Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 60, No. 10, December 1981
Printed in U.S. A.

Conformal Mapping and Complex Coordinates
in Cassegrainian and Gregorian Reflector
Antennas

By C. DRAGONE
(Manuscript received June 18, 1981)

In a Gregorian or Cassegrainian reflector antenna, the complex
coordinate u’ of an output ray is related to the corresponding input
coordinate u by a bilinear transformation, u’ = (au + b)/(cu + d). We
discuss the properties of this transformation, derive its coefficients a,
b, ¢, d, and give explicitly the conditions that must be satisfied in
order that symmetry be preserved. The conditions are expressed
directly in terms of the paramelers that specify the path of the
principal ray, which is the ray corresponding to the feed axis. The
results are directly related to well-known properties of stereographic
projections, and they are shown to be useful in the design of multi-
reflector antennas which minimize aberrations and cross-polariza-
tion.

I. INTRODUCTION

Gregorian and Cassegrainian reflector arrangements are needed for
ground station and satellite antennas, and terrestrial radio relay sys-
tems.'™® In these antennas, a paraboloid of large aperture is combined
with a smaller subreflector (an hyperboloid or an ellipsoid). The feed
is placed at the antenna focal point, and it illluminates the subreflector
with a spherical wave, which is then transformed by the two reflectors
into a plane wave. Each input ray from the feed is thus transformed
into an output ray parallel to the paraboloid axis.

This transformation can be represented by a stereographic projec-
tion.*"" Therefore, it is a conformal mapping—it transforms circles
into circles, and it is described by the bilinear transformation

,_au+b

W= T a (1)
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where u is the “complex coordinate” of an input ray and u’ the
corresponding output coordinate. In this article, we discuss the prop-
erties of the bilinear transformation, derive its coefficients a, b, ¢, d,
and give explicitly the conditions that must be satisfied to obtain
circular symmetry, in which case

b=c=0, d=1. (2)

The results are related to well-known properties of stereographic
projections, and they generalize previous results in Refs. 12 to 18.

We first consider, in Section II, an ellipsoid illuminated by a spherical
wave front S. We assume that S originates from one of the two foci of
the ellipsoid, and determine the properties of a reflected wave front S’,
assuming geometric optics. We determine for each point P’ of S’ the
corresponding point P of the incident wave front S and show that the
correspondence P — P’ is everywhere a conformal mapping. According
to a well-known theorem of complex variables,” such a conformal
mapping can be represented by the bilinear transformation (1), pro-
vided suitable complex variables u’ and u are defined for the rays
through P’ and P. A suitable choice is obtained with two separate
reference frames for P’ and P using the familiar relations®*

4

. g .,
u= e*"*tani u’' = e’*tan L (3)

where ¢, ¢’ and 8, ¢ are spherical coordinates.

Since the two reference frames defining u and u’ can be oriented
arbitrarily, eq. (1) implies that an arbitrary rotation of the input frame
must transform the input coordinate u according to a bilinear trans-
formation.'® The coefficients a, b, ¢, d of such a rotation are derived in
Section V, where it is shown, for a rotation characterized by Euler

angles a, 3, v, that

a=1, b = —e’tan l—;, (4)
. 7 B — pllaty)
¢ = e’"tan 5 d=e . (5)

Since an ellipsoid has an axis of symmetry, it is always possible to
orient the input and output frames so as to reduce eq. (1) to the normal
form

u' = au. (6)

However, if the feed is centered around the z-axis of the input frame,
then the reflected wave is blocked by the feed. For this reason, to avoid
blockage, the z-axis must be tilted with respect to the ellipsoid axis.
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Then, using eqs. (4) to (6) and properly orienting the input and output
frames, it is shown in Section VI that eq. (1) assumes the form

. u
W= M Datan @

where M and i are the magnification and angle of incidence for the
principal ray corresponding to the feed axis (i.e., they ray u = 0).

The product of the two transformations given by eq. (6) and eqgs. (4)
to (5) gives the group of all possible transformations that can be
obtained with an ellipsoid. One can show that this is the complete
group of bilinear transformations. Thus, for any given values of the
coefficients, a, b, ¢, d, it is always possible to find an ellipsoid (combined
with suitable reference frames) which will produce the transformation
(1) with the specified values of a, b, ¢, d. In Section VII, we consider
an antenna consisting of N reflectors, each represented by a bilinear
transformation. Obviously, the product of the N transformations is
again a bilinear transformation and, therefore, the antenna can be
represented by an equivalent ellipsoid.

Most antennas are focused at c. Then the equivalent ellipsoid
becomes a paraboloid, and the antenna can be represented as shown
in Fig. 1, showing a feed illuminating the equivalent paraboloid from
its focus 0. The coefficients a, b, ¢, d in this case are obtained by letting
M — 0in eq. (7), and it is.:shown in Section VI that we then obtain, for
the complex coordinate x’ + jy' of an output ray,

’ L u
XAy =2 (8
where u is the input coordinate and f = OI is the focal length of the
equivalent paraboloid.

In Section VI, we derive a simple expression for the coefficient tan
i in terms of the angles of incidence specifying the orientations of the
various reflectors with respect to the principal ray. The value of tan i
is needed in the design of a multibeam antenna to determine the
aberrations caused by a small feed displacement from the focus. It is
also needed to determine the output polarization, as shown in Section
VIIL

Of special importance is the condition

tan i = 0. (9)

Then, using a corrugated feed” (or a feed with similar characteris-
tics?™?) the output wave fronts become everywhere polarized in one
direction. Furthermore, astigmatism is eliminated' for small feed
displacements in a multibeam antenna. The above condition can
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Fig. 1—A Cassegrainian or Gregorian reflector arrangement is represented by an
equivalent paraboloid combined with a feed at 0. The principal ray corresponding to the
feed axis is reflected at I with angle of incidence i.

15-17 a5 shown in

always be satisfied by properly orienting the feed axis
Section VIIL

The above results are related to previous results by Brickell and
Westcott,'* Tanaka, Mizusawa,'® Mizuguchi et al.,'® Hanfling,"* and
the author.!” There is a simple connection, pointed out in Section IX,
between some of the expressions derived here and certain results in
Refs. 13 and 14; the particular case, N = 2, is treated in those
references. When only two reflectors are involved, there is always a
common plane of symmetry, and the feed orientation can be derived
geometrically as in Ref. 17. Our results differ from those of Refs. 15
and 16 in two respects: first, they apply also for N > 2; second, tan i is
expressed directly in terms of the parameters (magnifications and
angles of incidence) that specify the path of the principal ray. As
pointed out in Ref. 19, an important application of our results is in the
theory of aberrations.

The main results of this article are derived in Sections V through
VII. Most of the results of Sections II through IV are well-known
properties of ellipsoids, but their derivation is needed for Sections V
through VIL In the following section, we discuss the transformation
obtained when an ellipsoid is illuminated by a spherical wave front
originating from one of the two foci. This transformation has the
following basic property: it is a conformal mapping which gives cor-
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rectly, not only the amplitude distribution of a reflected wave front,
but also its polarization. All results of this article directly follow from
this property.

Il. CONFORMAL MAPPING, COMPLEX COORDINATES, AND THE
BILINEAR TRANSFORMATION
Let a linearly polarized point source be placed at O, one of the two
foci of an ellipsoid, and let O’ be the other focus (in Fig. 2). Then for
each ray from O, a corresponding ray through O’ is obtained after
reflection by the ellipsoid. To determine the properties of this corre-
spondence, introduce at the two foci separate coordinate systems x, y,

REFLECTED
RAY

INCIDENT z
x RAY

REFLECTED
RAY

Fig. 2—A ray from one of the two foci of an ellipsoid determines, after reflection, a
ray through the other focus. The correspondence P — P’ between points of two wave
fronts S and S’ is everywhere as conformal mapping described by eq. (1).
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z and x', y’, z’ oriented arbitrarily, as shown in Fig. 2. Consider an
incident ray from O with spherical coordinates 6, ¢, and let ¢, ¢’ be
the spherical coordinates of the corresponding ray through O’. It is
convenient to introduce as in Refs. 12, 13 complex coordinates u and
u’ defined by eq. (3). Then, we show in this section that #’ and u are
related by a bilinear transformation. If both coordinate systems are
right-handed, we shall see that the bilinear transformation does not
relate u’ directly to u, but to its complex conjugate u*. To avoid this
inconvenience, one of the two reference systems will be assumed to be
left-handed as shown in Fig. 2.

To better visualize the one-to-one correspondence between rays
through the two foci, consider in Fig. 2 two wave fronts S and S
centered at O and O’, respectively. Then, for each ray from O, one
obtains on S and S’ two corresponding points P and P’. Furthermore,
letting P be a variable point of a curve L of S, one obtains on S’ a
variable point P’ describing a corresponding curve L’ of S’. Since the
point source is linearly polarized, the curve L can be drawn so that it
is everywhere tangent to the magnetic field. Then one obtains a
polarization line of S, and it is shown in Appendix A that the corre-
spondence P — P’ transforms polarization lines into polarization lines.
That is,

if L is a polarization line,
then L' is also a
polarization line. (10)

Another property is that angles are preserved and, therefore, the
correspondence P — P’ is a conformal mapping.

The above considerations apply also to an hyperboloid (in which
case one of the two foci is behind the reflector), to a paraboloid, or to
any combination of such reflectors. Thus, let the ellipsoid of Fig. 2 be
combined with two paraboloids with foci at O and O’. Let the first
paraboloid be centered around the z-axis, so as to map conformally
the plane z = 0 onto the wave front S. Similarly, let the second
paraboloid map S’ onto the plane 2’ = 0. Then, the product of the
above three reflections determines a one-to-one correspondence be-
tween points U and U’ of the two planes z = 0 and 2’ = 0 in Fig. 2.
This correspondence is everywhere conformal and, therefore, it implies
a bilinear relation” between the complex coordinates x + jy and x’ +
jy' of two corresponding points U and U’. It is shown in the following
section that the two paraboloids produce the transformations

x + jy = 2fou, x' +jy' = 2fou’, (11)
fo and fb being the focal lengths of the two paraboloids. Thus, the
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desired result, eq. (1), follows at once. As pointed out earlier, eq. (1)
requires that one of the two reference systems in Fig. 2 be left-handed.

lil. CONSTRUCTION OF A PARABOLOID BY A STEREOGRAPHIC
PROJECTION

The mapping between two wave fronts S and S’ in Fig. 2 can be
represented as a product of two stereographic projections, as shown in
Appendix B. In this section, we let O’ go to  on the z-axis. Then the
ellipsoid degenerates into a paraboloid, S’ becomes a plane, and only
one stereographic projection is needed."

Let the radius of S be chosen equal to the paraboloid focal length £,
and let S’ be the tangent plane z = fo. Let a correspondence P — P’
between points of S and S’ be obtained as shown in Fig. 3, with a
stereographic projection from the axial point z = —f,. To show that
this is the same correspondence determined by the rays reflected by
the paraboloid, consider the reflected ray corresponding to P’, and let
I be its intersection with the incident ray OP. Since the triangle PP'T
is similar to the isosceles triangle NPO, PI = P’'I and, therefore,

Ol =1IP’ = [, (12)

which is the equation of a paraboloid.
Notice, if p is the radial distance of the reflected ray from the z-axis,
then from the triangle P'VN one has

]
p=2fitan . (13)

PARABOLOID — ~ _ /s

N /

/ _— ~PLANE 2=0
L

§'——

U

P

r 62 N
z 1(76‘ z=1y 0 z=-fy

Fig. 3—Construction of a paraboloid by a stereographic projection.
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Therefore, the reflected ray determines on the plane z = 0 a point U
with the complex coordinate given by

. - 0
x +jy = 2fe’*tan 7 (14)

which gives eq. (11).

IV. TRANSFORMATION BY AN ELLIPSOID CENTERED AROUND THE
Z-AXIS

The usual construction of an ellipse (Fig. 4) involves two fixed points
A, and A; and a variable point A; which is varied, keeping the
perimeter p of the triangle A1A;As constant. Then, As describes an
ellipse with foci A, and A», as shown in Fig. 4. A simple relation among
the angles of the triangle A;A4:A; is given by the following theorem,
which is derived in Appendix B with the help of two stereographic
projections.

Theorem: Given a lriangle A1A:A; with angles oy, a, as, and
perimeter p, its three sides d, d», d3 are given by

2d; = p(l —tan%tan%) (15)

where (I, m, n) is any permutation of (1, 2, 3) and d; = AnAn.

Fig. 4—The angles a, ay, ag of a triangle A,A:A; are related by eq. (15), which implies
a linear relation between tan /2 and tan 8°/2.
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By letting A, and A; coincide with O and O’ in Fig. 4, and letting A,
be the point of incidence of a ray from O, one obtains from eq. (15) for
{ = 3 the well-known relation

1+aotan%tan%=o, (16)

where ao is a constant determined by the distance d = d3 between the
two foci and by the path length ¢ = OIO’,

=— 17
Qo P (17)
If now the ellipsoid is centered around the z-axis as shown in Fig. 4,
one has § = —a,. Furthermore, orienting the x’, y’, z’-axes as in Fig. 4,
with the z’-axis opposite the z-axis, we have ¢’ = ¢ and §' = 7 — ay;
therefore, eq. (16) gives
u' = aou. (18)
Thus, for this particular orientation of the reference axes, eq. (1)
assumes the normal form of eq. (6). If now arbitrary rotations are
applied to the reference axes of Fig. 4, as we have seen in Section II,
eq. (18) assumes the form of eq. (1). This implies that the above
rotations transform u and u’ according to bilinear transformations,
whose coefficients are derived next.

V. ROTATIONS AND REFLECTIONS'

Consider Fig. 5a showing the x, y, z-axes oriented arbitrarily with
respect to the x’, y’, z’-axes. We wish to determine, for a ray from O,
the relationship between its coordinates #’, ¢’ and 6, ¢ with respect to
the two coordinate systems. We have seen that the relationship can be
written in the form (1), whose coefficients we now express in terms of
the Euler angles a, 8, y specifying the orientation of the x’, y’, z'-axes
with respect to the x, y, z-axes. Notice, for the purpose of determining
the coefficients of eq. (1), consideration can be restricted to real values
of u.

The x’, ', z’-axes in Fig. 5a can be obtained from the x, y, z-axes by
three successive rotations: a rotation around the z-axis through the
Euler angle a, followed by a rotation around the y-axis involving the
second Euler angle 8 and, finally, a rotation around the z-axis by the
third Euler angle y. The first and last rotations are described by the
transformations

u' = ue ™, u'=ue”. (19)

To determine the second transformation, consider Fig. 5b which illus-

RAY TRANSFORMATION IN REFLECTOR ANTENNAS 2405



(a) (b) (c)
Fig. 5—The x’, y’, z’-axes are obtained from the x, y, 2-axes through (a) an arbitrary
rotation, (b) a rotation around the y-axis, and (c) a reflection by a plane.

trates a rotation around the y-axis by the angle B. Then, for a ray in
the xz-plane, 8’ = 6 — B and, therefore,

b B
tan—=—————ﬁ, (20)
1+ tan-2-tan§
which gives
u+ by
J'-__ , 2
“ 1 — bou (21)
with
bo=—tang. (22)

The product of the above three rotations can now be calculated
straightforwardly. Letting

b= —tan g e’ (23)
from egs. (19), (21), and (22) we obtain
, ey Ot U
w= e @4

which represents an arbitrary rotation. In the special case where the
axis of rotation is orthogonal to the z-axis, we can verify that

a+y=0 (25)

2406 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1981



and eq. (24) reduces to
) b+u
el e (#9)

Eqgs. (24) and (26) can be considered generalizations of the trigono-
metric identity (20) to complex coordinates. They are directly related
to the Cayley-Klein representation' of rotations by complex matrices.

5.1 Reflections
We now combine a rotation orthogonal to the z-axis with an inver-

sion of the z-axis and obtain from eq. (26), replacing u with 1/u*,
1+ bu*

“w o

’

(27)

representing a reflection by a plane shown in Fig. 5(c). The x/, y’, 2’-
axes in Fig. 5(c) are the reflected images of the x, y, z-axes, and we
shall see in a moment that the coefficient b in eq. (27) is given by

_ N.+jN,
-5

where N., N,, N, are the x, y, z-components of a vector N orthogonal
to the reflector.

Eqgs. (23) through (28) give the transformation of © when a rotation
(or a reflection) is applied to the reference axes. Suppose now the same
rotation (or reflection) is applied to a ray with initial coordinate u, so
as to obtain a new ray with coordinate u’, as in Figs. 6(a) and (b).
Then, if both «’ and u are measured with respect to the x, y, z-axes,
we find* that a, v, 8 in egs. (23) and (24) must be replaced with —a,
—v, —B, whereas the coefficient b in eq. (27) is still given by eq. (28).

To derive eq. (28), let a reflection be applied to the ray u = o, as in
Fig. 6(c). Then the angle formed by the z-axis and the reflected ray is
bisected by N. Thus, since N is in the plane of incidence, and the angle
of N with respect to the z-axis is /2,

_ N:+ N,
N,
This gives the desired results of eq. (28).

If, instead of a plane, the ray is reflected by an arbitrary surface
z = f(x, y), then from eq. (28) one obtains

b , (28)

’

for u= o,

* To show this, first let u” be measured with respect to the x’, y’, z’-axes. Then one
obtains the identity u’ = u. Next apply to the x’, ¥", z’-axes the inverse transformation
of eq. (24) or (27). The inverse of eq. (24) is a rotation with Euler angles —a, —y, —8,
whereas the inverse of eq. (27) is a reflection with the same coefficient b of eq. (28).
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ROTATION a, B.y —
N\

(a) (b) (c)

Fig. 6—A ray with initial coordinate u is subjected in (a) to a rotation and in (b) to a
reflection by a plane. Notice in (c) &’ = b for u = o.

a . a

and eq. (27) gives a simple relation between the ray coordinates and
the partial derivatives of f(x, y). A similar result'*'* is obtained if the
equation of the reflector is specified in spherical coordinates, as shown
in Appendix C.

Notice that eq. (27) applies not only to a ray, but also to its
polarization in which case u and u’ represent the directions of the
incident and reflected polarization with respect to the x, y, z-axes

vi. TRANSFORMATION BY AN ELLIPSOID WHEN THE OUTPUT FRAME
IS THE MIRROR IMAGE OF THE INPUT FRAME

In this section, we orient the z-axis in the direction of the principal
ray. In a reflector antenna, this is the ray that corresponds to the feed
axis. Thus, the principal ray determines the point of maximum illu-
mination over the antenna aperture. T'o maximize aperture efficiency,
the feed is usually oriented so that the principal ray u = 0 passes
through the center of the aperture. The ray u = o, which leaves the
feed in the direction opposite to the principal ray, will be called the
cardinal ray.

Consider Fig. 7 which shows an ellipsoid with the principal ray
incident at I with angle of incidence i. Let the x’, y’, z’-axes be the
reflected images of the x, y, z-axes with respect to the tangent plane at
I. Then, the principal ray after reflection has the direction of the z’-
axis, whose complex coordinate u = A with respect to the x, y, z-axes
is given by

e’V

tan i’
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Fig. 7—Reference frames implied by eq. (34). Notice the plane of incidence for the
principal ray rotated by ¢ with respect to the xz-plane.

Y being the angle of rotation of the plane of incidence with respect to
the x-axis.

Initially, assume ' = 0. Then the x-axis is in the plane of incidence,
as shown in Fig. 8, and the same is true for the x’-axis. Thus, both
reference systems can be obtained from those of Fig. 4 by suitable
rotations around the y-axes, which have the same orientation in both
cases. Taking into account that the coefficients of these rotations are
real, they transform eq. (18) into

u

I= 0
“ a1+cu' (30)

where a and c are real coefficients which can be determined as follows.
To determine a, consider a ray in the vicinity of the principal ray.
Then 6 and 6§’ are small and
0s = —6¢",
#and ¢ being the distances of I from the two foci. It follows that a is
equal to the magnification M given by
£
-, 31
M 7 (31)
To determine ¢, let u = . We then obtain in Fig. 8 the cardinal ray
incident at i” with angle of incidence i’. From the triangle II'O’ of
Fig. 8,
, 1
U =—, for u=oco.
tan(i + &)
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RAY s
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NOTE: ¢=0/, ¢ = 0" ~- FRINCIPAL

Fig. 8—To obtain eq. (33), each reference system must be oriented so that the z-axis
is in the direction of the principal ray, and the x-axis is in the plane of incidence.

Furthermore, applying eq. (15) to the triangle II'O’" with perimeter
p=2t=2(£+7"),

(¢ + ¢')tan i = ¢ tan(i + i'), (32)
which gives the desired result,
¢= (M- 1)tan 1.
Finally,

u

1+ (M- 1lutani’ (33)

u'=M

which assumes the x-axis is in the plane of incidence, so that ¢ = 0.

Now consider the general case y # 0. Then both reference systems
in Fig. 8 must be rotated around the z-axes by —, and from eq. (33)
we obtain

u
1+ u(M - 1)eani’

which applies in general when the plane of incidence is rotated by an
arbitrary angle ¢ with respect to the xz-plane.

Using this simple relation, we can now determine straightforwardly
how the nonzero angle of incidence i in Fig. 7 affects the amplitude
pattern of the reflected wave, its polarization, its symmetry, and the
aberrations arising when the point source is slightly displaced from O.
For i = 0, eq. (34) reduces to eq. (18). In this case the transformation
has circular symmetry, since it is unaffected if identical rotations are
applied to the reference systems around the z-axes. For i # 0, on the

u=M (34)
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other hand, eq. (34) lacks this symmetry. We now show that, by
properly combining several asymmetric transformations of the type
(34), it is always possible to obtain the symmetric transformations
(18). This was first shown in Refs. (15) and (16) for two reflectors with
O’ at o and, in Ref. (17) under more general conditions.

VIl. TRANSFORMATION BY A SEQUENCE OF ELLIPSOIDS

Replace the ellipsoid of Fig. 7 with a sequence of ellipsoids, with foci
Oy, O, - -+, Oy as shown in Fig. 9. Let the (s + 1)th reference frame
be the mirror image of the sth frame as in Section VI. Let M,, i,, s be
the values of M, i, { for the sth ellipsoid. Then, the product of the N
transformations of Fig. 9 gives eq. (34) with

M=M --- My (35)
and
(M — 1)e#tan i = (M) — 1)e “tan i
+ (M> — 1)Mie*tan i + ---  (36)

We have thus shown that eq. (34), derived in Section VI for the
ellipsoid of Fig. 7, applies also to a sequence of N ellipsoids. It also

Sth REFLECTOR

Fig. 9—An input ray with coordinated « is transformed by a sequence of N reflectors
into an output ray with coordinate u” given by eq. (34). The principal ray for u = 0 is
reflected by the s™ reflector at I, with angle of incidence i,.
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applies to a hyperboloid, in which case M < 0 since then one of the
two foci O and O’ in Fig. 7 is behind the reflector and therefore either
Zor ¢ is negative. For

M- o,
the ellipsoid of Fig. 7 degenerates into a paraboloid, shown in Fig. 1 for
Y = 0. Then, from eq. (34), letting

' w
M- 0, u—»sz (37)

we obtain

u

T utnie® 38)

w=2f

where f = ¢, and
w=x"+jy (39)

is the complex coordinate intercepted in Fig. 1 by the reflected ray on
the plane 2z’ = 0.

Equation (38) also applies to the arrangement of Fig. 9, with the last
ellipsoid replaced by a paraboloid, in which case y and tan i are given
by eq. (36) with

M=Mny=0. (40)

Then f in eq. (38) is the equivalent focal length given by
f=McLn, (41)
where M. is the magnification determined by the first N — 1 reflectors,
M.=M, - My, (42)

and #y is the focal length of the last paraboloid.
As pointed out in the introduction, it is desirable in general that

tan ¢ = 0, (43)

because then the transformation has circular symmetry with respect
to the principal ray. From eq. (36) for N = 2, this requires

'4’1 = le (44)
and
tan i(M, — 1) + tan (M, — 1)M, = 0. (45)

The first condition demands that the two planes of incidence (for the
principal ray) coincide, in which case the two reflectors and the feed
have a common plane of symmetry. In general, for arbitrary N, one
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finds that it is always possible to satisfy condition (43) by properly
choosing one of the planes of incidence and one of the angles i, for any
arbitrary choice of the remaining i,. The correct choice for i, is obtained
straightforwardly using eq. (36). In some cases, it may not be possible
to satisfy exactly the requirement (43). For instance, the N reflectors
may have to fit inside a satellite and, because of the limited available
space, it may be convenient to choose i # 0. Then, the resulting
aberrations and distortion of the polarization and amplitude illumi-
nation over the aperture are determined straightforwardly using eq.
(34), as pointed out in Ref. 19.

VIll. GEOMETRICAL DERIVATION OF TAN / WHEN THE LAST
REFLECTOR IS A PARABOLOID

Assume the final reflector is a paraboloid, and let the input point
source be a corrugated feed,” or a feed with similar radiation charac-
teristics.”"?* Then, the spherical wave radiated by the feed has an axis
of circular symmetry, and its polarization lines on a wave front S are
given by a set of tangent circles as shown in Fig. 10. The contact point
D for these circles is one of the two intersections of the feed axis with
the wave front S. The other intersection C is the point of maximum
illumination. Thus, C and D are determined by the principal ray (u =
0) and the cardinal ray (u = «), respectively. It is now recalled that
the bilinear transformation (1) transforms circles into circles. This
means that the polarization lines of an output wave front S’ are also
a set of tangent circles. Their contact point D’ is determined by the

MULTIREFLECTOR
ARRANGEMENT
\

PRINCIPAL

RAY

Fig. 10—The polarization lines produced by a corrugated feed are tangent circles with
contact point determined by the cardinal ray.
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ray u = %, and the point of maximum illumination C” is determined by
the ray u = 0. From eq. (8) for u — o, the distance of C’ from D’ is
given by

2
cp =21 (46)
tan
and, therefore, for tani — 0
D" — o,

Then the circles degenerate into parallel lines, and the output wave
front S’ becomes everywhere polarized in one direction.”

The above considerations suggest a simple procedure for determin-
ing the feed axis orientation that corresponds to tan i = 0. The feed
must be oriented so that D’ — c. This means that the cardinal ray
must be reflected at = by the last reflector (a paraboloid). Thus, the
cardinal ray after the first N — 1 reflections must pass through the
paraboloid focus Oy, with direction opposite to On-,V, where V is
the paraboloid vertex. Therefore, one must orient the feed axis so that
the cardinal ray (z = ) produces after N — 1 reflections the ray
VOn-.. Since the final direction of this ray is specified, the initial
direction can be determined by retracing the ray in the reverse direc-
tion starting from On-.. Then, after (N — 1) reflections of the ray
On-1V, one obtains through 0 the direction of OC characterized by tan
i = 0. This geometrical derivation is illustrated in Ref. 17.

IX. AMPLITUDE AND POLARIZATION OF THE OUTPUT WAVE

Consider two corresponding points P and P’ on the two wave fronts
S and S’ of Fig. 2. Let the electric field at P be given by
~jkr

E = Ae , (47)
r

where r is the distance from the focus O and e is a unit vector
specifying the polarization of E. Similarly, for the field at P’
—jR(r'+t) N

E=-A'e

(48)

i L

where t=¢ + ¢’. Let
e = COS ¢y + Sin ¢elz, (49)

where i,, i are unit vectors in the 8, ¢-directions and ¢. is the angle of
rotation of e with respect to i.. In this section, we show that the
corresponding angle of rotation ¢. for e’ with respect to i is simply
given by
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¢':?_¢e =¢”_¢) {50)

where it is recalled that ¢’ and ¢ are the arguments of the coordinates
u’ and u, respectively. For the amplitude A’ we show that

A’=1A, (51)
m

where the magnification m is given by
1 w'u™(1 + uut)

T M+ wn)’ ©2

These relations apply in general to an arbitrary sequence of ellipsoids,
hyperboloids, and paraboloids arranged as in Fig. 9. If the first focus
O is at infinity, then S is a plane and the spherical coordinates 8, ¢
must be replaced with polar coordinates p, ¢. Then, i, is a unit vector
in the p-direction. Similar considerations apply if O’ is at .

To derive egs. (50) and (52), it is convenient to combine the ellipsoid
of Fig. 2 with two paraboloids, as in Section II. Then, one paraboloid
maps conformally the sphere S onto the plane z = 0 and the other
paraboloid the sphere S’ onto the plane z’ = 0. Let Ao, e; and A}, e} be
the values of A, e produced on the two planes, and assume the two
mappings are characterized by the transformations

u=x-+jy, u' =x"+jy,

which imply fo = fo = 1/2 in eq. (11). These transformations do not
affect the polarization angles ¢. and ¢, while the amplitude A is
transformed according to the well-known relation

Ao = 4 - (53)

and similarly for Aj. According to geometric optics, conservation of
power requires

| Ao|*dao = | Ab|*dob, (54)

where doy and daj are the areas of two corresponding elements of the
two planes. Since the mapping between the two planes is conformal,

doy |du'|’
doy | du 65)
and using egs. (34), (53), and (54), one obtains the desired result,

eq. (52).
Next, we derive eq. (50). Consider two corresponding points @ and
@’ of the two planes. Let the polarization line through @ be a straight
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line through the origin, as in Fig. 11. Then ¢. = 0, and the corresponding
polarization line through @’ is a circle. The circle must pass through
the origin O’, and also through the point D’ of coordinate
M 1 .
o= -e”, 56
“ M-—1tan: ¢ (56)

which corresponds to the point at « of the u-plane, as one can verify
from eq. (34) letting u — . Now the angle made in Fig. 11 by the
chord D'Q’ with the tangent e} is equal to the angle 8 subtended by
the chord at O’. As a consequence, one can verify that the angle ¢. in
Fig. 11 is equal to the angle y between D'Q’ and D’0O’. Thus,

T=¢;_¢e=z[“_;“_”] =4[1—taniMM lu’ef‘“], (67)

—U

and one can verify that this agrees with eq. (50). Using egs. (50)
through (52), one can now derive straightforwardly the amplitude and
polarization of the output wave in Fig. 9.

X. CONCLUSIONS

With simple geometric considerations, we have derived the coeffi-
cients of the transformation (1). Once the parameters is, M, {s that
specify the path of the principal ray are known, the coefficients can be
derived straightforwardly using eqs. (34) and (36). For a corrugated
feed, it has been shown in Section VIII that the circles describing the
polarization of an output wave front can be determined straightfor-

L

U-PLANE

— _POLARIZATION
LINE THROUGH Q

POLARIZATION _. 7
LINE THROUGH Q'

Fig. 11—Derivation of the polarization in the u’-plane when the u-plane is polarized
in the p-direction.
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wardly by tracing the cardinal ray. In Section V, it has been shown
how the transformation (35) is affected by a rotation of the feed axis.
The results will be useful to the design of reflector antennas as pointed
out in Ref. 19. They also provide a simple interpretation for previous
results of Refs. 13 and 19, as pointed out in Appendix C.

APPENDIX A

Consider Fig. 2. We wish to show that if L is everywhere tangent to
the magnetic field, then this is true also for L’. Suppose initially that
S and S’ are both centered at O. Then, the mapping determined
between S and S’ by a ray from O is just a similarity, with magnification
determined by the radii of S and S’. This means that each line element
8L’ of L' is parallel* to the corresponding line element 8L of L. Thus,
if both S and S’ are centered at O, or both at O’, then the two curves
L and L’ certainly satisfy (10).

Next, let S and S’ be centered at O and O’, respectively, and let I be
the point of incidence for the ray corresponding to 8L. Then, the
orientation of the corresponding line element 8L’ is not affected if the
ellipsoid in Fig. 2 is replaced by the tangent plane at I. Thus, we
conclude that property (10) is true in general, even if S’ and S are
centered at different foci.

Notice (10) implies that the mapping between any two wave fronts
S and S’ preserves angles and, therefore, it is conformal.

APPENDIX B

We show that the mapping in Fig. 2 between the two wave fronts S
and S’ can be represented as a product of two stereographic projec-
tions. A variety of different representations can be obtained, depending
on the radii r and r’ of S and S’. For simplicity, here we choose the
two radii so that the two spheres S and S’ touch each other, as shown
in Fig. 12. The contact point V is on the axis OO’ of the ellipsoid. Let
N and N’ be the other intersections of the two spheres with the axis.
Let P, be an arbitrary point of the tangent plane at V, and let two
corresponding rays OP and O’P’ be obtained as shown in Fig. 12, with
two stereographic projections from N and N’, respectively. We now
show that the intersection I of the two rays satisfies the condition

OI+10"=r+r, (58)

which is the equation of an ellipsoid. Let # and # be the angles VOP
and VO'P’, respectively. Then the isosceles triangle ONP has two of

* This property, is true only if S and S’ are spherical wave fronts or if L is a geodesic
line of S.
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Fig. 12—A point I of an ellipse with foci O and O’ is obtained with two stereographic
projections from N and N'.

its angles equal to /2, and similarly the triangle O'N'P’ has two
angles equal to #'/2. Furthermore, since VP, is tangent to both spheres,

NP1XP1P=N’P1XP1P',

since both products must equal VP{. Thus, the triangles PP,P’ and
NP, N’ are similar and, therefore, P,PP’ = §'/2, PP'P, = 180° — 6/2.
The angles PP’I and P’PI can now be determined, and one finds they
are both equal to (8 + #')/2. Thus, PI = P’I, which gives eq. (58).

From the right triangles P, VN and P, VN’, since they have one side
in common,

9 @
rtan-é-—r tanE, (59)

which gives eq. (16), and this implies the theorem of Section IV.

APPENDIX C

We now point out a simple connection between egs. (28) and (29)
and previous results by Brickell and Westcott.'*'* Both » and ' will
be measured with respect to the same reference frame, the x, y, z-axes.

Let an arbitrary reflector be illuminated by a spherical wave from
the origin O of the x, y, z-axes, and let the reflecting surface be given
in spherical coordinates by

p = plu, u*),
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where p is the distance from the origin O, and p(u, u*) is an analytic
functiont of u, u*. Consider a particular incident ray with coordinate
u = A, and let P be its point of incidence. To determine its reflected
coordinate u” with respect to the x, y, z-coordinates, it is convenient to
introduce temporarily a second reference frame with the z-axis through
the point of incidence. Then, using the subscript ( ), for the second
frame, and applying egs. (27) and (29) to the ray through P,

=1

d

ua=p(—") . for w=0. (60)
oup

Next, we apply a suitable rotation to the x,, y, zo-axes, so as to

transform us, uo into u’, u,

uo+ A uo+ A

R U g
From the second expression for uy = 0,
u u*

— = (1 + uu®), =0,
duo duo

and, therefore,
d ou d ou* 9
+

ouy Ougdu  Aup du*

i ]
= (1 4+ uu*) —,
( uu)au

for up = 0. From these relations, taking into account that u = A for
uo = 0, one obtains the final result

0
p+ (14wt
, ou
u' = p , (61)
i}
1+ uu*) — — u*
( uu)au u*p

valid for any u. This gives eq. (16) of Ref. 13. We have thus shown that
this basic result can be considered a direct consequence of egs. (27)
and (29).
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