to Fig. 1, the linear chirp signal is given by

Afe

C(E)=COS2W[(fo— 2f)t+gt2+¢3}, 0<t=T, (6)

2
where B is the chirp rate defined by

_ Ai;
B = T&I

and ¢s is a constant. The parameters fo and Af. are the chirp center
frequency and deviation, respectively. There are also two implicit
assumptions: (i) fo>> Af.; and (iZ) fo > the highest frequency in the TV
signal.

The LDF input is the product of the Tv input A(¢) and c(¢), i.e.,

x(t) = A(t)cos Zwl:(fu - Azfc)t + -g t* + ¢3], 0=t=<T:.. (8

(7

To obtain the LDF output, we can either use the time-domain approach
by convolving x(¢) with the impulse response A(¢) of the LDF, or use
frequency domain analysis by multiplying the Fourier transform of
x(t) by the LDF transfer function and then performing an inverse
transform. The former method is much simpler and is presented here.
The latter is tedious, offers no additional insight, and is, therefore,
deleted for brevity.

The LDF is assumed to have an extended passband over (fo — Af/2,
fo + Af/2), where Af > Af.. Its delay characteristic is shown in Fig. 3.
Note that the delay slope is given by

Arfp—--

DELAY

FREQUENCY (/)

Fig. 3—Delay characteristic of the LDF.
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o _Ar
44 Af.
Also note in Fig. 3 that the delay at fy + A7/2 is zero, as some constant

delay through the device has been dropped for simplicity. Using the
result of Section 2.2, the impulse response of the LDF is

(9)

cos21rl:f1t—gt2+qb4:|, 0=t=Ar,

h(t) =
0, elsewhere, (10)

where fi & fo — Af/2, and ¢, is a constant. The LDF output is then

y(t) = J‘ x(T)h(t — 7)dT

[T AW
T T2

T

2
x{cos%l:(b(t) +(at—Afe—fi+ )1+ (B—a) :;—:' +

2
cos 27r[(l>(t) +CHh—at+fi—f5)r+ (B+ a) %]} dr,

0=t=T + Ar, (11)

where the limits of integration are defined by
T: A max(0, t — A7), (12)
T2 A min(¢, T), (13)

fs and f; are defined in Fig. 3, and
O(t) & fit =5 £ + . (14)

A constant phase term has been dropped in (eq. 11), and we will
neglect all unimportant constant multipliers and phase shifts in sub-
sequent discussions. The integral of the second cosine term in eq. (11)
can be discarded because of the high frequency component 2 fyr in the
integrand. Therefore, y(¢) becomes

T,
¥(t) =f A(r)cos 2-17[(I>(t) + (at — Afe — fo + fo)7

T

2
+ (8- a) %]df, 0=<t=T +Ar (15)
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Let us examine the above integral expression carefully. Using analytic-
signal notation, we rewrite it as

T2
y(t) = J’ A(r) exp{j27r[:d)(t) +(at—Afe—fi+ fo)7

T\

2
+(8—a) —';—:'d'r}

T,
= exp j27®(t) J’ A(7) EXP{fZW[ (at — Afe = fa+ fa)T
T

2
+ (8 — a) %—]d’r},

0=st=T+ Ar. (16)

In this form, we can define a complex envelop for y(¢) as

Ty
Ayt) A f A(r) exp{ﬂf{ (at — Afe— fa+ fa)T

T

2
+ (B —a) %]dr}, 0<t=Ti+Ar. (17

In the above, note that A(r) is a slow-moving function while the
exponential term contains a highly oscillatory chirp given by the
derivative of the bracketed argument with respect to 7, i.e.,

fir)=(at = Afe—fi+ fi) + (B — o), Th=r=<T.. (18)

This can also be obtained by simply taking the difference of the
instantaneous frequencies of x(r) and A(f — 7) in eq. (11). The convo-
lution integral involved is illustrated in Fig. 4, where we show x(7) and
also the corresponding fi() at a fixed ¢ = f,. It can be seen that A4,(¢)
is given by an integral over (Th, T3) of a linear chirp waveform at a
chirp rate of (8 — a) and with an envelope modulation A(7). Further-
more, the chirp frequency f; inside (T}, T2) may vanish at some T as
shown in Fig. 4. In such a case, the value of y(#) is dominated by the
integral eq. (15) over the small interval surrounding that 7, where f;
goes to zero. This is, of course, the well-known quasi-stationary ap-
proximation. The approximation is good if the chirp rate B — a)
and the interval (T4, Tb) are large, and A(r) variation is slow by com-
parison. Using this approximation, at ¢ = ¢, inside the valid interval
0, T: + A7),

Ay)(t) = kA(T1), (19)
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where £ is a constant, and 7, is obtained by solving eq. (18) with f; set
to zero and ¢ = ¢y, i.e.,
fxt - A c = +
n=tTllofith (20)
B—a

This quasi-stationary approximation is indeed equivalent to the phys-
ical interpretation described in Section 2.1. As a check, let us derive
the TCR from the approximation above. We know that A(r,) is nonzero
only if 0 = 7, = T:. The corresponding ¢, can be solved for using eq.
(20), and the end points of £, constitute the interval T, i.e.,

_@LE+fi—f)—TiB—a) _ Af+fi—f)

o o
= Tz(l —E) (21)
a

TCR=(1—§) . a=p (22)

T.

Therefore,

which agrees with eq. (2) with the substitutions of a and 8 according
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to the definition eqgs. (4) and (7), respectively. See Section 2.4 for a
continued discussion of A,(¢).

To finish our analysis of the time compression, we return to y(¢) in
eq. (15) and expand the cosine term:

y(t) = yc(t)cos 2nD(t) — ys(t)sin 27D(¢), (23)
where
Ty 2
ye(t) & J A(r)cos 2w[(at —Afe—fit+ AT+ (B—a) %]d‘r (24)
T]
and

T 2
ys(t) & J A(7)sin ZW[(at —Afe—fitfe)r+(B8—a) —;—]d*r. (25)

T

In eq. 25, y.(t) and y,(¢) can be viewed as the in-phase and quadrature
components of y(¢) after synchronous demodulation. The envelope
detector output is then

2(t) = [y4(t) + y3(£)]2 (26)

2.4 Some fundamental properties

We have just derived mathematical expressions for the time-com-
pression process. These expressions are too complicated for easy
interpretation. However, we have demonstrated that the technique
works if a quasi-stationary approximation is made for the chirp
waveform. In other words, the instantaneous frequency of the chirp
wave could be used as if it were a stationary carrier frequency in a
steady state analysis.

Making such an assumption, it is seen from eq. (2) that infinite
compression, TCR = o, results if Af = Af. and At = T} (a = B). But
from egs. (15), (24), and (25), it is obvious that the LDF output after
synchronous detection (for a = B) will actually become the Fourier
transform of the input envelope A(¢). This can also be recognized as
the well-known chirp transform or real-time transform®® commonly
used in chirp radar and saw processors. Therefore, the quasi-stationary
model is invalid for this case.

A case where the quasi-stationary approximation clearly holds is
where Af. — o and o' — 0, i.e., the chirp range is very large, and the
delay slope of the LDF is close to zero. The result is, of course, a very
slight compression, i.e., the TCR is slightly larger than 1. Therefore,
without doing any specific calculation, we see that the quasi-stationary
assumption is valid, at best, for small TcRs, and it breaks down
somewhere between TCR = 1 and . Since our practical applications
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require TCR = 2, the case of TCR = 2 becomes most interesting and is
investigated in the simulation later.

Let us now assume the quasi-stationary model and see what kind of
distortion would result. The input to the LDF can be expressed as a
multitone AM signal:

N
x(t) = (1 + ¥ mjcoswjt)coswct, (27)
J=1

where w; are the angular modulating frequencies, and w. is the angular
carrier frequency at some fixed instant of time. Let 7. be the delay of
the LDF at w = w.. The phase characteristic of the LDF is

d(w) = — (7 + w/a)w + &*/(2a) + ¢, (28)

where c is a constant, and a is defined in eq. (9). The LDF output is

2
y(t) = cos[wct + (1 + we/a) (—we) + ;J—; + c:|
N m; We
+;§1—§_ cos| wet + wit — 'rc+;— (we + wj) + o

2
+ cos[mct— w;t — (7,_- + %)(wc - w;)) +(w—cl')—+ c}} (29)

(we + wj)z + C]

2a

In the above expression, various sidebands of the input AM signal are
delayed asymmetrically about the carrier frequency. This would, of
course, distort the signal. After some tedious manipulations, the en-
velope of y(t) is found to be

-~ N w? 2
Yi) = {[1 + ¥ m cosw(t — re)cos(—’)jl +
2a

=1

N w2 24172
l:jgl m jcosw(t — ‘rn)sin(-éi):’ } . (30)

Comparing ¥(¢) and x(t), it is obvious that distortionless transmission
results only if w}/(2a) << 1. More importantly, the distortion in ¥(¢) is
dependent on the input signal and, therefore, cannot be equalized
easily. On the other hand, if synchronous demodulation is used in
place of envelope detection, we obtain the first square bracket term in
eq. (30), i.e.,

~ N w?
Y(t) =1+ Y mjcosw, (¢t — 70)003(2—’), (31)
4 4

J=1

where the distortion shows up as cos[w?/(2a)] which is independent of
the input signal, and equalization is thereby feasible. To do synchro-
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nous demodulation, we need to know the instantaneous frequency of
the carrier in y(¢), the LDF output, which we have not addressed so far.
Let us do so in the following.

Stating eq. (16) again,

Ty 2
¥(t) = exp[j27®(¢)] J’ A(r) exp[j(B - a) %]
T,

-exp[j2m(at — Af. — fo + f5)7]dr.  (32)

In the above we have, in part, an output chirp frequency of d®/dt =
(fi — at). The integral part, on the other hand, can be interpreted in
two different ways: (i) It is a “quadratic” chirp transform of A(1). As
such, little is known about this transform. (i) It is the Fourier trans-
form of A(r) exp[j2w(B — a)72/2], where A(r) can be viewed as an
envelope modulation on a chirp signal with frequency (8 — a)r.
Equivalently, it is the convolution of the Fourier transform of A(r)
and that of the chirp signal. The result may very well contain high
frequency components depending on the magnitude of (8 — «) and the
shape of A(7). In fact, simulation results show that the instantaneous
frequency of y(t) can be quite different from (fi — at). Therefore,
frequency predictability is difficult in the general case, and synchro-
nous detection as discussed above cannot be used easily.
The following is a summary of the analytic results:

(i) The mathematical expressions are complicated, and simulation
is necessary to obtain numerical insights.

(ii) The compression operation can be justified by a quasi-station-
ary model. Under this model and with envelope detection, multitone
AM leads to nonequalizable distortion. Furthermore, the quasi-station-
ary model is valid only for small TCRs.

(iii) Synchronous detection is very difficult because of frequency
unpredictability.

. SIMULATION

This section describes simulation results. These numerical results
show that the proposed technique indeed time compresses the input
signal, but the output distortion is probably unacceptable for TV
transmission using today’s saw devices.

3.1 Preliminary set-up

A computer subroutine was written to simulate the time-compres-
sion operation. It accepts an arbitrary input A(¢) defined in the interval
(0, T)) and outputs y(¢), y.(¢), and y.(¢), given by eqs. (15), (21), and
(22), respectively. Note that y(¢) is the RF output of the LDF, and y.(¢)
and y,(t) are the in-phase and quadrature components after synchro-
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nous demodulation with ®(¢) so that the ideal envelope detector
output z(£) can be easily calculated from eq. (23). Also note that all
three outputs have the same integral form, i.e.,

I= J f(t)cos[2m(at® + bt + c)]dt, (33)

where we can assume ¢, = 0, f; = t;, and @ > 0. In the computer
program, we break the interval (0, T}) into many small segments such
that within each segment, a linear approximation of A(¢) is valid. After
doing so, the integration over each of these segments can be done in
the form of eq. (33) with

fty=mt+ k. (34)

The limits of integration ¢, and t. in eq. (33) are, of course, the end
points of the small time segment. Using the linear representation eq.
(34) for f(t), I in eq. (33) can be integrated in closed form in terms of
Fresnel integrals, and the result is

I=ml + kI, (35)
where
I = [n/(2p)]"{[C(22) — C(1)]cos B — [S(zs) — S(z)]sin B),  (36)
L= COZSPB {sin x3 — sin x} — g[7/(2p)]'*[C(2:) — C(21)])
+ SI;pB {cosx} — cosxi + q[7/(2p)]’[S(22) — S(21)]},  (37)
and
p=2ma; q=2mnb; r=_2mne, (38)
2
q
B=r-|——4 ) 39
, (2 JI») (39)
x = Vph + -2%_), (40)
x2 = Vpt: + 5-?/_5’ (41)
X1
5 = , (42
1 Vx/2 )
X2
= . (43
-2 m )
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The Fresnel integrals in eq. (36) are defined by

Clz) = j cos (3’- xf) dx (44)
| 2

S(z) = f sin (3 xﬁ) dx. (45)
0 2

There are also some simpler cases, e.g., @ = 0 or b = 0, which are not

shown for brevity. Since time expansion can be achieved by reversing

the delay slope of the LDF, the subroutine for simulating the time

compression can also be used to simulate the time-expansion filter.

Examples of both time compression and expansion will be shown later.
In all subsequent simulations, the input is always

1, 0=t=T (T, = 64 ps)
0, otherwise ’

and

A(t) = { (46)
This rectangular pulse is, of course, not a representative of the video
signal. However, except for edge “ringings,” the system should com-
press the pulse properly, and peak-to-peak (p-p) ripples at the center
portion of the output pulse should give an indication of the magnitude
of distortion involved. To examine the outputs y(¢), y.(¢), and ys(t), we
have also developed a set of programs to estimate the instantaneous
frequency at various time instants of y(t), as well as the p-p ripples of
the output pulse.

Because of the complexity of the equations and various computer
routines, it is not easy to assure that there is no bug in the programs.
However, we did make some runs for the special case a = § (Fourier
transform case) where results are known. The waveforms y.(), ys(¢),
and z(¢), and the output chirp frequency and offset frequency of the
LDF given by eq. (31) were all verified carefully. Such a check assures
the validity of the computer programs.

3.2 Examples of time compression

Four examples of time compression are discussed in this section.
They all have TcR = 2 (i.e., 2:1 compression) and an input given by eq.
(46) (see Fig. 5a). The chirp frequency range Af. for the input x(¢) to
the LDF is (f2, f3), while the passhand Af of the LDF extends over
(fi, f2). The delays at f; are denoted by 7; (i = 1 to 4), respectively. The
delay dispersion of the LDF is defined by Ar = 7, — 74. The descriptions
for these examples are as follows:

(i) The key parameters for the LDF are shown in Fig. 5b. In this
example, we let fy = f5, f = fi and choose
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Fig. 5—Parameters for time-compression technique. Example 1—(a) Input pulse (¢);
(b) Delay of LDF; (c) Expected output (¢).

Af.=Af=60MHz. (47)

From eq. (2), TcR = 2 with A7 = 32 ps. The time-bandwidth product
(BT) of the LDF is defined by

BT = (Af)(Ar). (48)

Here, BT = 1920. Bandwidth product = 10,000 to 50,000 is considered
as a practical range for saw filters. The “expected” output is illustrated
in Figure 5¢c where the output compressed pulse appears between ¢ =
32 ps and 64 ps. The small ripples in the time intervals, 0 to 32 us and
64 to 96 ps are to illustrate the nonzero output of the LDF in these
regions.

(if) The LDF parameters are shown in Fig. 6a and the expected
output in Fig. 6b. Here, A f. = 60 MHz which is the same as in Example
1 (Fig. 5), but Ar and Af are both increased by a factor of 3. With
Af =180 MHz and At = 96 pus, BT = 17,280.

(iit) The parameters are shown in Fig. 7a, and the expected output
is the same as that of Example 2 (Fig. 6) because the delay dispersion
has remained the same. We increased Af to 600 MHz yielding BT =
57,600, which is probably a little beyond present-day state of the art.
We used Af. = 200 MHz.

(iv) The parameters are shown in Figs. 6a and 6b. This is essentially
the same as Example 3 in Fig. 7a, except Af is increased to 1200 MHz,
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Fig. 6—Parameters for time-compression technique. Example 2—(a) Delay of LDF;
(b) Expected output (£).

and BT = 115,200. This is probably not realizable in the near future.
We used Af. = 400 MHz.

The above examples are arranged to illustrate the effect of increasing
Af (or the strengthening of the quasi-stationary model).

With the input being a pulse 64-ps long, the expected output for all
examples is a compressed pulse, 32 ps in duration (TCR = 2). This is
indeed so from the simulation results which show a compressed pulse
approximately 32 ps long in the expected time slot. The output outside
the compressed pulse duration is at least an order of magnitude lower.
However, inside this compressed pulse, there are ripples created by
the compression process, and these ripples are the resulting distortion
that we are trying to estimate. The ripples are largest at the edges of
the compressed pulse and smallest toward the center. Also, the ripples
at the center are indications of the “best” performance of the time-
compression filter. In our computer routines to estimate distortions,

96

64

32

DELAY IN MICROSECONDS
DELAY IN MICROSECONDS

0 | 0 l L
4200——|t200-—l— ZOO’I |-—400 -Ld[)o -LAOO-—|
FREQUENCY (f) IN MEGAHERTZ FREQUENCY (f) IN MEGAHERTZ
EXAMPLE 3 EXAMPLE 4
(a) (b)

Fig. 7—Parameters for the time-compression technique. Example 3—(a) LDF (600
MHz). Example 4—(b) LDF (1200 MHz).

2388 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1981



we take some symmetric time interval, say +AT,, about the center of
the time-compressed pulse, and we record the maximum and minimum
pulse magnitudes, denoted by zmax and 2min, respectively. The p-p
ripple distortion (over +AT},) is defined by

A Zmax — Zmin
RD 4 20 log ,:——-—(zmu T 7o) /2}, (49)
where RD is in dB. Both zmax and zmi, are positive because A(t) is a
positive pulse. We plot the p-p ripple distortion versus AT, in Fig. 8.
The largest ATy is 16 us because that is the edge of the compressed
pulse. Although it is difficult to translate the meaning of RD to a TV
quality measure, it can be certain that a large RD (i.e., large ripple)
would mean poor transmission quality. To make a Tv system workable,
an RD of less than —45 dB is probably necessary, although other
applications may not require such a low distortion.

Referring to Fig. 8, it is obvious that the distortion gets progressively
smaller from examples 1 to 4. But the lowest distortions, despite the
large BTs involved, are still too excessive for high quality Tv transmis-
sion. Some more examples are provided in Appendix B for additional
insight into the problem of ripple distortion.

3.3 An example of time compression and expansion

In this example, we use practical design parameters involving both
time compression and time expansion (Fig. 9). Figure 9a shows a 64-

0

EXAMPLE 1 _
-

apl  EXAMPLE?2 _/-D’/

PEAK-TO-PEAK RIPPLE DISTORTION IN DECIBELS

EXAMPLE 3 —
—t

/.
EXAMPLE 4 °

[ e
-40 | 1 1 | | 1 | 1
0 2 4 6 8 10 12 14 16 18

+*DURATION ABOUT CENTER OF OUTPUT PULSE IN MICROSECONDS

Fig. 8—Distortion results for time-compression examples.
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Fig. 9—Parameters for (a) time-compression and (b) time-expansion examples.

us pulse as an input to the compressor, and the expected output. The
actual ripple distortion (i.e., simulated result) over the 32-us com-
pressed pulse is shown in Fig. 10a. To check the operation of the
expander alone, we assume an input of a 32-us pulse to the expander.
The expected result is shown in Fig. 9b, and the simulated ripple
distortion is plotted in Fig. 10b. It is clear from Figs. 10a and 10b that
both the compressor and the expander lead to considerable distortion.
To simulate a total system with compression and expansion, we
used the distorted 32-us pulse from the compressor as an input to the
expander. The expanded output pulse is so distorted that it becomes
meaningless to make a ripple distortion plot as before. Instead, we plot
a small segment near the center of the expanded pulse in Fig. 10c to
illustrate its excessive distortion. The performance of this total system
is definitely not suitable for Tv transmission. Some filterings were tried
at the output of the expander, but little improvement was obtained.

IV. CONCLUSION

We have studied a time-compression technique based on a simple
configuration of saw filters. The technique was derived heuristically
and can be viewed as a quasi-stationary model for the chirp signals.
Numerical results show that excessive distortion is created, and its
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Fig. 10—Results for time-compression and time-expansion examples. (a) Ripple dis-
tortion of time-compression example. (b) Ripple distortion of time-expansion example.
(c) Pulse ripple for time-compression and time-expansion examples.

application to TV transmission is not suitable unless some kind of
equalization is provided. One such equalization is the chirp transform
processor’ which involves considerably more complexity. Simpler
equalizations may be possible but do not seem to be straightforward.
As for other applications where the distortion requirement is less
stringent, this approach may be feasible.
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APPENDIX A
Impulse Response of a Linear Dispersive Filter

A linear dispersive filter (LDF) is a filter having a linear delay
characteristic. Using the analytic-signal notation, its transfer function
can be written as

1 _A_w Sw—w= &

Gw=1" 2~ =2, (50)
0, elsewhere

and

D(w) = (to — swo) + 50, ——=w—wo=— (51)

where G(w) and D(w) are the gain and group delay, respectively; wo is
the angular center frequency, and Aw is the bandwidth in radians; o is
the delay at wo; and Ar is the delay dispersion over wo + Aw/2. The
delay slope is defined by

AT
aA—.
¥ =2 (62)
Integrating D(w) with respect to w, we obtain the phase,
A A
¢(w) = —(10 — Swo)w — g @, _Tw =Sw—w= Tw, (53)

where the integration constant has been dropped for convenience.
Using exponential notation and neglecting all unimportant multiplying
constants and constant phase shifts in subsequent discussions, the
impulse response of the LDF is

L
A

h(t) = Re J’ A, €XP {—j |:(‘ru — swolw + % w2]} exp(jwt)dw. (54)

The above is simply an inverse Fourier transform of the transfer
function. By a change of variable, it can be rewritten as

Aw

2
h(t) = Re exp(jwol) fﬁw exp[—j (ruw + % mz)] exp(jwt)dw. (55)
z

There are two methods to solve for A(t) according to the above: (i)
extend the limits of integration to *o and obtain a closed form solution
easily; (ii) retain the finite integration limits and derive the result
using Fresnel integrals. Both methods are shown briefly below.
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Method |

Changing the limits of integration to + in eq. (55) and recognizing
that the integration of the term exp(—j7.w) leads to a delay of 7 in
h(t), we obtain an integral in the form of

J= J’ exp(—jkw’)exp(jot)dw, (56)

where k is a constant. Putting the integrand in Gaussian form by
completing the square, we get

T M2 =
J = \/;exp [} (ZE - Z)] (57)

Applying the above to eq. (55), we obtain the desired result

2
h(t) = Re exp(jwot)exp [j %] (58)
or
- 2
h(t) = cos l:wot + (t—m):l (59)
2s

However, because the original transfer function has a delay dispersion
A7 defined about 7o, the valid range of ¢ for eq. (59) is

A A
To—?fsts'rg+—2l. (60)

Method Il
Setting w; = wo — Aw/2 and 7, = 10 — A1/2, eq. (55) is written as

Aw
h(t) = Re exp(juw:t) j exp [—j (le + -;— wz)] exp(jwt)dw. (61)

0

Again recognizing that exp(—jmiw) leads to a delay of 7, we may
substitute 7 = ¢ — 7, and

Aw
h(r) = Re exp(jwiT) j exp (—j g wz) exp(jwt)dw. (62)
0
Completing the square in the integrand, we obtain

2 Aw 2
h(t) = Re exp(jwiT)exp (j -;—S) f exp [—j% (w - %) ] dw. (63)

The above can be integrated using Fresnel integrals, and the result is
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2
h(r) = Re exp [ (wl'r + ;S)]

X{[C(y2) — C(y)] = Jj[S(y2) — S(y)]}, (64)

yna \/g Aw ("'AT?)’ (65)
y2 & \/ga.w (1 - é) (66)

C(z) and S(z) are the Fresnel integrals defined in eqs. (44) and (45).
Consider the bracketed term:

[C(y2) — C(y1)] = J[S(y2) — S(y1)] & p(r)exp[jO(7)]. (67)

Neglecting small ripples, p(7) is constant over 0 < 7 < Ar and vanishes
outside this range. The phase term 6(7) is approximately constant over
the same interval 0 < 7 < Ar. Therefore, putting back the 7, delay, we
have

where

2
h(t) = Re exp { [ml(t -m) + “TS”)-} } (68)

APPENDIX B
Additional Examples On Ripple Distortion

Additional examples are provided here for more insight into the
phenomenon of ripple distortion. The first case of interest is that of
band-limiting effect on the input pulse. We use a 32-us input pulse and
low-pass filter it with a raised-cosine characteristic, where the gain is
unity from zero to 8 MHz, 0.5 at 9 MHz, zero at 10 MHz, and the delay
is constant over the passband. The output is, of course, a 32-us pulse
with ripples. The magnitude of these ripples are plotted in Fig. 11 in
the manner similar to Figure 8.

The second case of interest is that of ripple distortion caused by the
linear delay slope of the LDF. Three specific examples are provided to
illustrate this effect:

Case A: The input to the time-compression filter is a 32-us pulse. It
is modulated by a CW frequency of fy = 1600 MHz. The LDF
has a delay characteristic as shown in Fig. 1, where fo = 1600
MHz and Af = 2400 MHz.

Case B: The conditions are identical to those of Case A, except fo =
1000 MHz and Af = 1200 MHz.

Case C: The conditions are identical to those of Case A, except fo =
700 MHz and Af = 600 MHz.
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Fig. 11—Distortions because of bandlimiting and delay slope.

All three examples above illustrate the case of no time compression,
but simply a constant delay through the LDF as viewed by the quasi-
stationary model. Note that the magnitude of the delay slope increases
by a factor of two from each example to the next and, hence, an
increase in ripple distortion as seen from the results plotted in Fig. 11.
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