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We show in quite a general way that highly accurate modeling of
multipath fading responses is possible using low-order complex poly-
nomials. This applies to all terrestrial radio systems in the chan-
nelized common carrier bands below 15 GHz, where channel widths
are 40 MHz or less. The context of the study is a new multipath
experiment being conducted in New Jersey over a 23-mile path at 11
GHz. The transmitted signal consists of up to nine tones in a 40-MHz
bandwidth. These tones are coherently processed, sampled, and dig-
itized in the receiver and recorded, during fading events, for later
off-line reductions. Simple routines can be used to determine poly-
nomial coefficients from these recorded data. This paper describes
the signal processing and data reduction methods and analyzes them
to assess the accuracy of polynomial fitting. The analysis uses a
mean-square error measure and assumes a representative form for
the underlying response function. Our results predict that the vast
majority of multipath fading responses can be accurately approxi-
mated over bandwidths of 40 (62) MHz using first- (second-) order
complex polynomials.

I. INTRODUCTION

Multipath fading (hereafter abbreviated MPF) on terrestrial m1cro-
wave paths can be a major cause of outage in digital radio systems.'™
Numerous efforts have been aimed at understanding, analyzing, and
correcting this source of disruption, and some have led to new statis-
tical models for MPF responses.”

The particular model that inspires the present work apprommates
the MPF response by a low-order complex polynomial in frequency.®
For a particular 26-mile path in Georgia, it was shown that a first-
order polynomial suffices to characterize the fading response in a 25-
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MHz band centered near 6 GHz. The joint probability distribution for
the polynomial coefficients was derived for that path, thus permitting
a complete statistical description of the MPF response.

Now another experiment is being instrumented, this time for a 23-
mile path in New Jersey operating in the 11-GHz band. The aim of the
new experiment is to add to, and in several respects improve upon, the
data base used to quantify the earlier polynomial model. The improve-
ments include higher measurement signal to noise ratios (sNRrs), higher
sampling rates (20 measurements per second rather than 5), coherent
processing to obtain phase information (previously absent), and a
wider measurement bandwidth (40 MHz rather than 25 MHz).

Given the highly variable nature of multipath fading, such improved
measurements for a new path in a different frequency band and locale
should add importantly to our knowledge of this phenomenon.

The basic design of the experiment can be simply stated: As many
as nine coherently-phased tones within a 40-MHz bandwidth are
transmitted from Murray Hill and coherently demodulated in a re-
ceiver at Crawford Hill; the demodulated tones are sampled, digitized,
and screened by a desktop computer/controller; and the digitized data,
if deemed interesting, are recorded on magnetic tape for later off-line
processing.

The recorded data will be in a form that facilitates polynomial
approximation using simple, efficient computer routines. The data will
be quite general in form, however, i.e., amenable to modeling via any
mathematical approximation considered promising.

The present study evaluates the accuracy of polynomial approxi-
mation, relating it to the experiment parameters and to the methods
of signal processing and data reduction. Section II describes the signal
processing in the transmitter and receiver, and derives signal and noise
relationships used in the subsequent error analyses. Section III de-
scribes the methods of polynomial fitting to be considered, and defines
the mean-square error measures that will be used to evaluate them.

Section IV analyzes the errors in the polynomial fitting caused by
measurement noise, and Section V analyzes the errors caused by finite
sampling of the frequency response. In general, the errors increase
with the bandwidth over which the fitting is done. In analyzing the
errors caused by finite sampling, we assume a general form for the
MPF response function that has been applied successfully in other data-
fitting studies,” and assume either worst-case or typical values for the
function parameters.

The mean-square error calculations permit predictions of the maxi-
mum bandwidths for which polynomial fitting is valid. Section VI
summarizes the results computed, under rather stringent mean-square
error requirements, for polynomial orders of one, two, four, six, and

eight.
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Il. SIGNAL PROCESSING ANALYSIS FOR THE MPF EXPERIMENT
2.1 Propagation path and radio channels

Multipath fading responses are to be measured on a 23-mile path
betwen Murray Hill and Crawford Hill, similar to the one used by
Crawford and Jakes in their earlier experiments.”® The transmitting
antenna at Murray Hill is 655 feet above sea level, and the receiving
antenna atop Crawford Hill is 425 feet above sea level. An experimental
license has been obtained to operate over this path in three 40-MHz
channels within the 11-GHz common carrier band. These channels are
centered at 11.465, 11.545, and 11.625 GHz. The initial measurements
will be in the band centered at 11.545 GHz.

We describe here the signal processing relationships that underlie
the experiment design. The details of circuitry, components, and
equipment will be reported separately by those who have developed
the MPF measurement system.

2.2 Transmitted signal

The transmitted signal is created by the two-stage upconversion of
a baseband signal having the form

N/2
b(t) =do+ Y dn.cos(nAwt + 6,), (1)

n=1
where N is even and the other parameters will be discussed. The up-
conversion places the signal in an RF channel centered at radian
frequency w. = 27f. ( fo = 11.545 GHz). Hence, the transmitted signal

18
N/2

Vi(t)= Y V2p, cos(wet + nAwt + 6,), 2)
n=—N/2
where p, is the power of the nth transmitted tone and a total of
N + 1 tones are transmitted. From (1), we see that po is proportional
to d2 and that p, (n # 0) bears the same proportionality to d7/4.

The variation of p, with n is clearly symmetrical about n = 0 because
it derives from amplitude settings of the baseband tones. Nonuniform
variations of p, can easily be compensated for via baseband adjust-
ments in the receiver. In Section IV we consider nonuniform variations
for which receiver noise effects are minimized.

The frequency spacing between transmitted tones, Af, may be 5,
10, or 20 MHz. Since the transmission is confined to a channel of 40-
MHz width, and occupies a bandwidth NAf, we have the constraints
(N + 1) = 9 tones when Af = 5 MHz; (N + 1) =< 5 tones when Af = 10
MHz; and (N + 1) < 3 tones when Af = 20 MHz. We will consider the
four particular combinations N = 2, Af = 20 MHz; N = 4, Af=10
MHz, N =6, Af = 5 MHz; and N = 8, Af = 5 MHz.

Finally, we mention that the N/2 baseband tones are derived from
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a common 5-MHz reference, and so can be relatively phased in any
manner desired. For purposes of analysis, we will assume all 6,’s to be
zero here; since any phasings in the transmitter are easily undone in
the receiver, no generality is lost. One criterion for choosing the actual
#,’s is minimization of the peak factor of the RF signal (2). The
baseband phase adjustments that accomplish this have been derived
for N = 2, 4, 6, and 8." We will use the resulting minimized peak
factors in making noise calculations later.

2.3 Response of the propagation medium
We denote the complex signal gain of the propagation medium by

Complex gain at radian frequency w, + w

Flw) = Gain magnitude (go) during nonfading

3

The quantity go can be computed from familiar radio path equations.
Note that « is measured from the center of the channel. During
nonfading periods, | F(w)| = 1 throughout the channel bandwidth;
during multipath fading, F'(w) varies with « in a randomly time-
varying manner.

The function F(w) contains two phase factors of no interest to us.
One is exp(j¢o), where ¢ is the phase shift through the medium at w
= 0; the other is exp(—jwt,), where ¢, is the nominal propagation time
along the path. (For a 25-mile path, ¢, = 0.13 ms.) The investigation of
multipath fading can be simplified, with no loss of information, by
removing these two factors. Thus the function of interest to us is

H(w) = F(w) exp[j(—¢o + wtp)]. (4)

The aim of our modeling effort is to find suitable functions for approx-
imating H (w), and to statistically characterize the parameters of those
functions.

We will see in Section 2.5 that the response function actually
sampled by the measurement system is

G(w) = F(w)exp[—j(tP+ w—a-)] (5)
Aw
where  and @ are the (possibly) random or unknown phases of
frequency references in the receiver. To obtain samples of the desired
function [ H(w)] from samples of the measured function [ G (w)] will
therefore require performing the operation

H(w) = G(w) exp jw:jn) +jw (t,, +&)
AD —

AT

(6)
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at each of the sampling frequencies [w =0, *Aw, -+ -, = (N/2)Aw]. We
will show later how to accomplish this in the data processing.

2.4 Decompositions of F(w), G(w), and H(w)

We demonstrate here a useful decomposition for complex response
functions such as F(w), G(w), and H(w). We will treat only H(w),
noting that the same mathematics and notation apply to F(w) and
G(w).

Since w is measured from an arbitrary microwave frequency (2nf.),
there is no physical reason to assume complex conjugate symmetry for
H (w). In its most general form, H(w) can be expressed as

H(w) = Ha(w) + jHy(w), (7

where H,(w) and Hy(w) are each functions having complex con]ugate
symmetry. Accordingly, we can write

Huw) = Holw) + jHai(w), Hy(w) = Hp(w) + jHpi(w). (8)

—_— —_— —_—
Real, Imaginary, Real, Imaginary,
Even Odd Even Odd

By transmitting and coherently receiving N + 1 tones spaced by Aw,
one could in theory obtain measurements of the two even functions
at w = 0, Aw, -+, (N/2) Aw; and of the two odd functions at w = Aw,

., (N/2) Aw. [ The total number of samples, 2(N + 1), is consistent
with measuring the amplitudes and phases of the N + 1 received
tones.] In reality, the receiver obtains these samples for the corre-
sponding set of G functions, which differ from the H functions if y and
# are not both 0. Obtaining H samples from G samples is discussed in
Section 2.6.

Another departure of the receiver outputs from the desired samples
is the presence of measurement noise. We will defer the introduction
of noise until Section 2.7.

2.5 Signal processing in the receiver

The receiver input at RF is
N/2

Ve(t) =go ¥ V2p.|F.|cos(wet + nAwt + ¢,), 9
n=N/2

where | F,, | and ¢, are the magnitude and phase of F(nAw); g is the
normal (nonfading) path gain, (3); and we have used (2) with all 8,’s
assumed to be zero.

The signal goes through a two-stage down conversion which amounts
to quadrature demodulation. That is, two baseband outputs are ob-
tained which correspond to mixing Vx(¢) with 2 cos(w.t + ¢) and with
—2 sin(w.t + ¥). A nonzero value of y signifies that the rF and IF
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references in the receiver are not in phase synchronism with those in
the transmitter.

Each of the baseband signals consists of a dc component plus
sinusoids at w = Aw, - -+, (N/2)Aw. The nth sinusoid in each of these
signals goes through quadrature demodulation, via the local references
cos[n(Awt + #)] and —sin[n(Awt + )], to produce two more dc
outputs. These references are all derived from a 5-MHz source in the
receiver, and nonzero @ signifies that this source is not in phase
synchronism with the one in the transmitter.

Using (5) and ordinary trigonometric identities, the following state-
ments can be proven:

(i) The dc outputs produced by demodulation via

2 cos(wct + ¥)
=2 sin(w.t + )

are
Io ) 4 (V2P0 80Gar(0)
(Qo) : (@J—ogocbrtm) ' (10)

(i) The dc outputs produced by demodulation via

2 cos(w.t + )
=2 sin(w.t + ¢)

and cos[n(Awt + 6)] are

(I =1 V2,80 Gar(nAw) ~
((Q - I),,) 2 (Jz—mgogb,(nm)) ,  n=1,N/2. (11)

(iit) The dc outputs produced by demodulation via

2 cos(wct + V)
=2 sin(w. + )

and —sin[n(Awt + )] are

(= @)n V2D, 80Gai(nAw) .
((Q - Q),.) a (ﬂggGm(nAw)) , n=LN/2. (12)

Thus, the dc outputs of the receiver correspond to evenly-spaced
frequency samples of the four G functions G, (w), Gai(w), Gor(w), and
Gi(w). Each of the 2(N + 1) dec components is low-pass filtered, with
a noise bandwidth of 100 Hz; time-sampled 20 times per second and
quantized with 14-bit precision by a Datel System 256 acquisition
system;* and passed to a HP 9845A computer for real-time screening.}

* Datel Corporation.
t Hewlett-Packard.
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Any set of samples that seems interesting, or is part of a sequence that
seems interesting, is recorded on magnetic tape for subsequent off-line
processing.

2.6 Relating the G and H functions

By using (6), the H'functions (Har(w), Hai(w), etc.) can be easily
obtained from the corresponding G functions once A® and AT are
specified. Defining a new function G (w; A®) & G () exp( JAD), we first
perform the matrix operation

Gar(w; AD) cos AD® —sin A® || Gar(w)
Gir(w; AD) sin A® cos AD || Gerlw) |~

An identical equation relates Gai(w; A®) and Gyi(w; A®) to Gai(w) and
Gsi(w). The H functions are then obtained from these new G functions,
for specified AT, as follows:

[Har(w)} _ [cos wAT —sin wA T] [G,,,(w; A@)] (14)
Hai(w) sin wAT coswAT Gailw; AD) |-

An identical equation relates Hp(w) and Hpi(w) to Ge(w; A®) and
Gri(w; AD).

The operation indicated by (13) leads to the result H:,(0) = 0, ie.,
the phase response of the function to be analyzed is forced to zero at
w = 0. [To see this, combine (6), (12) and (13) for w = 0.] This is a
welcome simplification in the data and entails no loss of useful infor-
mation. Fortunately, sin A® and cos A® are readily obtained from the
measured G samples, for

(13)

sin A® = — G(0) , cos AD = Garl0) . (15)
VGi.(0) + G1.(0) VG (0) + G0)

To see this, use (5) at w = 0 and recall that A® = § — ¢0.]

By way of contrast, the value of AT to use in (14) is not so readily
specified or determined. Yet, to get the full benefit of polynomial
modeling (i.e., accurate fitting using low-order functions), AT must be
carefully chosen.* We have arrived at a criterion for choosing AT
based upon the following data reduction procedure: For a given AT,
(14) is applied and the resulting H samples are fitted by a finite-order
complex polynomial in jw. We consider that value of AT to be optimal
for which the polynomial fitting is best, in some least-squares sense

* To see why, consider the example G(w) = exp(—jwto), where fo = 1/B, and B is the
bandwidth over which H(w) = G(w) exp(jwAT) is to be fitted. If AT = 0, H(w) =
cos wto — J sin wilo, and high-order polynomials are needed for accurate fitting over the
bandwidth. If AT = &, however, H(w) = 1 + j0, and low-order polynomials are quite
sufficient.
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defined later. In Section 5.4, we will identify a data-derived measure
that accurately predicts the optimal AT.

2.7 Measurement noise

We have shown that the dc receiver outputs are proportional to
frequency samples of the function G(w), and that the unwanted phase
factors that distinguish G(w) from H(w) can be removed in the data
processing. Not so readily removed are the noises associated with the
digitized outputs. These consist of both additive Gaussian noise from
the input and components of the receiver and quantizing noise from
the 14-bit analog-to-digital conversions.

Receiver noise produces an additive random component for each dc
output defined by (10) to (12). These 2(/N + 1) noises are zero-mean
and mutually independent. All have the same variance except those
associated with (10), i.e., n = 0, for which the variance is 3 dB higher.
These findings follow from the receiver processing described in Section
2.5.

We shall now assume that each of the dc outputs in (10) to (12) is
adjusted by a factor 1/(go \/2? ), n = 0, N/2, before being digitized.
Accordingly, the variance of the Gaussian noise associated with a given
output sample is

, {kaNp/pogg, n=0, (16)

°G =\ ETbNr/2pngi, n=1, N/2.

Table I defines the quantities in (16) and gives values for each. Using
those data and assuming uniform tone powers, we obtain the following

Table |—System parameters used in noise analysis
Parameter Definition and Assumed Value(s)

gs Power gain between transmitter output and first receiver amplifier stage; includes
clear-air path loss and circuit and waveguide losses:
10 log g2 = —74 dB
kT  Thermal noise density at receiver input:
10 log kT = —174 dBm/Hz

b Noise bandwidth of receiver processing for each tone: b = 100 Hz
Nr  Noise figure of first receiver amplifier stage:
10log Nr.=2dB

P, Peak transmitter power, constrained to meet out-of-band emission requirements:
10 log P, = 14 dBm
Pr  Transmitter peak factor, minimized via phase adjustments of the baseband tones
before upconversion. For uniform tone powers,

78dB, N=2
_ ] 63dB, N=4,
0log Pr=1 6348, N=8,
66dB, N=38
P Average transmitter power: P = P,/Pr. For N = 8,

10 log P = 7.4 dBm
Dn Averge power in transmitted tone at frequency +nAw from center.
For uniform tone powers and N = 8,
10 log p» = —1.8 dBm
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result: 0% in dB, for n # 0, lies in the range —79 dB + 2 dB, where the
precise value depends on N;; for n = 0, % is 3 dB higher.

Assuming the dc outputs are amplitude-adjusted as indicated, the
input to every 14-bit A/D conversion is precisely a sample of a G-
function. During normal propagation, the G samples lie within + 1 [see
(3) and (5)]. To provide some room for excess gain, we assume
quantizer amplitude limits set at + 1.60 (4-dB margin). As a result, the
quantizing error for each digitized sample can be characterized as an
additive noise uniformly distributed on [—A/2, A/2], where A = 2 X
1.6 X 274 = 1.95 X 107*. The quantizing noise variance is then

0% = A?/12 = 3.18 X 10”%(—85dB), every sample. (1

Comparing this with ¢% above, we find justification for ignoring quan-
tization effects. Alternately, they can be accounted for using an ap-
proximate correction factor given in Section IV.

To simplify matters further, we introduce the notation

Ha.r.n 4 Har(nAw)’ Hbr,n 4 Hbr(nAw)g etc. (18)

These are the quantities produced by (13) and (14) for any specified
combination of A® and AT. We account for the noisiness of the H
samples via the notation

-FIar.n é Har,n + {ar.m Hbr,n é Hbr.n + g'br,n, etc., (19)

where {ar.n, Lor.n, €tc., are the random noise samples. Since the {s are
produced by phase rotations of the noises associated with the G
samiples, they are all Gaussian, zero-mean, and mutually independent,
just like the original noises. Moreover, their variances are identical to
0%, as given by (16). We thus have an accurate, simple description for
the noisiness of the data to be processed.

Ill. POLYNOMIAL FITTING AND ERROR MEASURES
3.1 Fitting polynomials to the H samples

The implicit assumption of the polynomial fitting approach is that,
over some finite bandwidth B centered on f = 0, the response function
H(w) can be accurately approximated by a low-order complex poly-
nomial, i.e.,

M
H(w) = Hw) & ¥ (Ax+jB)(jw)*, |w|=nB. (20)
k=0
Using (7) and (8), we can break this representation down as follows:
M M M
How) = ¥ A(jo) = ¥ A(jw)* + X Ax(jw)*, 1)
k=0 k=0 k=1
Even Odd
Fit to Har(w) Fit to jH.(w)
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M M M
Hyw) = ¥ Bi(jw)* = ¥ Bi(jw)* + 3 Bal(jw)".
k=0 £=0 (22)

k=1
Even Odd
Fit to H.(w) Fit to jHi(w)

The A,’s and B,’s are slowly varying random coefficients; in any given
measurement interval, they collectively characterize the short-term
frequency response of the propagation medium.

The fittings indicated above can be done, for every 50-ms measure-
ment interval, by using the 2(N + 1) H samples obtained in that
interval. The way the fitting is done depends on the values of M and
N. We now consider three possible cases.

Case1:M= N,withN= 2,4,6,0or8

The H samples obtained using N + 1 tones can be fitted precisely
using an Nth-order complex polynomial. Thus, when M = N, fitting
consists of matching each summation in (21) and (22) to the appropri-
ate H samples at the sample frequencies. The resulting equations for
the Ax’s are as follows (identical equations apply to the By’s, with
Hy’s and H,/'s replacing the H,’s and H.,/'s):

rI;ai".l)s k= 0,
1 N/2
Ap =‘W 21 Diﬂ,n[Har.n - Har’.()]n k=2,4,..-,N,
1 N/2 H
WY 1 Dj, n {1ai,n, k=1.3,"‘,N_1, 23
(Ba)* nz_:] (k+1)/2, 3 (23)

where D, and D?, are the (/, m)th elements of the N/2 x N/2
matrices [D¢] and [D°], respectively; [D°] and [D°] are the inverses
of the matrices [d°] and [d”], respectively; and the (m, [)th elements
of [d°] and [d°] are

= (-1)'m* (24)
and
dop1 = —(—1)'m*". (25)

The matrices [D°] and [D°] for N = 2, 4, 6, and 8 are given in Table
II. Note for future reference that the derived A.’s and B:’s are weighted
sums of the H samples.

Since N can be as high as eight, this method of fitting suggests the
possibility of eighth-order polynomial modeling. Earlier studies, how-
ever, suggest that this order is unnecessarily high for bandwidths of 20
to 40 MHz.®" Reductions using M = N = 8 may therefore involve
excessive demands on data storage and analysis, and unduly complicate
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Table Il—Matrices for evaluating eq. (23)

N Matrix [ D*] Matrix [ D"]
2 [1] [1]
4 1 4 1
3 12 3 i
4
1 1 1 1
3 12 3 %
3 3 1 3 3 1
T3 20 T 90 2 “ 10 30
13 1 1 13 1 1
6 Y [ 7 24 3 21
1 1 1 1 1
T 24 60 "~ 360 24 T30 120
8 1 8 1 8 2 8 1
5 5 315 560 5 “5 105 " 140
61 169 1 7 61 169 1 7
%0 720 30 2880 90 T30 10 ~ 720
8 29 13 1 1 29 13 1 1
T 360 360 “ 120 1440 | 360 180 40 ~ 360
1 1 1 1 1 1 1 1
T30 720 2520 20160 | 360 360 840 5040

model development and usage. For this reason, we also consider the
combinations M = N =6,Af=5MHz, M = N =4, Af= 10 MHz; and
M=N=2 Af=20MHz.

Case2: M= 2, withN = 8

Another possibility is to assume a low-order polynomial while using
all nine tones, in which event the fittings indicated in (21) and (22) are
done by least-squares methods. Compared with the case M=N=2,
this approach requires more data storage and analysis. On the other
hand, it leads to better fitting accuracy and protects against loss of
tones caused by equipment problems. Noise effects can be slightly
worse for this case, despite the noise-averaging it affords, because the
power per tone must be lower to satisfy the transmitter power con-
straint.

The least-squares polynomial fitting method is well known,'” and so
we give only the results:

59 [ . 4 5n?
TR m— ar. 2 1 - = Harﬂ i) 2
Ao 231[H o+ gl( 59) ] (26)
1 4 -
A = 308 ngl nHain, (27)
5 . 4 3n’
= e— ar, 1—-—— ar,n | «
A= ine [H ot2 Y ( 20 )H ' } ()
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The equations for Bo, B;, and B; are identical, with H,,, and Hy; .
replaciqg H.. . and H.,,. Again, the A’s and B,’s are weighted sums
of the H samples.

Case3: M= 1, withN= 8

The case M = 1 represents the ultimate in modeling simplicity,
namely, a response function which is first order in jw. Strong experi-
mental evidence for such a polynomial has been reported.*® Assuming
least-squares fitting to nine tones, we find that

1 4
Ao=3 [Hur.o +2 3 Hm] ; (29)
n=1

A, is given by (27); and the same equations give B, and B,, with H,,..
and Hj: » replacing H,, and H,; ..
3.2 Error measures

The MPF response function, as reconstructed from the data-derived
Ay's and B,'’s, is

M
H(w) = k): (Ax + jBR) () *. (30)
=0

Since the coefficients are weighted sums of noisy H samples, (19), we
can write H(w) in the form

Hw= Hw + Z(w) (31)
Weighted sum Weighted sum
of true of random
H samples noise samples

Whereas H(w) is noiseless, it is not identical to the true response
function, H(w), but is a polynomial approximation.
We now define the error function

e(w) & Hw) — Hw)

= [Hw) - Hw)] + Z(w) (32)
Approximation Noise error,
error, e(approx) €(noise)

If B is some bandwidth about f. over which H(w) is to be characterized,
then the mean-square error for a given polynomial fit can be defined
as

<4 lf%i (@[ df
a2 = €E\w
B —B/2
1 B/2 1 B/2
=§f IH(w)—H(w)lzdf+§f |Z(w) * df.
-B/2 B -B/2 (33)
€’ (approx) €’(noise)
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A useful normalizing quantity for these mean-square errors is the
mean-square gain of the fading channel, i.e.,

— 1 B/2

H* A BJ | H(w) |? df. (34)
—B/2

Radio system experience has shown that, for B = 20 MHz, H®

seldom lower than 10~ (40-dB total power fade).

Let us now interpret B as the bandwidth over which the intended
receiver output (undistorted by MPF) has a roughly uniform power
_gectrum and outside which the spectral content is small. Accordingly,

accurately represents the mean-square error in predicting the output
51gnal using H(w) for the MPF response and H? accurately represents
the true mean-square output. It i 1s thus reasonable to say that a given
polynomial fit is valid if 2(noise)/H?” and €*(approx)/H” are both 107*
or less. Since ez(nmse) is independent of H(w), and since H? is seldom
lower than 10~*, our requirement for e*(noise) is that it be 1077 or less.

IV. MEASUREMENT NOISE ERRORS
4.1 Method of analysis

We compute €’(noise) by forming Z(w) in (31), using (30) and the
governing formulas for A, and B;. For simplicity, we use the first-order
model (Case 3: M = 1, N = 8) to exemplify the approach.

From (30) and (31),

1
Z(w) = ¥ (8Ax+j8Br)(jw)*, (35)
k=0
where 8A, and 8A, are the noises in Ao and A,, which are computed
using (27) and (29); and similar definitions and equations apply for 6B,
and 8B,. There noises are related to the noise components {ar0, {ar1,
etc., in the H samples of (27) and (29). Thus,

4
aAO“" [{ur(}"' 2 ngl garn], 8Al_ﬁ_n_] n{ai.n, (36)
and similarly for 8B, and 6B,. We now proceed in the obvious way:
8Ao, A, etc., are combined with (35); | Z(w)|* is formed; and the
integration in (33) is performed to obtain €*(noise). In doing so, we
make use of the statistical independence among all the noise samples.
We also use (16) for their variances. The result is of the form

ETbNFr N2 S,(B/Af)
2g2 E ’

0 n=0 pn

e%(noise) = (37)

where, for the case under study, N = 8 and

B 2
S,,(B/Af)=%|:l+%({3—f) nE]. n=0,N/2. (38)
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For all of the other cases considered, the analytical approach and
the form of the result are as shown above; only the specific equations
for S, (B/Af) vary.

The final step in computing €*(noise) is to specify the values of the
transmitted tone powers. We have considered two approaches, namely
(i) assuming all p,’s to be equal, adding up to some specified value (P)
of average transmitted power; and (if) choosing the p.’s so as to
minimize €’ (noise), subject to the same average power specification.
In the first approach, we apportion power according to the rule

_ P
PERET
In the second approach, we use the method of Lagrangian multipliers
to minimize (37), subject to the constraint

N/2 _
Po+2 Y p.=P. (40)

n=1

all n. (39)

The result in that case is
pn = V(1 + 8%)S.(B/Af) P Al n
" V2S,(B/Af) + 2 YN VS.(B/Af) ’
where 8 is the Kronecker delta function. Note that the optimal
variation of p, with n depends on the bandwidth ratio, B/Af.

We have reduced (37) to numerical results using the parameter
values in Table I. We now present our findings.

(41)

4.2 Results for Case 1 (M= N= 2, 4, 6, or 8)

Figure 1 shows curves of €”(noise) vs. B for the various possibilities
under Case 1. We can make the following observations:

(£) The noise errors and their rate-of-growth with B depend strongly
on the polynomial order M, both being less for lower M. From a noise
standpoint then, M should be chosen to be low. The competing factor
influencing this choice is the approximation error, which we consider
later.

(it) Optimizing p. does not improve significantly on the use of
uniform tone powers. There is no compelling reason, therefore, to
taper the p.’s. On the other hand, doing so entails no price in com-
plexity and may offer benefits, e.g., tapering of p, may reduce out-of-
band spurious tones caused by transmitter nonlinearities. We will not
explore this topic here, but present in Table III some examples of
optimal p, variations.

(i) Values of ei(noise) less than 107 can be attained, using either
uniform or optimal p,’s, for bandwidths up to 34 MHz or more,
depending on M. For purposes of modeling, errors of this magnitude
can be regarded as negligible, as noted in Section 3.2.

206 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1981



UNIFORM TONE POWERS
—=—=—0PTIMAL TONE POWERS

€2 (NOISE) IN DECIBELS

20 30 40 50 60 70 80
BANDWIDTH, B IN MEGAHERTZ

Fig. 1—Mean-square noise errors, €*(noise) in dB, for Case 1 (M = N = 2, 4, 6 or 8).
For each N, the curve for optimal tone powers (dotted) merges with the one for uniform
tone powers (solid).

4.3 Results for Cases2and3(M = 2, N= 8andM= 1, N = 8)

Figure 2 shows curves of €’ (noise) vs. B for Cases 2 and 3. These
results show the effects of noise when first- and second-order polyno-
mials are formed via least-squares fitting to nine received tones. For
purposes of comparison, Fig. 2 also repeats the results for M = N = 2
under Case 1, i.e., second-order matching to three received tones. We
note the following:

(i) As before, fitting H(w) with a lower-order polynomial leads to
smaller noise-related errors.

(if) Comparing the two ways of getting M = 2, noise errors are

Table lIl—Optimal tone powers for Case 1, B = 40 MHz (in dB
above power of central tone)

Frequency
+5 MHz +10 MHz +15 MHz +20 MHz
N
2 — — — -3.02
4 —_ —0.10 — —4.05
6 —0.80 -3.30 -7.60 —
8 -0.36 —1.36 —-2.63 —=7.95
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€2 (NOISE) IN DECIBELS

-90 ] | I |
20 30 40 50 60 70 80

BANDWIDTH, B IN MEGAHERTZ

Fig. 2—Mean-square noise errors, €*(noise) in dB, for Cases 2 and 3 (M =2, N =8
and M = 1, N = 8). Results shown are for uniform tone powers; results for optimal tone
powers are lower by less than 0.5 dB.

sometimes smaller when N = 2 and sometimes smaller when N = 8.
The explanation lies in two offsetting factors: Using nine tones leads
to less power per tone, but affords averaging benefits not available
when using three tones. Depending on B, one or the other of these
factors dominates.

(iii) For all three low-order polynomial approaches considered,
€*(noise) is less than 1077 for bandwidths up to 90 MHz or more.

4.4 Generalizations and extensions

We emphasize that €2(noise) in (37) scales readily in the quantities
bNr/Pgi and B/Af. Therefore, the curves of Figs. 1 and 2, however
particularized to the present experiment parameters, can easily be
scaled to reflect other conditions.

With this in mind, we can account in a simple and fairly accurate
way for both quantization noise (previously neglected) and changes in
P, go, b, and Nr. We assume the quantization and Gaussian noise
powers to be additive, invoke (16) and (17), and obtain the following
rule: If bNr/Pgj is changed by a factor C from the one obtained using
Table 1, then €*(noise) should be adjusted by the factor (C + 0.25).
For C = 1 (no change in bNr/Pgj), quantizing noise adds roughly 25
percent (1 dB) to the mean-square noise error.
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V. APPROXIMATION ERRORS
5.1 Method of analysis

The approximation error defined in (32) results from sampling H(w)
at a finite number of discretely-spaced frequencies. The mean-square
error, as defined in (33), depends on B, Af, M, N, and—unlike the noise
error—on the specific function being approximated. We consider a
highly accurate polynomial approximation to be one for which 7,
defined by

7 A ¢’(approx) /H?, (42)

is less than or equal to 107°, Our aim here is to calculate 7 using a
function for H(w) that is “representative,” in a sense to be described
shortly. The method of computation, given H(w), follows directly from
the relationships in Section IIL

The basic form assumed for H(w) is the one used by W. D. Rummler
in previous studies.”? To fit measured amplitude responses in a 25.3-
MHz bandwidth near 6 GHz, Rummler expressed H(w) by the function
a[l — b exp(jf) exp(—jwA7)], where a, b, §, and A7 are function
parameters to be chosen. For each of 24,920 response measurements,
these four parameters were chosen to give a least-squares functional
fit to the data. Error analyses of the results (Fig. 17 of Ref. 5) revealed
a high degree of fitting accuracy over nearly all of the data records.
For this reason, we use the same function here to represent the actual
underlying response of multipath fading.

Rummler also analyzed the effect of fixing the delay parameter At
at 6.31 ns, and choosing (a, b, 6) to fit each data record. While not as
good in all cases, the “fixed delay” model was found to be highly
accurate over at least 98 percent of the data base. With this in mind,
we conjecture that the above function, with Ar < 10 ns, can be used to
represent the vast majority of MPF responses. We will invoke this
conjecture later in tabulating bandwidths over which polynomials of
specified order can be used to model multipath fading.

Our approach in what follows will be to find 5 for specified B and
Ar, with b and @ chosen to give worst-case polynomial fitting results.
This should provide conservative estimates of the limitations of poly-
nomial fitting. We will also assume a phase adjustment to the function
used by Rummler, to enforce consistency with the data processing
approach described earlier. In particular, we specify the response
function to be

H(w) = a(l — be’®e7*") exp[j(A® + wAT)], (43)

where A® and AT were defined in Section II. As noted there, the data
reduction process chooses A® in such a way that H(0) is made real,
and chooses AT in such a way that 7 is minimized for a given Mth-
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order polynomial fit. Accordingly, we specify that exp( JA(I)) a1 -
be %) /v1 + b® — 2b cos#; search over AT so as to minimize 7 for a
given fitting polynomial and given (b, 8); and search over b and 8 so as
to maximize that minimized ».* Thus, we obtain the measure

(b,8) AT

N0 & Max {Min(n)} , worst-case 7, given At and B.  (44)

We have done this for each of the different combinations of M and N
described earlier, using BAt as a variable and B as a parameter. We
now present our findings.

5.2 Results for Case 1 (M= N= 2, 4,6, or 8)

The worst-case combination of (b, 8) for any B, A, and polynomial
order is found to be (1.0, 0.0). This combination corresponds to total
fading at the band center (w = 0). Also, the optimal AT for b = 1.0 is
precisely Ar/2.

The variations of 5o with BAr, with M and B as parameters, are
shown in Fig. 3. As expected, n, is a strongly decreasing function of M,
a strongly increasing function of BAt, and a weakly increasing function
of B alone for given BAT.

A useful empirical formula for these results, accurate to within 40
percent for B < 80 MHz and BAr =< 1.2, is

= k(M, B)10~™(BA7)*™[1 + a(BAT)], (45)

where a = 0.57 and (M, B) is a fairly mild function of M and B.
Numerical values for k(M, B) are given in Table IV.

53 Cases2and3(M= 2, N=8andM= 1, N = 8)

Curves of 5o for these cases are shown in Fig. 4, where the results for
M = N = 2 are repeated for comparison purposes. There is an evident
improvement when second-order polynomials are derived using nine
tones instead of three. An empirical formula for these results (again,
accurate to within 40 percent for B = 80 MHz and BAT < 1.2) is given
by (45), where a = 0.32; the power of (BAr7) is replaced by 4; and
numerical values for k(M, B) are given in Table IV

5.4 Optimizing A T using measured data

In minimizing n with respect to AT, (44), we used computer search
procedures and exploited our assumed knowledge of the underlying
H(w). In an actual measurement the latter is not possible, as the only
information available for optimizing AT is the set of measured G
samples.

* The amplitude factor a has no impact on fitting accuracy and so is set to unity for
purposes of this study.
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B =40 MHz
=== B =60 MHz
—-— B =80MHz

—20

—50 b=
2

RELATIVE APPROXIMATION ERROR, 7 IN DECIBELS

-70

-0
0.1

04
BAT

Fig. 3—Relative mean-square approximation errors, no in dB, for Case 1 (M = N = 2,
4, 6, or 8). The variable is BAr, where A7 is the delay spread quantity in Eq. (43).
Bandwidth, B, and M are parameters.

By experimenting with different strategies, we have identified a
computationally efficient procedure that uses these samples to opti-
mize A T. It consists of computing C; & (A? + B?) as a function of AT
and choosing that AT for which C. is a minimum. The procedure is
even simpler than it might seem,; for, if A, , is A, computed for AT =
0, then A; for any other AT is just

A=Az, + A, AT + I&Ao_aA T2, (46)
and an identical relationship applies to B:. These results can be
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Table IV—Values of k(M, B) in eq. (45)

Case 1 Cases 2 and 3
Case (M=N) (N =8)
B\M 8 6 4 2 2 1
40 MHz 1.31 x 107* 0.138 3.32 6.39 1.47 1.51
60 MHz 1.95 x 1072 0.734 5.31 6.98 2.56 1.78
80 MHz 5.83 x 1072 1.14 6.17 7.20 4.26 2.26

derived using (6), (21), and (22), and the power series expansion of
exp(jwAT).

Thus, “optimizing” A T'amounts to finding the minimum of a fourth-
order polynomial in that quantity. This can be done very efficiently

0

—— B=40MHz

e B =60 MHz
B =80 MHz
M=N=2, B=60MHz
(FROM FIG. 3)

RELATIVE APPROXIMATION ERROR, 1) IN DECIBELS

—60 I ] |
0.1 0.2 04 0.8 16

BAT

Fig. 4—Relative mean-square approximation error, no in dB, for Cases 2 and 3
(M=2 N=8and M = 1, N = 8). Same variable and parameters as in Fig. 3.
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using computer algorithms. Our investigation of this procedure con-
sisted of minimizing C> with respect to AT for numerous (b, §, A7), and
using the resulting values of AT to compute n. We obtained remarkably
similar answers, in most cases, to those obtained with AT rigorously
optimized [i.e., via computer search using the known function H(w)].
The worst departures occur when 7 is either so large as to be of no
interest or so small that the error increases do not matter.

Other measures derivable from the data, such as [(42 —A)? + (B:
— B?)?], may be even more appropriate Quantities such as this, or C;
as defined above, are reliable indicators of the “curvature” in H(w);
choosing At to minimize them should therefore maximize the fitting
accuracy of low-order polynomials. Our results give empirical support
for this principle.

VI. SUMMARY AND CONCLUSION

The major findings of this study are summarized in Table V. The
first row gives, for each combination of M and N considered, the
bandwidth below which polynomial fitting yields €*(noise) = 107"
These bandwidths are derived for uniform tone powers and the param-
eter values listed in Table I. They cannot be increased much without
dramatic (and unlikely) improvements in transmitter power, noise
bandwidths, and quantizing precision.

The second row of Table V gives the corresponding bandwidths
below which n < 107, They are derived for the response function (43),
with & and 8 having worst-case values and At = 10 ns. The third row
gives the maximum bandwidth which satisfy both mean-square error
requirements. Since these requirements are quite stringent, we present
in the fourth row the results of relaxing both of them by 6 dB (factor
of four).

These tabulations suggest that the vast majority of MPF responses
can be accurately approximated, over bandwidths of 40 (62) MHz, by

Table V—Bandwidths, in MHz, over which H(w) can be accurately

characterized
Case 1 Cases 2 and 3
Case (M = N) (N=8)

Requirement\ M 8 6 4 2 2 1
€ (noise) = 1077 40 34 55 96 90 180
n=10"" 140 125 96 35 48 28
Both requirements 40 34 55 35 48 28
Requirements 43 37 62 48 62 40

relaxed 6 dB
Notes:

(1) Results assume At = 10 ns.
(2) Results in excess of 80 MHz are extrapolated estimates.
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complex polynomial functions of just first (second) order. We surmise,
then, that the appropriate modeling approach is to form first- and
second-order polynomials using nine-tone measurements (N = 8) and
least-squares data fitting. With these low orders, there is maximal
simplicity in developing and using the model, with no substantial
sacrifice in accuracy. By using nine tones, moreover, polynomials of
higher order (up to eight) can also be deduced from the data, thereby
enabling the theoretical predictions given here to be fully tested.

Vil. ACKNOWLEDGMENT
We are grateful for the helpful comments of W. D. Rummler.

REFERENCES

1. W. C. Jakes, Jr., “An Approximate Method to Estimate an Upper Bound on the
Effect of Multipath Delay Distortion on Digital Transmission,” IEEE Trans.
Commun., COM-27, No. 1 (January 1979).

. L. J. Greenstein and V. K. Prabhu, “Analysis of Multipath Outage with Applications
in 90-Mb/s PSK Systems at 6 and 11 GHz,” IEEE Trans. Commun., COM-27, No.
1 (January 1979).

. C. W. Anderson, S. Barber, and R. Patel, “The Effect of Selective Facing on Digital
Radio,” Int. Conf. Commun. 1978, Conf. Record, 2 (1978), pp. 33.5.1-6.

4, C. W. Lundgren and W. D. Rummler, “Digital Radio Outage Due to Selective
Fading-Observation vs. Prediction from Laboratory Simulation,” B.S.T.J., 58 No.
7 (May-June 1979), pp. 1073-100.

. W. D. Rummler, “A New Selective Fading Model: Application to Propagation Data,”
B.S.T.J., 58, No. 7 (May-June 1979), pp. 1037-71.

. W. D. Rummler, “Extensions of the Multipath Fading Channel Model,” Int. Conf.
Commun. 1979, Conf. Record, 2 (1979), pp. 32.2.1-5.

. L. J. Greenstein and B. A. Czekaj, “A Statistical Model for Multipath Fading
Channel Responses,” Int. Conf. Commun. 1979, Conf. Record, 2 (1979), pp. 32.1.1-
5

. L. J. Greenstein and B. A. Czekaj, “A Polynomial Model for Multipath Fading
Channel Responses,” B.S.T.J., 59, No. 7 (September 1980), pp. 1197-225.

9. W. D. Rummler, “Advances in Multipath Channel Modeling,” Int. Conf. Commun.
1980, Conf. Record, 3 (1980), pp. 52.3.1-5.

10. A. B. Crawford and W. C. Jakes, Jr., “Selective Fading of Microwaves,” B.S.T.J., 31,
No. 1 (January 1952), pp. 68-90.

11. L. J. Greenstein and P. J. Fitzgerald, “Phasing Multitone Signals to Minimize Peak
Factors,” (to be published).

12. L. J. Greenstein, “A Multipath Fading Channel Model for Terrestrial Digital Radio
Systems,” IEEE Trans. Commun., COM-26, No. 8 (August 1978), pp. 1247-50.

13. J. R. Green and D. Margerison, Statistical Treatment of Experimental Data, New

York: Elsevier, 1977, Chapter 15.

]

w

e =~ I |

o

214 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1981



