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This paper describes the Quality Measurement Plan (@MP), a
recently implemented system for reporting the quality assurance audit
results to Bell System management. @MP replaces the T-rate system,
which evolved from the pioneering statistical work of Shewhart and
Dodge during the 1920’s and 1930’s at Bell Laboratories. Box and
whisker plots are used for graphically displaying confidence intervals
for the quality of the current production. The confidence interval is
computed from both current and past data and is derived from a new
Bayesian approach to the empirical Bayes problem for Poisson
observations. Here we discuss the rationale, mathematical deriva-
tions, dynamics, operating characteristics, and many comparative
examples. We show that @MP reduces statistical errors relative to the
earlier T-rate system.

. INTRODUCTION
1.1 Quality assurance

The responsibility of the Bell Laboratories Quality Assurance Center
(QAc) is “to ensure that the communications products designed by Bell
Laboratories and bought by Bell System operating companies from
Western Electric Company, Incorporated will meet quality standards
and will perform as the designers intended.”' This obviates the need
for each operating company to carry out its own acceptance inspection.

To meet this responsibility, the Qac works with its Western Electric
(WE) agents, the Quality Assurance Directorate (QaD),” and Purchased
Products Inspection (pP1) organizations. However, as stated in Ref. 1,
“The primary responsibility for quality lies with the line organizations:
Bell Laboratories for the quality of design and Western Electric for
the quality of manufacture, installation, and repair.” The quality
assurance organizations conduct independent activities to assure qual-
ity to the operating companies.
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1.2 Quality assurance audit

The quality assurance organizations have two major activities. The
first is to conduct quality audits where products change hands, either
within WE or between WE and the operating companies. Examples
are manufacturing, installation, and repair audits. The second concerns
a collection of field quality monitoring activities. Examples are the
Product Performance Surveys. These are designed sample surveys of
reported field troubles.

An audit is a highly structured system of inspections done on a
sampling basis. The ingredients of an audit are: () sampling method,
(ii) scope of inspection, (iif) quality standards, (iv) nonconformance
procedures, (v) defect assessment practices, (vi) quality rating method,
and (vii) report formats.

The sampling method along with the scope of inspection determines
what tests will be performed on what units of product or attributes of
product. The statistics and economics of sampling, the engineering
requirements, and the field effect of defects play the central roles in
determining the sampling and the scope of inspection.

The quality standards are numerical values expressed in defects,
defectives or demerits per unit. They are set by the QAc in consultation
with the QaD. The standards are target values, reflecting a tradeoff
between first cost and maintenance costs.

The nonconformance procedures are rules for detecting and dispos-
ing of audited lots that are excessively defective with respect to a
particular set of engineering requirements.

The defect assessment practices are a set of transformations that
map defects found into defects assessed for quality rating purposes. A
terminal strip may have all ten connections off by one position, but,
the consequences of these ten defects found are much less than ten
independent occurrences of this defect. Therefore, less than ten defects
are assessed.

The quality rating method and report formats determine how the
results of the audit are presented to Bell System management. For
example, a product is reported as “Below Normal,” when it fails a
statistical test of the hypothesis that the quality standard is being met.

1.3 The quality measurement plan (QMP)

The statistical foundations of the audit ingredients were developed
by Shewhart, Dodge, and others, starting in the 1920’s and continuing
through to the middle 1950’s. This work was documented in the
literature in Refs. 3 to 6.

In recent years, research has been carried out to evaluate the
application of modern statistical theories to the audit ingredients. An
important idea is summarized in an article by Efron and Morris’ which
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explains a paradox discovered by Stein.® When you have samples from
similar populations, the individual sample characteristics are not the
best estimates of the individual population characteristics. Total error
is reduced by shrinking the individual sample characteristics part way
towards the grand mean over all samples. Efron and Morris used
baseball batting averages to illustrate the point. But the problem of
estimating percent defective in quality assurance is the same problem.
And you are always concerned with similar populations—for example,
the population of design-line telephones produced for each of several
months.

This idea was originally explored in Ref. 9. The idea has now evolved
into the Quality Measurement Plan (QMP). QMP is the recently imple-
mented system for conducting three of the audit ingredients: defect
assessment, quality rating, and quality reporting.

As a quick introduction to QMP, consider Fig. 1. This is a comparison
of the QMP reporting format (Fig. 1a) with the old T-rate reporting
format (Fig. 1b). Each year is divided into eight periods. On the
bottom, the T-rate is plotted for each period and it measures the
difference between the observed and standard defect rates in units of
sampling standard deviation (given standard quality). The idea is that
if the T-rate is, e.g., less than negative two, then the hypothesis of
standard quality is rejected. Section II considers the exact rules for
exception reporting under the T-rate system.

Under qMP, a box and whisker chart is plotted each period. The box
chart is a graphical representation of the posterior distribution of
current population quality on an index scale. The index value one is
the standard on the index scale and the value two means twice as
many defects as expected under the quality standard. The posterior
probability that the population index is larger than the top whisker is
0.99. The top of the box, the bottom of the box, and the bottom
whisker correspond to the probabilities 0.95, 0.05, and 0.01, respec-
tively.

The heavy “dot” is a Bayes estimate of the long run process average;
the “cross” is the observed value in the current sample; and the “dash”
near the middle of the box is the posterior mean of the current
population index and is called the Best Measure of current quality.
The process averages, “dots,” are joined to show trends.

Although the T-rate chart and the QMP chart often convey similar
messages, there are differences. The QMP chart provides a measure of
quality; the T-rate chart does not. For example, in 7806 (Period 6 of
1978) both charts imply that the quality is substandard, but the qMp
chart also implies that the population index is somewhere between one
and two.

qQMP and the T-rate use the past data in very different ways. qMp
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Fig. 1—qMP versus the T-rate. The box and whisker plot in (a) is the gMP replacement
of the T-rate. One is standard on the index scale; two is a defect rate of twice standard.
The box and whisker are 90 and 98 percent confidence intervals for production during
the period; the “crosses” are the indices in the samples; the “dots” are process averages;
and the “dashes” in the middle of the boxes are Best Measures of current quality derived
from empirical Bayes theory. (b) is a-time series of T-rates. Each point measures the
difference between observed quality and expected quality on a standard deviation scale.
Notice that the sixth period of 1977 and the fourth period of 1978 are the same in the 7-
rate chart but quite different in the QMp chart.

uses the past sample indices, but makes an inference about current
quality. The T-rate system uses runs criteria based on attributes of
the T-rate, such as “less than zero,” and can make an inference about
past quality. In Fig. 2, 7707, the T-rate signals an exception, because
six T-rates in a row are less than zero, indicating that quality has not
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been standard for all six periods. But for @MP, the standard is well
within the box, indicating normal current quality. The different treat-
ment of past data is also illustrated in Fig. 1. Comparing 7706 with
7804 reveals very similar T-rates, but QMP box charts with different
messages.

The T-rate system is based on the assumption that the total number
of defects in a rating period has a normal distribution. QMP is based on
the Poisson distribution. This difference is important for small audits,
as shown in Section VII.

QMP was on trial for two years and was applied to 20,000 sets of
audit data. The relatively simple @MP algorithm published in Ref. 9

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1977 1978

Fig. 2—A weak T-rate exception. The seventh period of 1977 was reported as a quality
exception because six 7-rates in a row were less than zero. For gMp, it would have been
reported as normal. This is because QMP provides a statistical inference about current
production only, even though past data is used.
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was used originally. This simple algorithm worked for most data sets,
but not all (e.g., zero defects in every period). The relatively complex
algorithm discussed in Section IV is the result of a lengthy fine-tuning
process, designed to make the algorithm work for every case. This is
why the full power of Bayes theorem with empirically based prior
distributions had to be used.

1.4 Relationship to the empirical Bayes approach

Note that in the qMP box chart, the Best Measure always lies
between the estimated process average and the current sample index.
The Best Measure is a shrinkage of the sample index towards the
estimated process average. In 7706 of Fig. 1a, the shrinkage is away
from standard; but, in 7804, it is towards the standard.

The Best Measure is related to the class of estimators described by
Efron and Morris.!° In the cited reference, they provide a foundation
for Stein’s paradox with an empirical Bayes approach. In Ref. 7, they
used baseball data to illustrate Stein’s paradox. There is a clear analogy
between percent defective in a quality assurance application and a
baseball batting average. The data in Ref. 7 was for many players at
a given point in time. The qMP algorithm works with the data for one
product over time. So a better baseball analogy would be one player
over time. :

Table I contains batting average data for Thurman Munson from
1970 through 1978. This data was collected and analyzed by S. G.
Crawford and is displayed graphically in Fig. 3. The “crosses” are
Munson’s batting averages reported on the last Sunday of April for
each year. The “boxes” are Munson’'s batting averages at the end of
the season. The dashed line is the average of the “crosses.”

The early season averages are analogous to the audit data. The
averages are the results from small samples of the populations. The
populations are the finite populations of “at bats” for each season. In

Table |—Batting average data for Thurman Munson
Reported* on Last

qQMP

Sunday in April End of Season Estimate
of
At Batting At Batting Batting

Year Bats Hits Average Bats Hits Average Average
1970 44 7 0.1569 453 137 0.302 0.165
1971 37 6 0.162 451 113 0.251 0.168
1972 31 11 0.355 511 143 0.280 0.288
1973 56 20 0.357 519 156 0.301 0.315
1974 72 16 0.222 517 135 0.261 0.233
1975 48 18 0.375 597 190 0.318 0.323
1976 40 13 0.325 616 186 0.302 0.308
1977 42 9 0.214 595 183 0.308 0.273
1978 63 17 0.270 617 183 0.297 0.283

* AP statistics.
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Fig. 3—Batting averages for Thurman Munson. For each year, the movement from
the early season average (the sample) to the season average (the population) is always
in the direction of the time average of the samples. This suggests strongly that by
shrinking the samples towards their time average, one can obtain improved estimates of
the populations.

the audit, we are interested in making a statistical inference each
period about the current population. So our problem in Fig. 3 is to
make a statistical inference each year about the season batting average
using only the early season averages observed to date.

As an estimate, one would be tempted to use the maximum like-
lihood estimate, the early season average. But, in every year, the
movement of the batting average from the early season to the season
end is in the direction of the aggregate early season average over time.
So, paradoxically, the early season averages from other years seem to
be relevant to the current season average. It is clear from the data,
that a better estimate of the season average is some kind of shrinkage
of the early season average towards the aggregate early season average
over time. And the amount of shrinkage can depend only on the
available data—the early season averages.

What we really have here is a multivariate problem. We observe a
nine-dimensional vector of observations whose mean is a vector of
population characteristics, one of which we are particularly interested
in. Stein® showed (for the normal distribution) that the maximum
likelihood estimate of the vector is inadmissible. Why this is true
manifests itself in baseball lore. A player that starts the season rela-
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tively hot, usually cools off; and a player that starts in a relative slump
usually improves. This is due to the nature of sampling error. The hot
player is usually partially lucky and the slumping player is usually
partially unlucky.

QMP is based on the concepts illustrated by the Munson data. We
saw in Fig. 1a that the Best Measure of the population index is between
the current observed index and the estimated long-run process average.

The approach used for QMP is actually Bayesian empirical Bayes.
The shrinkage factor used is a Bayes estimate of an optimal shrinkage
factor. So the Best Measure has the form

estimated current
W | process +(1—W) |sample|,
average index

where W is a Bayes estimate of _
[sampling variance]
[sampling variance] + [process variance]

The bigger the sampling variance is, relative to the process variance,
the more weight is put on the estimated process average.

There are two advantages to the Bayesian empirical Bayes approach
over the approach in Ref. 10. One is that the weight, W, is always
strictly between zero and one. This is because W is a Bayes estimate
of an unknown optimal weight, w, which has a nondegenerate posterior
distribution on the interval [0, 1]. The approach taken in Ref. 10 is to
use maximum likelihood estimates of w, which can be one; i.e., total
shrinkage to the process average.

The second advantage is that an interval estimate of the current
population index can be constructed from its posterior distribution.
Most of the literature (e.g., Ref. 10) treats the estimation problem
thoroughly, but it provides little guidance for the interval estimation
problem.

The qmP algorithm is applied to the Munson data and the QMP
estimates of the season averages are given in Table I. The sums of the
absolute errors for the maximum likelihood estimates (April averages)
and the QMP estimates are 0.603 and 0.331, respectively—a forty-five
percent improvement. Notice that the gMP estimates for 1970 and 1971
are close to the April averages. This is because there was no history on
Munson. The reduction in total absolute error for the years 1973
through 1978 was sixty-five percent, because of the benefit of history.

1.5 Objectives

This paper is intended to document QMP. It contains the rationale
for changing the rating system, a synopsis of @QMP features, mathemat-
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ical derivations of the rating formulas, the dynamics of qmP, the
operating characteristics of QMP, many examples, and the QMP report-
ing format.

Readers who are interested only in the mathematics of QMP and how
it relates to empirical Bayes, may skip Section II. Readers, who are
not interested in the mathematical derivation of QMP, may skip Section
IV.

Il. T-RATE SYSTEM

To understand the rationale behind @MP, one must first understand
the T-rate system. From this we shall see where things have changed
and where things have remained the same.

2.1 Finding defects

The sampling methods along with the scope of inspection provide
for a sample of units of count for each set of inspections. A unit of
count is either a unit of product or a unit of a product’s attribute such
as solderless wrapped connections.

The result of conducting a set of inspections is a list of defects found
and their descriptions. Frequently, underlying a defect is a variable
measurement* that falls outside a range. QqMP does not affect the
process of finding defects.

2.2 Assessing defects

The defects found sometimes occur in clusters for which the effect
of the cluster is nonadditive; i.e., the effect is less than the sum of the
effects of the individual defects occurring by themselves. In this case,
the number of defects assessed for rating purposes is less than the
number found. The defect assessment practices for the T-rate system
evolved over a 50-year period, so these practices were based on a
variety of criteria and engineering judgements. The defect assessment
practices under QMP amount to a redesign of the practices using a
single principle, which is described in Section 3.1.

2.3 Defect weighting and demerits

The defects assessed are transformed into demerits or defectives or
may remain as simple unweighted defects. In an audit based on
demerits, each defect assessed is assigned a number of demerits: 100,
50, 10, or 1 for A, B, C, or D weight defects, respectively. Guidelines for
assigning demerit weights are contained in numerous general and

* For rating transmission characteristics of exchange area cable, some variables
measurements are used directly without conversion to defects. We do not treat this case
here.
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special purpose demerit lists. The principles underlying these demerit
lists are described by Dodge in Refs. 5 and 6. In an audit based on
defectives, all defects found in a unit of product are analyzed to
determine if the unit is considered defective. The assessment is either
one or zero defectives. These transformations to demerits, defectives,
or defects are not affected by qmp.

2.4 Quality standards

For any set of inspections, the quality engineers in the Qac have
established quality standards. To do this, they considered audit scope,
shop capability, field performance, economics, complexity, etc. The
philosophy of standards is described in Ref. 3. For audits based on
defects or defectives, the standards are expressed in defects or defec-
tives per unit. For audits based on demerits, the standards are derived
from fundamental defect per unit of count standards for A, B, C, D-
type defects. In addition, we use Poisson as the standard distribution
of the number of type A defects (for example).

To make this clear, let’s consider a simple example. Suppose in a
sample of size n, there are X4, Xz, Xc, Xp-type A, B, C, D defects. The
definition of standard quality is that X4, Xz, - - - are independent and
have Poisson distributions with means nA4, nAg, - --. The number of
demerits in the sample is

D = 100X4 + 50X + 10Xc + Xp.
The mean and variance of D, given standard quality, are
E(D|S) = 100(nA4) + 50(nAg) + - --
= n[100A4 + 50As + 10Ac + Ap]
=nU,
V(D|S) = (100)*(n\4) + (50)*(nAp) + ---
= n[(100)*A4 + (50)*Az + (10)*Ac + Ap]
= nC;.

The notation “D|S” reads “D conditional on S.”

Note that U; is the demerit per unit standard and C; is a variance
per unit standard. These are the numbers that would be published in
the official list of standards called the Master Reference list. The
quality standards are not affected by qMmPp.

2.5 Rating classes and periods

For the purpose of reporting quality results to management, the
products are grouped into rating classes. An example is: Ess No. 1
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wired equipment, functional test, at Dallas.* The results of all the
inspections associated with this rating class are aggregated over a time
period called a rating period. A rating period is about six weeks long
and there are eight rating periods per year. QuP does not affect the
rating classes or periods.

2.6 The T-rate

The advantage of having quality standards is that observed quality
results can be statistically compared to the standards. In the T-rate
system, this is done with a statistic called the T-rate.

For a given rating class, let @ denote the total number of defects,
defectives, or demerits that are observed in all the inspections con-
ducted on all the subproducts during a rating period. Because there
are quality standards for each set of inspections on each product
subclass, it is possible to compute the standard mean and variance of
Q, denoted by E(Q|S), V(Q|S). The T-rate is

_EQ|S)-@Q
JV@QIS)

It measures the difference between the observed result and its standard
in units of statistical standard deviation.

For each rating period, the T-rate is plotted in the control chart
format shown in Fig. 1b. The control limits of +2 are reasonable under
the assumption that @ has an approximate normal distribution. Then
the standard distribution of @ is the “standard normal,” and excursions
outside the control limits are rare under standard quality. For large
audit sample sizes, this approximation follows from the central limit
theorem. As we shall see, the approximation is poor for small sample
sizes.

T-rate

2.7 Reports, Below Normals and ALERTs

The fundamental reports to WE management are books of T-rate
control charts for all rating classes. However, every rating period, a
summary booklet is prepared. The summary consists of various aggre-
gate quality performance indices and an exception report which lists
rating classes that are having quality problems.

There are two kinds of exceptions: Below Normal (BN) and ALERT.
These are based on statistical tests of the hypothesis that quality is at
standard. The rules for BN and ALERT are based on six consecutive T-
rates, t,, .-+ ts, where f; is the current T-rate. The rules use the

* Technically, this is called a scoring class in quality assurance documentation. Here,
rating class means scoring class.
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following runs criteria:

SCAN(S): 6 <0, .-, <0,
341 (T'): ts < —1 and at least two of the set {3, £, £s} are less than
-1.

Finally, the rules for BN and ALERT are:
Below Normal (BN): One of the following two conditions is satisfied:

(1) te <=3
(2) —3 = ts < —2 and at least one of the following three conditions
hold:
(i) scaN
(iZ) 341
(i1z) At least one of the set {2, 3, L4, t5} is less than —2.
ALERT: SCAN or 341 but not BN.
In Fig. 1b, examples of BN are 7806 and 7803. Examples of ALERT are
7808 and 7804.
Both the fundamental report formats and the rules for BN and ALERT
are different under QMP

2.8 Pros and cons of the T-rate

The advantage of the T-rate is its simplicity. It can be calculated
manually. Exceptions can be identified by inspection. The fact that
the T-rate has been used for so long is a testimonial to its advantages.

However, the T-rate does have problems.* The T-rate does not
measure quality. A T-rate of —6 does not mean that quality is twice as
bad as when the ¢-rate is —3. The T-rate is only a measure of statistical
evidence with respect to the hypothesis of standard quality. This
subtle statistical point is often misunderstood by report readers. Years
of explanations have not cleared up the confusion.

Another problem is that the ALERT (scaN and 341) rules are tests of
hypothesis about quality trends, not current quality. Consider Fig. 2.
You can assert that quality was probably substandard sometime
between 7702 and 7707. You cannot, however, assert that quality is
substandard in 7707. The @MP result for 7707 is normal.

In addition, the rules for ALERT and to some extent BN depend on
attributes of past T-rates rather than their exact values. For example,
five consecutive past T-rates at —1.0 are treated exactly like five
consecutive 7T-rates at —0.1. This was done for statistical robustness.
But statistical information is lost. There are no “outliers” in the audit
data. Defects assessed were in the product. Many defects assessed

* Although the foundation of the T-rate system was laid by Shewhart' and Dodge,”
the details are the results of contributions by many people over 50 years.
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mean substandard quality at the time of assessment. It is possible that
very unusual circumstances caused the defects. But it is intended that
the audit flag such unusual circumstances.

The significance level of the T-rate hypothesis test depends on
sample size and can be very large. Suppose that we have a simple test
defect audit with a sample size of 32 units and a standard of 0.005
defects per unit. The expected number of defects is (32)(0.005) = 0.16.
For one defect observed, the T-rate is

So, every time there is a defect, the T-rate exceeds the control limit.

Now, assuming standard quality, the number of defects has a Poisson
distribution with mean = 0.16. The Poisson probability of one or more
defects is 0.15. So even when the standard is being met, there is a 15
percent chance of the T-rate dropping below —2.0. In statistical terms,
we have a biased test (i.e., there is no reasonable upper bound on the
significance level).

Clearly, it is not reasonable to take action every time the audit finds
a defect. So special rules called modification treatments have evolved
to handle cases like the one just described. Some of these modification
treatments are statistically sound, others are not. This detracts from
the desired objectivity of our quality rating.

In a sense, QMP is orthogonal to the T-rate. On the one hand, Qmp
cannot easily be computed manually. On the other hand, QuP does not
have any of the disadvantages described above for the T-rate. The
basic message of the Qup box chart (Fig. la) is unambiguous and
exceptions can be identified by inspection.

lll. OVERVIEW OF QMP

As described in the introduction, QMP is the new way of conducting
three of the audit ingredients: defect assessment, quality rating, and
quality reporting. This section contains an overview of QMPp. Mathe-
matical derivations and detailed analyses of qMp are left for later
sections.

3.1 Defect assessment practices

Defect assessment practices have two parts. Part one is a description
of those situations where fewer defects are assessed than are found.
Part two is a formula for the number of defects assessed.

In QMP, the principle for part one is: Normally all defects found in
the quality assurance audits are assessed. Occasionally a cluster of two
or more defects is found for which the seriousness of the cluster is less
than the seriousness implied by individually assessing every defect in
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the cluster. Such a cluster shall be called reducible. Seriousness is

measured from the customer’s point of view. The audit attempts to

measure seriousness as if the auditor is the customer. So if defects are

found and corrected as a result of the audit, no adjustment in assess-

ment is necessary. More specifically, a reducible cluster is a collection

(on one audited unit) of

[1] dependent identical defects that the customer will

[2] almost surely discover in its entirety when a small part of the
cluster is discovered and

[3] will correct or otherwise account for en masse, so that

[4] total seriousness is better represented by assessing d, defects
(computed by the assessment formula), rather than the number
found.

In [1], we use the word dependent in a statistical sense. Defects are
dependent if they occur in a short interval of time and are systemati-
cally introduced by a common feature of the production process.

Ideally, the assessment associated with a reducible cluster of defects
should depend on the situation. Over time, lists of reducible clusters
and their assessments could be catalogued and added to the demerit
lists. But, for now, there is no list of reducible clusters, so an assessment
formula is needed.

For QmpP, the assessment formula has the general form

d,=AN + 1,

where AN stands for “Allowance Number.” In turn, AN has the general
form AN = e + 3ve, rounded down to an integer or to the closest
integer, where e can be interpreted as an expected number of defects.
The computation of e and the rounding depend on the audit. For some
audits, tradition has prevailed, and for other audits, methods of com-
puting e were developed for qMp.

As an example, consider a single relay for which three contacts are
defective (class B defect). The traditional method of computing e for
an apparatus audit is

e = (12)(0.005) = 0.06,

where 12 is the number of contacts in the relay and 0.005 is a traditional
generic standard per unit of count for class-B defects. The traditional
rounding is down, so AN = (0.06) + 3v0.06 = 0.79, rounded down to
zero. Hence, one class-B defect is assessed.

Another example is a reducible cluster of loose terminations found
on a bay of equipment in a transmission installation performance
audit. In this case, e is just the quality standard for the bay in defects
per unit, and the rounding is to the nearest integer.
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As you have gathered by now, defect assessment is an art not a
science. The principles and rules described here have empirical valid-
ity. In practice, they usually lead to reasonable assessments.

3.2 Equivalent defects and expectancy

A complicating factor in the analyses of audit results is that defects,
defectives, and demerits are different. But, are they really? The answer
is no; because, for statistical purposes, they can all be transformed into
equivalent defects that have approximate Poisson distributions.

Suppose we have a quality measure @ (total defects, defectives, or
demerits). Let E, and V; denote the standard mean (called expectancy)
and variance of Q. So the T-rate is T = (E, — QWV,.

Now define

Q
V./E,

X = equivalent defects =

and

e = equivalent expectancy = standard mean of X

V./E, V.

If all defects have Poisson distributions and are occurring at & times
the standard rate, then it can be shown that

E[X|8] = V(X|0) = ef,

hence, X has an approximate Poisson distribution with mean ef.
As an example, consider the demerits case. The total number of
demerits has the general form

D= 2 w;X.-,

where the w/'s are known weights and the X/’s have Poisson distribu-
tions. Assume that the mean of X; is e;fl, where ¢; is the standard mean
of X; and @ is the population quality expressed on an index scale. So ¢
= 2 means that all types of defects are occurring at twice the rate
expected.

The mean and variance of D are

E(D) =Y wE(X:)
= Z wi(e:d)
= 0E;
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and
V(D) =Y wiV(X;)
=Y wi(ed)
=4V,

where E, and V, are the standard mean and variance, respectively, of

D.
The mean and variance of equivalent defects, X, are

E(D)
V./E.
0F,
V./E.

e

EX)=

I
=

and

V(D)
[V./E.]
_ 9V.E?

v

= fe.

V(X) =

The mean and variance of X are equal;, so, X has an approximate
Poisson distribution with mean ef. Of course, it is not exact; because,
X is not always integer valued. But, this Poisson approximation for
equivalent defects is better than the normal approximation implied by
the T-rate system. It is the Poisson approximation in QMP that obviates
the need for the modification treatments discussed in Section 2.8.

A similar analysis works approximately for the defectives case. So,
any aggregate of demerits, defectives, or defects can be transformed
into equivalent defects. Just use the standard expectancy and variance
as illustrated above for demerits.

3.3 Statistical foundations of QMP

The algorithm used for computing the QMP box chart shown in Fig.
la was derived from a Bayesian analysis of a particular statistical
model. In this Section we describe the model and put it in perspective.
This will provide an appreciation for how the box charts can be
interpreted and why they are a useful management tool.

3.3.1 QMP model

For rating period ¢, let x; = equivalent defects in the audit sample,
e, = equivalent expectancy of the audit sample, 8, = population index,
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as defined in Section 3.2. Based on the discussion in Section 3.2, we
assume that the conditional disribution of x; given 8; is Poisson with
mean efy; i.e.,

X I Gf ~ POiSSOﬂ(Ege;).

In Fig. 3 we see that the season average varies from year to year.
Some of that variation is due to the fact that the season is itself a
sample from a conceptual infinite population of at bats. The rest of
the variation is due to changes in ability, competition, etc., that are
caused by numerous factors that may or may not be identifiable. The
important concept is that the time series of season averages is a
stochastic process. For QuP we assume that the time series of 6/'s is an
unknown stochastic process.

For reasons that are partly statistical and partly administrative, we
have decided to restrict our use of past data to five periods. The main
administrative reason is that the T-rate system used the past five
periods. So all of the T-rate administrative rules that dealt with
missing data and reinitialization of rating classes can be used in QMP.
Statistically, qMP works as well for six periods as it does for eight
periods (one year).

A consequence of using only six periods of data is that no useful
inference can be made about possible complex structure in the sto-
chastic process of /'s. So we assume simply that the 6/’s are a random
sample from an unknown distribution called the process distribution.
Furthermore, six observations are not enough to make fine inferences
about the family of this unknown distribution. So for mathematical
simplicity we assume it to be a gamma distribution with unknown
mean = # and variance = y* (Appendix A); i.e.,

iid #* 2
6, ~ Gamma(—z, Z—),
Y [
t=1, ..., T(current period).

The parameters 6°/y* and y®/6 are the shape and scale parameters of
the gamma distribution. We use the names

8 = process average,
y% = process variance.

This choice of a unimodal distribution reflects our experience that
usually many independent factors affect quality; so there is a central
limit theorem effect.

We are assuming that the process average is unknown but fixed. In
reality, it may be changing. We handle this by using a moving window
of six periods of data. But this treats the past data symmetrically. An
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alternative would be some kind of exponential smoothing or Kalman
filtering. My colleague M. S. Phadke is developing a generalization to
QMP based on a random walk model for the process average.

The model so far is an empirical Bayes model.'” The parameter of
interest is the current population index, 8, which has a distribution
called the process distribution. Bayesians would call it the prior
distribution if it were known. But we must use all the data to make an
inference about the unknown process distribution. So, the model is
called empirical Bayes.

Efron and Morris' take a classical approach to the empirical Bayes
model. They use classical methods of inference for the unknown
process distribution. QMP is based on a Bayesian approach to the
empirical Bayes model. Each product has its own process mean and
variance. These vary from product to product. By analyzing many
products, we can model this variation by a prior distribution for

@, v°).
Summarizing, our model is
x¢| 8 ~ Poisson(e:f,), t=1,..., T

iid g% +2
0, ~ Gamma(—z, %), (6, ¥*) ~ prior distribution p (8, y?).
Y
For now, p(f, y®) remains general.
This is a full Bayesian model. It specifies the joint distribution of all
variables. The quality rating in gMP is based on the posterior distri-
bution of fr given x = (xy, + - -, x7).

3.3.2 The model in perspective

Quality rating in QMP is based on posterior probabilities given the
audit data. Of course these probabilities depend on the model. But
how do we know the model is right?

It is important to understand that we are not doing data analysis
with qMP. In data analysis, each set of data is treated uniquely.
Probabilities cannot be computed. Objective decisions cannot be made.

A requirement of quality rating is a specific rule that defines quality
exceptions and a figure of merit (e.g., a probability) associated with an
exception. A statistical model provides both. QMP could have been
based on a more elaborate model. Our model represents a compromise
between simplicity and believability.

So our exception decisions are at least consistent with one simple
model of reality. The probabilities are conditional on that model.
Otherwise, they can only be interpreted as figures of merit.

We have imbedded the simple hypothesis of a Poisson distribution
with a standard mean into a class of alternatives. The alternatives are
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Poisson distributions with nonstandard means. Much more compli-
cated alternatives can be included: e.g., the class of negative binomial
distributions, and our probabilities would change a little. But QMP has
achieved a kind of empirical validity. The exceptions being identified
are accepted by the managers being rated. And for the products
declared normal, there is a model (i.e., our model) that affords the
standard hypothesis some credence.

3.3.3 Posterior distribution of current quality

We show in Section IV that it is computationally impractical to
derive the exact posterior distribution of 7. The best we can do is
approximate the posterior mean and variance of fr.

The posterior mean and variance of r are derived in Section IV.
The posterior mean is

br = E (87| x)
= orf+ (1 - ér)lr,
where
§=E@#|x),
wr = E(wr|x),
f/er
wr = _9767—+'y—z.

The posterior mean, fr, is a weighted average between the estimated
process average, #, and the defect index, Ir, of the current sample. It
is the dynamics of the weight, wr, that makes the Bayes estimate work
so well. For any ¢, the sampling variance of I, is

)

1
= V(x| 8)

V(L|6) = V(g

t

- (ed)
= b,/e..
The expected value of this is
E[68,/e] = 0/e..

So the weight, wr, is
[expected sampling variance]
[expected sampling variance] + [process variance]’
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If the process is relatively stable, then the process variance is
relatively small and the weight is mostly on the process average; but
if the process is relatively unstable, then the process variance is
relatively large and the weight is mostly on the current sample index.
The reverse is true of the sampling variance. If it is relatively large
(e.g., small expectancy), then the current data is weak and the weight
is mostly on the process average; but if the sampling variance is
relatively small (e.g., large expectancy), then the weight is mostly on
the current sample index. In other words, wr, is a monotonic function
of the ratio of expected sampling variance to process variance.

The posterior variance of 8r is

Vr= (1 - &r)dr/er + 67V(0|x) + (0 — I7)*V(wr|x).

If the process average and variance were known, then the posterior
variance of 87 would be (1 — wr)fr/er (Appendix B). So the first term
is just an estimate of this. But since the process average and variance
are not known, the posterior variance has two additional terms. One
contains the posterior variance of the process average and the other
contains the posterior variance of the weight.

The first term dominates. A large wr (relatively stable process), a
small 87 (good current quality), and a large er (large audit) all tend to
make the posterior variance of #r small (the box chart short).

If &7 is small, then the second term is negligible. This is because the
past data is not used much, so the uncertainty about the process
average is irrelevant.

If the current sample index is far from the process average, then the
third term can be important. This is because outlying observations add
to our uncertainty as to what is happening.

If the process average and variance were known, then the posterior
distribution would be gamma (Appendix B). So we approximate the
posterior distribution with a gamma fitted by the method of moments.
The parameters of the fitted gamma are

a = shape parameter
= 0%/Vr,
T = scale parameter
= Vr/br,
and the posterior cumulative distribution function is
Pr{fr < y|x} = G.(y/7)
(Appendix A).

234 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1981



T ~~99TH PERCENTILE (199%)
"~ ~95TH PERCENTILE (195%)

CURRENT SAMPLE (17)-~"| X

-
~ STANDARD

N 4
BEST MEASURE (1)~

INDEX

A -~
2 PROCESS AVERAGE (f)~ .
¥ ~5TH PERCENTILE (105%)

¥ —~1ST PERCENTILE (I01%)

3

Fig. 4—qMP box and whisker chart. This is a graphical representation of the posterior
distribution for current production given the six most recent periods of audit data. The
whiskers display the 99th and 1st percentiles and the box displays the 95th and 5th
percentiles. The Best Measure is the posterior mean or Bayes estimate. It is a weighted
average of the process average (“dot”) and the current sample (“X”). The weight is the
ratio of sampling variance to total variance. If all the variance is due to sampling, then
the production is stable and the process average is the Best Measure of current quality.
If the sampling variance is zero, then the current sample is the Best Measure.

3.4 QMP reports
3.4.1 QMP box chart

The qmP box and whisker chart is shown in Fig. 4. 199%, - - -, I01%
are defined by

1 — G,(199%/7) = 0.99,

1 — G,(I01%/7) = 0.01.
So, e.g., a posteriori, there is a 99 percent chance that fr is larger than
199%.

3.4.2 QMP Below Normal and ALERT definitions
In QMP, a rating class is Below Normal (BN) if
199% > 1;

i.e., the posterior probability that the product is substandard exceeds
0.99. Substandard means fr > 1. A rating class is on ALERT if

199% < 1 < I95%;

i.e., the posterior probability that the product is substandard exceeds
0.95 but not 0.99.

These definitions are illustrated graphically in Fig. 5, which is
oriented like the location summary in Fig. 6.
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ALERT H—_ e | X J—

NORMAL

INDEX

Fig. 5—qMP exceptions. Below Normal means that the probability of substandard
quality exceeds 0.99. For ALERT, the probability exceeds 0.95 but not 0.99, Normal is not
a quality exception.

3.4.3 QMP report formats

There are two report formats for QMP results. One is a time series of
box charts illustrated in Fig. 1a. The estimated process averages are
joined. The other is a location summary for the current rating period.
This is illustrated in Fig. 6. It orders the rating classes by Best Measure
for the current period. Another ordering that will be used is by rating
class name.

Western Electric, Bell Laboratories, and American Telephone and
Telegraph management will receive all @QMP results. Operating com-
pany management will receive QMP results on those rating classes that
are of direct interest to them. Examples of results provided to the
operating companies are the quality of repaired telephone sets and
installed switching systems.

3.5 Advantages of QMP

Many of the advantages of QMP relate to the disadvantages of the 7T-
rate system (Section 2.8). QMP provides a direct measure of quality. If
a rating class is Below Normal, one can tell how bad the quality is.
QMP uses past and current data to make an inference about current
quality not past quality. If a rating class is on ALERT, then it is over 95
percent probable that there is a quality problem now. qup does not
use runs criteria, but uses the actual equivalent defects observed. This
provides more statisxtical efficiency and therefore shorter interval
estimates. QMP is robust against statistical “jitter.” It does not over-
react to a few defects. Consequently, there is no need for special
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modification treatments. This way we retain statistical objectivity
conditional on our model.

Another advantage compared to the T-rate is that QMP provides a
lower producer’s risk and consequently a more accurate list of excep-
tions. This is supported by data presented in Section VI.

Finally, qMP will allow ds to unify our reporting to Bell System
management. In the past, the T-rate statistic did not meet the needs
of the operating companies; so, we developed a collection of special
reports for the operating companies. Since the QMP report format does
meet operating company needs, the relevant subset of all the results is
a useful report.

IV. MATHEMATICAL DERIVATION OF QMP
4.1 Exact solution

We are interested in the posterior distribution of 8r given x, for the
model described in Section 3.3.1. Now Pr{fr < y|x} = [§ J§ Pr{fr
= y|6, ¥*, xr}p(d, y*|x) df dvy®, where p(6, y*|x) is the posterior
distribution of 6, y* given x.

From Appendix B, we know that the distribution of ér given 8, y?,
and xr is gamma; so, Pr{fr < y| 6, v, xr} can be expressed in terms of
an incomplete gamma function.

By Bayes theorem,

p(6, y*)L(6, v*)
f f p(8, yY*)L(8, y*) df dy*
0 0

p(f, v*|x) =

where p(6, y*) is the prior density of 4, y* and L(6, y*) is the likelihood
function. Since x, given 8, is Poisson and &, given #, y* is gamma, it
follows that x, given #, y* is negative binomial; hence,

T
L, y*) = tI-Il L8, v*),

where
C(x: + 6°/7°)

i U RGN CLUR S

Ld8, v*) =

H/e.g

O e 7

So the posterior distribution of #r is a complex triple integral that
has to be inverted to compute the @MP box chart. The posterior mean
and variance of 7 can be expressed in terms of several double integrals.
There are more than 1,000 rating classes that have to be analyzed each
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period, so computational efficiency is important. This is why we have
developed an efficient heuristic solution to the problem.

4.2 Empirical priors for process parameters

It is clear from Section 4.1 that prior distributions for # and y” are
needed. In the fourth rating period of 1979, we applied an earlier
version of the QMP algorithm to over 1,000 rating classes. This provided
over 1,000 estimates of # and y* and empirical distributions of these
estimates. The empirical mean and variance of the # estimates were
0.75 and 0.17, respectively. The empirical mean, variance, and mode of
the y? estimates were 0.28, 0.19, and 0.05, respectively.

In the remainder of Section IV, we use 1 as a mean value of § instead
of 0.75. This is because 1 is the desired standard value that minimizes
first cost plus maintenance costs. Under QMP, the shops will be able to
operate on the average closer to 1, because the producer’s risk (see
Section 6.2) is smaller than for the T-rate. Also, more defects are
assessed under @MP than for the T-rate (see Sections 2.2 and 3.1).

4.3 Posterior mean of current quality
For the model described in Section 3.3.1,
br = E(0r|x)
= E[E(0r]8, ¥%, x) | x].

Conditioning on # and y* means that the process distribution is known.
So by Theorem B.1 in Appendix B,

97‘ = E[w-rﬂ +(1-— WT)ITI x]. (1)

To calculate this posterior expectation exactly requires a double
integral. But a posterior expectation, E[-|x], can be viewed as an
estimate of the operand “-”, because it is the Bayes estimate. So all
we need are estimates of wr and 8.

4.3.1 Moment estimates of process parameters

As argued in Section 4.1, given 8 and y?, x; has a negative binomial
distribution. We show in Appendix D, egs. (56) and (58), that

E(I,) =6,
E(Y) =y*
where
Y, = (I, = 6)* = L/e. (2)

So we have many independent estimates of § and y®. A general
method of combining independent estimates of parameters is a
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weighted average, where the weights are proportional to the reciprocal
of the variances of the individual independent estimates. Such esti-
mates of § and ¥ are

0- = E p:I:. (3)
t
Y =Y q.Y, @)
t
where
Yo=Y q=1
t t
and
peo< 1/V(1,),
g: o< 1/V(Y,).

Notice that Y, depends on #. So in the application, we replace # by
an estimate.

Now V(I,) and V(Y:) depend on the unknown parameters # and y>.
The important consideration in setting the weights p, and g is their
general behavior as e; varies. So for simplicity (to avoid iteration), we
choose # = 1 and y* = Y%, which are empirically-determined mean
values of these process parameters (see Section 4.2),

In Appendix D, we derive formulas for V(I;) and V(Y,). Plugging 6
=1 and y* = % into eqs. (56) and (59) yields

1 /(1.1 e
p‘“ﬁ'V(I,)"l/(a+Z)_1+e,/4' ©

1 25 15
=——=1/|Z5+=+022
q: o< g, V(Y;) /[et e: ]
2
e;

=55+ Loe + 029er O

Note that for small e;, f; oc e;; but for large e;, the f;’s and therefore
the weights, p,’s, are all about equal. This is because for any large e,
I, = 4, and we are trying to estimate the average of the 6,s.

4.3.2 Bayes estimate of the process average

In the case I, = 0 for all ¢, there is a problem with the estimate §. If
we plug #= 0 into (1), then 7 = 0. But #r is a posterior mean of a
positive parameter, so it cannot be zero. The correct method of
handling this problem is to start with a proper prior distribution on
the process average, §. But then the mathematics and the computa-
tions become complicated.
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So we assert that we have prior information that is equivalent to
observing some “prior data,” xo and e;. Then a Bayes type estimate
has the form

~

= pily, (7
0

T

which has the same form as the moment estimate, #, but uses all the
data including the “prior data.”

To choose values for xo and ep, consider T'= 1. A generic form of a
Bayes type estimate of ¢ is

wE(@) + (1 — w),
where

_ v
V(L) + V(8)

Setting this generic form equal to (7) yields
E(f) = xo/eo,
V(0) = 1/e0 + Y.

From Section 4.2, E(@) = 1; and we conservatively choose V(@) to be
1.25 (we do not want our prior observations of § estimates to preclude
large future values of §). This implies xo = eo = 1.

w

4.3.3 Bayes estimate of weight

Now define an estimate of y* analogous to (7),
T T
f? = E q: — 9)2 - Z qili/e:),
{=0 t=0

as suggested by egs. (2) and (4).* The first term is the total variance
about the process average and the second term is a weighted average
of estimated sampling variances. [Recall from Section 3.3.3 that
V(| 8:) = 6./e;, which can be estimated by I./e..] We denote the
average sampling variance by

T
o’ = :Z:o qIi/e.). (8)

The problem with vy} as an estimate of process variance is that it
can be negative. To solve this problem, we use the results in Appendix
C. Assume ¢° is a known constant, and define the unknown weight as

0,2

w = .
02+y2

* Note that we treat the “prior data” as real data.
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To apply Appendix C, we must find a statistic, s, and a degree of
freedom, df, so that, approximately,

w
— (SS) ~
0,2

Originally, we just assumed approximate normality of I, and took ss
= (df + 1) 2,7;0 qd{I, — §)* and df = T. But we found unusual sets of
data for which the number of defects allowed (before declaration of
Below Normal) was a decreasing function of expectancy in short ranges
of small expectancy. We dubbed this the “qmMPp wiggle.”

To solve this problem, we approximate the sampling distribution of

T
Z=7Y qdl. - §)*
t=0

by a scaled chi-square with degrees of freedom deduced by the method
of moments.
Let

T
Zy = 2 q:(Ir - ﬂ)z,
t=0
and try an ss of the form

uz,

where u is an unknown constant. The two moment equations that
have to be satisfied are

E[;“iz (uZ)} = df, ©)

E’[(«/0”) )] _ E’[xi]
VI(w/o®)uZ)]  VIxil

And the second equation is

2E*Z]
ViZ] = df. (10)
Inspired by well-known normal theory, we use the approximations
df

E(Z) = (df+ 1) E(Z)), (11)

2E*(Z) 2E*%(Z))
= - -1 12
va) | V@) 12

Now using eqgs. (11) and (56), eq. (9) becomes

df
B 5w |- Su(gs) Tt + 0

242 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1981



g
=S
+| 5
Rl

hence,
u=df + 1.

As for eq. (12), the mean and variance of Z; depend on # and ¥> So
to avoid iteration, we now select # = 1 and y* = 0,* which were
empirically determined in Section 4.2. Then by egs. (12), (56), and (57),

2EY(Z] _ AT ql1/e)]’  _
VIZ] 3 qi(l/el + 2/e?)

= df. (13)

So our statistic ss is
ss = (df + 1) ¥ qe(l: — 6)*,

where df is given by eq. (13). :
Now apply the Corollary to Theorem C.1 in Appendix C to get

2
w|ss ~ C— Gamma(a,%, 1),

where
df S8
a=ao+§, b=bo+3. (14)
Define S2 - b/a
T
2bo + (df + 1) ¥ qu(I; — 6)*
= =0 J (15)
2a, + df ’
R = 8%/q¢% (16)
Now apply Theorem C.2 in Appendix C to get
1 o’
E = =
(w]|x) RF ~ FSE’ (17)

* The choice of y? = 0 here may seem inconsistent with choice of y? = Y% in the
definition of f; and g. There it was necessary to take a positive value (the empirical
mean across products) of y to get the correct behavior for large e,. Here it was not
necessary, so for simplicity, we took the approximate empirical mode across products,
y =0
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Viw|x) = G. (18)

To determine the parameters (ao, bo) of the prior distribution of w,
we first develop an empirical distribution of estimated «’s across many
rating classes, which have a mean and variance of 0.6 and 0.03,
respectively. To be conservative, we inflate the variance, shrink the
mean, and select the prior mean and variance of w to be 0.55 and 0.045,
respectively. The parameters a; and b, are then solutions to (see
Appendix C)

1
R.F

G = 0.045,

where F and G are defined in Theorem C.2 in terms of a; and Ry =
bo/aos®. A numerical analysis yields

= 0.55,

ap = 4.5,
Ro = bo/age® = 1.6,
or
ap = 4.5, (19)
bo = (7.2)0> (20)

Now we define an estimate, 7 of the process variance by
2

E(w|x) =

o>+ 7%
So by eq. (14)
v =FS§* - ¢*
= (FR - 1)o%. (21)

This is our improvement of the moments estimate. The inflation factor
F prevents 7* from being negative or zero. It can be shown that if R is
large, F'is approximately one; but if R is small, FR — 1 is positive and
Fis large.
We are now in a position to estimate wr by
2

.~ _  ©T 22)
T+ 7’
where
oF=0/er, (23)
and our approximation to (1) is
br = &r8 + (1 — ér)lr. (24)
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4.4 Posterior variance of current quality
For the model described in Section 3.3.1,

Vr = V(br|x) = E[ V(6| 6, ¥*, x)| x] + V[E(6r|6, v*, x)|x].

Conditioning on # and y” amounts to the process distribution being
known. So by Theorem B.1, in Appendix B,

Vr = E[(1 — wr)E(67|6, y*, x)/er| x] + V[wr(f — I7)|x].
Conditioning on y” in the second term yields
Vr=E[(1 — wr)E(87| 6, ¥*, x)/er| x]
+ E[V[wr(6 — Ir) | ¥, x]| x]
+ V[E[wr(8 — In) | %, x]x], 25)
so the posterior variance has three components.

4.4.1 First component

The first component is approximated by regarding the posterior
expectation operator as an estimation operator, and it is

(1 — dr)fr/er. (26)

4.4.2 Second component

To approximate the second component, we first approximate V [wr(@
— Ir)|y% x]. Since wr depends primarily on y®> and er, we shall
consider wr a constant. So

VIwr(d — I) | Y%, x] = 07 V(8] ¥*, X). (27
We use the approximation
V(8| y? x) = V(d|y?, 0= 0). (28)
Now by eq. (57),
V(8|+*, 6) = V(T pLe| ¥, 6)
= L piVIL|Y, 6)
= L pily* + 0/e). (29)
Plugging eqs. (28) and (29) into eq. (27) yields
Viwr(d = I | ¥*, x] = wF i pily* + 0/ed].

Again, treating the posterior expectation operator as an estimation
operator, we get for the second component of eq. (25)

T
&% ¥ piyt + /e (30)
t=0
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4.4.3 Third component

For the third component in eq. (25), we first approximate E[wr (8
- I7) | v%, x] by @r(8 — Ir), where
- _ 6/81"
T Fer + 1%

So the third component in eq. (25) is

(0 — IT)*V(&or| x). (31)
If we define
_ 9/81‘
rr 0_2 ]
2
a
LTI (82)
then
— rrw
= Der1 M
So
Vigr|x) = [h'(&) ] Viw]|x), (33)
where
2
W= o + };2 »
R(&) = - (34)

[(rr— 1)é + 1]*°
Equations (31), (33), and (15) imply that the third component of eq.
(25) is
ri(d — Ip)*
[(rr— Dw+ 17*
Putting eqgs. (26), (30), and (35) together implies that the approxi-
mate posterior variance of 07 is

Vr = (1 — &r)(fr/er)

(35)

T 2 A _ 722
+Gh 5 P + Ofe] + 01D

=0 [(rr— 1) + 1]* G. (36)

4.5 QMP algorithm

Here we summarize the qMP formulas. On the right side of the
formulas are the section numbers or equation numbers where the
formulas were derived.
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The audit data for t = 1, - - - , T is the following:

@: = Attribute quality measure in the sample, period ¢ (total

defects, defectives, or demerits),

Es = expected value of @, given standard quality,

Vs = Sampling variance of @: given standard quality.

For each period compute the following:

Equivalent defects:
X = Q
" Va/Es:’
Equivalent expectancy:
e=FE 231/ V.

For the “prior data” (¢ = 0), let xo = eo = 1.
Fort =0, ---, T, compute the following:

Sample index:

I, = xl/eh

Weighting factors for computing process average and variance:

€

ff =1+e./4'

) e
8 =95 + Lbe + (0.22)e2’

Corresponding weights:
pe =fi/ X
qe =g/ L&:- ,
Over all periods ¢ =0, --- , T compute the following:
Process average:
6= (¥ ped)
Degrees of freedom:
2[Y qi(1/e)]?

U= et +2/eh "

Total observed variance:
(14.4)0® + (df + 1) ¥ qu(I, — 6)®
= 9+ df '

Sﬂ

(Section 3.2)

(Section 4.3.2)

(5)

(6)

(5)
(6)

(7)

(13)

(15), (19), (20)
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Estimated average sampling variance:
o = Y glI:/er),
Variance ratio:
R = S%/¢%
F and G:

af
=45+,
a 2

B= i T(), TWO)=1,

i=0

TG) = T - 1)[ ak ] ,

a+1

1 a+1 1
G=ﬁ[(ﬁ)“F‘”‘R—F}-

Current sampling variance:
ot =4d/er
Sampling variance ratio:
rr=or/o’
Process variance:
¥* = FS* — o* = (FR - 1)d?,
dr = a%/(e%F + ¥7),
Weights:
& = o*/(¢®* + %) = 1/FR,
Best measure of current quality:
br = &r0 + (1 — &r) I,

Posterior variance of current quality:

Vr= (1 - ér)(fr/er) + é%zpf[?z + eﬂ]

rif — Ir)?
[(re =D&+ 1]

(8)

(16)

(14), (19)

(17), (50)

(18), (54)

(23)
(32)

(21
(22)

(34)

(24)

(36)
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Box chart percentiles:

a=0%/Vr, (Section 3.3.3)
T= Vt/éT,

199%, 195%, 105%, 101% defined by:

1 - G.(I99%/7) = 0.99,
. (Section 3.4.1)

1- G.(101%/7) = 0.01.

V. QMP DYNAMICS

The Best Measure and the box chart percentiles are nonlinear
functions of all the data, so the dynamic behavior of these results can
appear to be complex. But this complex behavior is desirable and can
be explained. This section characterizes the fundamental dynamics of
QMP by example.

5.1 Dynamics of sudden change

Since QMmP is partially based on a long run average, it is natural to be
concerned about responsiveness of the box chart to sudden change. If
there is a sudden degradation of quality, Quality Assurance would like
to detect it. If the producer solves a chronic quality problem, they
would like their exceptions to disappear. Figures 7 and 8 illustrate the
QMP dynamics of sudden change.

The history data in Fig. 7 is a typical history for a product that is
meeting the quality standard. The equivalent expectancy of five is
average for a manufacturing audit. The history is plotted on a T-rate
chart along with six possible values for the current T-rate (labeled A
through F). So the current period is anywhere from standard (7-rate
= 0) to well below standard (Index = 3.24, T-rate = —5).

The right side of Fig. 7 shows the six possible current results plotted
in QMP box-chart form. The box chart labeled A is the result of
combining current result A with the past five periods. The box chart
labeled F is the result of combining current result F' with the same
past history.

As you can see, the QMP result becomes ALERT at about T-rate =
—3 (letter D) and becomes BN at about T-rate = —4 (letter E). For the
T-rate method of rating, you would have a BN at T-rate = —3. The
good past history has the effect of tempering the result of a T-rate =
-3.

It is informative to study the relative behavior of the current sample
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INDEX SCALE

T—RATE CHART QMP BOX CHARTS

Fig. 7—Dynamics of sudden degradation. The six QMP box charts (labeled A through
F) result from the analysis of six time series of data, which all have the same pasi
history, but have different current values, as shown in the T-rate chart. A QMP ALERT is
triggered at a T-rate of —3 (letter D) and a QuP Below Normal is triggered at a T-rate
of —4 (letter E). So a good past history tempers an observed change. Notice that from
A to F, the Best Measure swings towards the sample value. This results from increasing.
evidence of an unstable process (expected number of defects equals 5 for this chart).

index, process average, and Best Measure as the current value goes
from A to F. The current index changes a lot (from 1.00 to 3.24) and
the process average changes a little (from 1.00 to 1.38), both in a linear
way. The Best Measure also changes substantially, but in a nonlinear
way. It changes slowly at first and then speeds up. This is because the
weight is changing from 0.71 to 0.32. The weight changes, because as
the data becomes more and more inconsistent with the past the process
becomes more and more unstable, while the current sampling variance
changes slowly in proportion to the process average.

Figure 8 is the dual of Fig. 7. It illustrates the dynamics of sudden
improvement. For the first five periods plotted, the process average is
centered on an index of two. Then an improvement takes place and
from the sixth period on, the sample index is at the standard value of
one.

For the first five periods plotted, the rate is BN four times and ALERT
once. In the sixth period there is a sudden improvement and the
sample index goes to standard. Immediately, there is a jump in the
Best Measure and the rate is no longer BN. Because of the increase in
process variance, the weight changes from 0.69 to 0.61, putting more
weight on the current good result. The posterior variance stays about
the same [f7 gets smaller but (1 — &r) gets larger].

For the next five periods the sample index stays at standard. During
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these periods both the process average and the Best Measure gradually
move up towards the standard.

5.2 Bogie charts

A Bogie chart is a graphical device for tracking quality assurance
audit data during a rating period. Figures 9 and 10 are examples of
Bogie charts. The vertical axis is an index scale and the horizontal axis
is an equivalent expectancy scale. During the rating period, as the
audit sample size builds up, the sample equivalent expectancy in-
creases. So the horizontal axis can also be viewed as a time axis.

" The Bogie curves labeled ALERT and BN are plots of the indices in
the current sample for which 195% and I99% (the 95th and 99th
percentiles) are exactly one, respectively. So the Bogie curves depend
on the past history. The past histories associated with Figs. 9 and 10
have average indices of 0.92 and 4.89, respectively. The variance of the
past histories were 0.69 and 5.36, respectively.

To use the Bogie chart, you plot continuously through the period
the sample index as a function of the equivalent expectancy in the
sample (see Fig. 9). Anytime this plot falls below the ALERT or BN
curve, the rate is ALERT or BN at the plotted equivalent expectancy.
Then to bail the rate out, the plotted sample index must get above the
Bogie curves before the end of the period. For example, in Fig. 9, if the
period had ended at an equivalent expectancy of three, then the rate
would be ALERT. If it had ended at an equivalent expectancy of five,

, T L naLl

INDEX SCALE

4

Fig. 8—Dynamics of sudden improvement. As soon as the sample value becomes
standard, the product is no longer in the quality exception report (expected number of
defects equals 5 for this chart).
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~
~— BELOW NORMAL

~
~~ALERT

| | 1 | 1 | 1 1 1 |
0 1 2 3 4 5 6 7 8 9 10 1 12
EQUIVALENT EXPECTANCY

Fig. 9—Index Bogie chart for a good past history. Equivalent expectancy is a measure
of how many defects are expected in the sample; so, equivalent expectancy increases
with sample size. During a rating period, as the sample size increases, one can track the
o}t:::srl\;eldd:ample index (dotted curve) and compare it to Below Normal and ALERT
t olds.

then the rate would be BN. But the period ended at an equivalent
expectancy of eight and there is no exception.

The ALERT Bogie curve in Fig. 10 is interesting. It starts at zero, so
you start the period on ALERT. The past history is so bad, that in the

——BELOW NORMAL

5 1 1 1 1 ] 1 1 1 I 1 1
o 1 2 3 4 5 6 7 8 9 10 n 12
EQUIVALENT EXPECTANCY

Fig. 10—Index Bogie chart for a substandard past history. The Below Normal and
ALERT thresholds are very tight, At the beginning of the period, the product is on ALERT
until proven otherwise.
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absence of any current data the probability that the current quality
will be substandard exceeds 0.95.

5.3 Baogie contour plots

For a fixed past history and current equivalent expectancy, there is
a BN Bogie for the current sample index. If the sample index is worse
than the BN Bogie, then the product is BN. Figure 11 is a contour plot

22 21

PAST VARIANCE

1.5
PAST MEAN

Fig. 11—Below Normal Bogie contour plot. If the past mean is 0.8 and the past
variance is 0.7 (on an index scale), then the product is on the contour labeled 2.6. This
means that if the current sample index exceeds 2. 6, the product will be Below Normal
(equivalent expectancy equals 5 for this chart).
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of the BN Bogie for an equivalent expectancy of five. The axes are the
mean and variance of the five past values of the sample index; i.e.,

5
I, = (1/5) El I,
5
S;=@1/5 I (L- L),
t=1

where I, is the sample index in past period ¢. For given values of I, and
S2, we used a standard pattern of I/'s to compute the Bogie. The
result;s are insensitive to pattern. The dashed curve is an upper bound
for Sp.

To see how the contour plot works, consider an example. Suppose
I, = 0.8 and S2 = 0.7. The point (0.8, 0.7) falls on the contour labeled
2.6. This means that if the current sample index exceeds 2.6, then the
product will be BN. The contour labeled 2.6 is the set of all pairs (I,
S2) that yield a BN Bogie of 2.6. The T-rate associated with a BN Bogie
of 2.6 is —3.6, as shown in Table II.

This contour plot summarizes the BN behavior of qMP for an equiv-

Table ll—Index to T-rate conversion
table
T-Rate (T)*
Equivalent Expectancy (e)
Index (I) 1 5 10

1.0 0 0 0
1.1 —-0.1 -0.2 -0.3
1.2 -0.2 —0.4 —0.6
1.3 -0.3 -0.7 -0.9
1.4 —0.4 -0.9 -1.3
1.5 -0.5 -1.1 -16
16 -0.6 -1.3 -1.9
1.7 -0.7 -16 -2.2
1.8 -0.8 -1.8 -2.5
1.9 -0.9 -2.0 -28
2.0 -1.0 -22 -3.2
2.1 -1.1 -2.5 =35
2.2 -12 -2.7 -3.8
2.3 -1.3 -2.9 —4.1
2.4 -1.4 -3.1 —44
2.5 -15 -34
2.6 -16 -3.6
2.7 -1.7 -3.8
2.8 -1.8 —4.0
2.9 -19 -42
3.0 -2.0 —45
3.1 -2.1
3.2 —-2.2
3.3 -2.3
3.4 -24
3.5 -25

*T=+e(l-1I).
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alent expectancy of five. As I, gets larger than one, the BN Bogie gets
smaller. If I, exceeds 1.6, then the BN Bogie is smaller than 2.34, which
corresponds to a T-rate of —3. So in T-rate terms, BN triggers earlier
than a T-rate of —3.

For I, less than 1.4, as S} gets larger, the BN Bogie gets smaller.
This is because large S; implies large process variance which makes
an observed deviation more likely to be significant.

For very small S%, as you move from I, = 0 to I, = 1, the BN Bogie
increases from 2.6 (T-rate = — 3.6) to 2.9 (T-rate = —4.2). This is an
apparent paradox. The better the process average, the less cushion the
producer gets.

This is not a paradox, but an important characteristic of qmp.
Remember with QMP we are making an inference about current quality,
not long-run quality. If we have a stable past with I, = 0.2, and we
suddenly get a sample index of 2.7, then this is very strong evidence
that the process has changed and very probably become worse than
standard. If we have a stable past with I, = 1, and we suddenly get a
sample defect index of 2.7, then the evidence of change is not as strong
as with I, = 0.2. The weight we put on the past data depends on how
consistent the past is with the present.

Notice that the maximum BN Bogie is 2.92 and occurs at I, = 0.85
and S} = 0. It would be a mistake for the producer to conclude from
the contour plot that he should control his process at I, = 0.85 and S
= 0. He cannot achieve S% = 0. The sample index has substantial
sampling variance that the producer cannot control.

The Bogie contour plots provide the engineer with a manual tool to
forecast the number of demerits that will be allowed by the end of a
period. So we have published a book of BN and ALERT Bogie contour
plots for equivalent expectancies from 0.5 to 25.

5.4 Nonlinearity of QMP

It is tempting to conjecture that if both the process average and the
current sample index for one rate are worse than for another, then the
Best Measure will also be worse. This is because the Best Measure is
a weighted average between the process average and the current
sample index. But, since the weight depends on the data nonlinearly,
the conjecture is not true.

~To illustrate this, consider Fig. 12. The six sample indices in Chart
B are uniformly worse than the six sample indices in Chart A. But the
Best Measure in Chart B is better than for Chart A. The reason is that
the weight in B is 0.54 vs 0.12 for Chart A.

VI. OPERATING CHARACTERISTICS

The T-rate and QMP methods of rating are similar in some respects,
but there are major differences. In this section, these differences are
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CHART A CHART B

EQUIVALENT EXPECTANCY =5

Fig. 12—Nonlinearity of QMP. The sample indices in Chart B are uniformly worse
than the sample indices in Chart A; but, the QMP result in Chart B is better than for
Chart A. In Chart A, the data Jn'ovides very strong statistical evidence of an unstable
process, 5o the past data is used very little in estimating current quality. This is not as
pronounced in Chart B.

explored using operating characteristics. The differences are a result
of different rating formulas and assessment practices.

6.1 Ranges of probability substandard for T-rate excepftions

A qMP analysis of a rating class provides a probability, ps, that the
rating class is substandard. For a typical rating period analyzed in
detail, we computed Ps for all T-rate Below Normals and ALERTS.
Table III shows the results.

So we find that for T-rate BNs, the QMP Ps is typically high (greater
than 0.97); but, there can be an occasional low ps (e.g., 0.75). However,
for T-rate ALERT’s, the QMP Ps is frequently low (e.g., 0.85). This is
because the T-rate ALERT is an indicator of long-run quality, not
current quality.

Table Ill—Ranges of probability substandard for
T-rate exceptions

Range of Outlier
Exception Probability Probability
Below Normal 097 — 1.00 0.75
ALERT 083— 099 0.59
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6.2 Producer’s risk and exceptions

Any list of rating classes that is put in an exception report has a
producer’s risk. It is the fraction of rating classes on the list whose
population quality meets the standard. For a given period, let & =
population index, rating class i, i = 1, - ., I. Label the rating classes
so that product 1 through product L are on the exception list.

Having done qmP for each rating class, we have a posterior distri-
bution for each ¢;. Now let

wi = {1, iff: =1,
10 otherwise.

The number of rating classes on the list whose population quality
meets the standard is

L
2 Ui,
i=1
with posterior expected value
L
Y Pr{6:=1)}.
=1
Hence, L
2 Pr{d:=1)
[producer’s risk]* =L 7

In QMP, there is an exception list for each threshold probability (TP).
TP = 0.95 corresponds to the list of all QMP BNs and ALERTs. Figure 13
shows the QMP producer’s risk and number of exceptions as a function
of TP for the manufacturing audits in a particular period. The smaller
TP, the bigger the exception list and the bigger the producer’s risk.
Also, note that the producer’s risk must be less than 1-tp.

The set of all T-rate BNs and ALERTs is another exception list, whose
producer’s risk is 0.037. This is relatively large because some individual
ALERTS have relatively large probabilities (e.g., 0.15) of being standard.
The number of T-rate exceptions (BN + ALERT) is shown to be 34.

Of course to implement QMP, a particular TP had to be chosen. The
TP that would match the 7T-rate producer’s risk is about 0.885. But
that would lead to an unreasonable (70 percent) increase in exceptions,
and a producer’s risk of 0.037 is considered too high for this type of
exception reporting, because of the high cost of false alarms. So we
took TP = 0.95, a reasonable balance between producer’s risk and size
of the exception report.

* This is not the classical definition of producer’s risk.
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Fig. 13—Operating characteristics of QMP versus the T-rate. As the gMP threshold
probability for exceptions (currently set at 0.95) is lowered, the number of exceptions
and the producer’s risk (for a particular rating period) both increase. The number of
exceptions and producer’s risk for the T-rate were 34 and 0.037. For threshold probabil-
ities between 0.96 and 0.89, qMP has more exceptions and lower producer’s risk than the
T-rate.

It should be recognized that these curves depend on the particular
set of audits being analyzed. For example, the curves depend on the
audit sample sizes. It would be possible to lower sample sizes, decrease
the threshold probability, and still maintain a comparably sized excep-
tion report with a reasonable producer’s risk.

Note that consumer’s risk is not analyzed in this paper. Consumer’s
risk is more relevant to acceptance sampling than to an audit. The
main purpose of the audit is to provide quality results to management
including a compact exception report of high integrity. The Western
Electric quality control organizations have primary responsibility for
the quality of each individual lot of product.

Vil. EXAMPLES OF QMP

Here we explore specific examples that illustrate the similarities and
differences between QMP and the T-rate. In the examples, both qmp
and T-rate results are based on the same defect data. For the actual
implementation of QMP, the defect assessment rules will be different
than they are for the 7-rate as explained in Section 3.1. The intent of
this section is to compare how the two rating methods work on the
same data.
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The examples are shown in Figs. 1, 2, and 14 through 17. These
figures show a comparison between the time series of T-rates and qmp
box charts. Table IV contains summaries of the QMp calculations for
the particular periods that will be discussed in the following text.

The qMP calculations shown do not use 1976 data. The box chart for
the first period of data available is not shown except in Fig. 15. Period
7706 is the first period for which five periods of past data are used in
the qMP box charts. So the comparisons made in this section will
involve periods 7706 through 7808.

7.1 Agreement with T-rate

Figure 14 illustrates a T-rate borderline* in 7806 preceded by a good
history. Since the equivalent expectancy (2.78) is fairly small and the
process is fairly stable, the Best Measure (1.81) is heavily weighted
(0.65) towards the process average (1.32). The posterior variance (0.36)
is fairly large, so 195% is better than standard. However, in the next
period, the T-rate plummets to —4.8 and the process average drops to
1.77. Now the rate is clearly BN.

7.2 Disagreement with T-rate

In Fig. 15, 7802, the T-rate is —3.8 (BN) but there is no exception for
QMP. One reason is that QMP is based on the assumption that equivalent
defects have a Poisson distribution. A T-rate of —3.8 is very significant
for a normal distribution, but not as significant for a Poisson distri-
bution with an equivalent expectancy of 0.29. For a normal distribution,
the probability, given standard quality, of being below —3.8 is 0.000072.
Now the observed number of equivalent defects in 7802 is 2.36. The
approximate Poisson probability of exceeding 2.36 equivalent defects
given an equivalent expectancy of 0.29 is 0.15—very different from
0.000072.

Another reason is that the QMP result for 7802 is based on one period
of data. Rather than using the sample defect index (8.00) as the process
average, we use a Bayes estimate [eq. (7)] of 2.77.

Figure 16 is a similar example. In 7708 the T-rate of —2.8 is BN
because in 7705 the T-rate was —2.7. But again, the —2.8 T-rate
overstates the significance. The equivalent expectancy is only 0.23.
Also, the weight (0.60) on the process average (1.81) adjusts the sample
index (6.81) to the more moderate Best Measure (3.83). This, together
with the large posterior variance (8.47), implies a comfortable 795% of
0.56.

Figure 1 illustrates how two similar T-rates, both on ALERT, can be
either a @qMP BN or normal. Compare 7708 with 7804. The sample

* —3 = T-rate < —2, but a good history.
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indices of 1.57 and 1.50 are very similar, but the process averages of
2.00 and 1.32 are very different and the weights of 0.51 and 0.67 are
different. Hence, the Best Measures are very different and the conclu-
sions are very different.

Figure 2 illustrates a “weak” ALERT under the T-rate. The T-rate in
7705 through 7707 are —0.1, —0.2, and —0.1, respectively. Although it

2+--AJ---—-—"-"-""—""—"-"="=—"—"=== -————

-4 -

—6 1

Fig. 14—Example of agreement. Throughout 1978, QMP and the T-rate are in agree-
ment. The drop in the sixth period was called “borderline” under the T-rate, because it
was the first excursion below —2 and it was moderate. The QMP box chart conveys the
same borderline message. In the seventh period, the product was Below Normal for
both systems.
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Fig. 15—Poisson versus Gaussian assumption. In the second period of 1978, the
expected number of defects in the sample was 0.29 and the observed number of
equivalent defects was 2.36. Under the Gaussian assumption, the observed significance
level is 0.000072 (i.e., T-rate = —3.8); but, under Poisson, the level is 0.15. This explains

why the QMP box chart contains the standard.

is unlikely that the quality standard was being met in every period
from 7702 through 7707, it is not unlikely (probability of 0.23) that the
quality standard was being met in 7707.

7.3 Modification treatment

The T-rate system had modification treatments that resulted from
the statistical deficiencies of the T-rate (see Section 2.8). There are no
modification treatments in gMP. The Poisson model and the stabilizing
effect of shifting the sample index towards the process average alleviate
the need for modification treatments.
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In Fig. 17, the 7807 unmodified T-rate is —2.5. It is modified to +0.6
because of the “isolated” A weight (100 demerits) defect. Under qmp,
the process average (1.10) is only slightly substandard, the weight
(0.51) is medium, and the equivalent expectancy (1.40) is small. All
this implies a safe 795% (0.74) without modification.

7.4 Venn diagram of BNs and ALERTs

In the Venn diagram of Fig. 18, BNs are shown by circles and ALERTs
are shown by rectangles. QMP results are shown by dashed lines and 7-
rate results are shown by solid lines. Every rating class that is BN or
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Fig. 16—Statistical jitter in the T-rate. With small samples and zero defects, the T-
rate is slightly larger than zero. Every time a defect is found, the T-rate jitters. The
message in the QMP chart is that there is too much uncertainty to reach any conclusions.
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Fig. 17—A case of T-rate modification treatment. Because the T-rate is biased for
small samples, modification treatments were needed to compensate (seventh period,
1978). QMP mathematics obviates the need for modification.

ALERT under QMP or the T-rate is represented in the Venn diagram.

Ten rating classes were BN under both methods of rating. Five rating
classes were BN under the T-rate but ALERT under QMP. There were 16
rating classes that were ALERT under the T-rate but normal under
QMP. This indicates a major difference. ALERT under the T-rate is
strong evidence that the quality standards for the current period or
some of the past periods have not been met. But it does not necessarily
imply strong evidence that the quality standard for the current period
has not been met. ALERT under QMP implies more than a 95 percent
chance that the current quality standards have not been met.
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APPENDIX A
The Gamma Distribution

A random variable Y has a standard gamma distribution if

Pr{Y=y) = Guly) = jmx“""dx

a = shape parameter. (37)

A random variable X = 7Y has a gamma distribution with shape
parameter « and scale parameter . We write

X ~ Gamma(a, 1)

PriX=<x}= G(i:)

The probability density of X is
1
7T (a)

and

a—1_—x/T

The mean and variance of X are
E(X) = ra, V(X) = rla;

hence
a = EXX)/V(X), = V(X)/E(X).

A chi-squared random variable with » degrees of freedom has a
Gamma distribution; namely,

X2~ Gamma(g, 2).

APPENDIX B
The Poisson-Gamma Bayesian Model

Theorem B.1: Assume
x:| 8. ~ Poisson(e.8,), e; known, 8, unknown

and
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F ¥
8, ~ Gamma(?, 79-)

(i.e., mean = 6, variance = y%).

Then
0| x: ~ Gamma(%, -‘a-:f),
where
8. = E (6. x:)
= wl + (1 — we)l,,
I = x/e,
_ ble
T Be
Vi= V(6| x)
=(1- m,)ﬂ-,/et.

Proof: The sampling distribution of x; is:
(ed)"exp (—e:b: )}

flxe| 8e) = = (38)
The process (prior) distribution of 8, is*:
poll) = 25 gt (39)
I (x0)
6 = xo/eo, Yy = xo/ed.

By Bayes theorem, the posterior density of #; is proportional to the
product of equations (39) and (38), which is in turn proportional to

[07 ‘e[ *"] = 97" exp[—(eo + e:)8:]. (40)

We recognize eq. (40) as proportional to a Gamma density. So the
posterior distribution is Gamma with shape parameter xo + x. and
scale parameter 1/(e; + €;). And the posterior mean and variance are

x_ Xo + X: (41)
! eo + Ef’
0,
- ey + 8¢. (42)

* Here, xo and ep are not the same as the “prior data” introduced in Section 4.3.2.
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Now multiply the numerator and denominator in both eqs. (41) and
(42) by 8/eve;. Theorem B.1 follows. Q.E.D.

APPENDIX C
Chi-Square, Gamma Bayesian Model

Theorem C.1: Assume there is a statistic, ss, for which

% (ss) |w~ x?  (chi-square, v degrees of freedom)
o known,  w unknown
and
0,2
W~ Ganmla(ao, F)’ ao, bo known.
D .
Then
02
w|ss ~ Gamma(a, ?),
where
a=a+o
=a+y,
ss
b = bo + ?

Proof: The sampling density of ss given w is

= 1 (»/2) = 1 —_ 88
f(ss|w) = %) T6/D) (ss) exp[ (—-262/“,)}. (43)

The prior density of w is

1 _ w
polw) = (0%/b)™T'(a0) w1 exp[—(m)]. (44)

By Bayes theorem, the posterior density of w is proportional to the
product of eqgs. (43) and (44):

el Gl )
)
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Definition: Let X ~ Gammal(a, 7). Denote the conditional distribution
of X given X < ¢ by

C — Gamma(g, T, c).
Corollary: If instead,
2
w~C-— Gamma(ao, 2-, 1),
bo
then

2
w|ss ~C— Gamma(a, %, 1).

Theorem C.2: If w ~ C — Gammal(a, 0°/b, 1), then

1
E(W)=RF,
Viw) = G,
where
Rbe
o
G.(aR)
- 37
F G (aR) [see (37)],
1 a+ 1 Gu+2(aR) 1
G=EF_'|:( a )RGa+l(aR) ﬁ] (45)
Proof: Note
b &= aRw~ C— Gammal a, 1, —
?w—a w ~ al a, ,E .
So

1
E(w) = R E(aRw)

1 aR a—1,-y
aRG.(aR) L ’ T

~ F(a + 1) JoaR y(a-rl:flefy dy
0

" aRG.(aR)I'(a) T(a+1)

_ aGaxi(aR)
" aRG.(aR)

= 1/RF. (46)
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Now
E(w?) = —— E[(aRw)?]

(aR)*
B 1 aR 2ya—le—yd
" (@R)YG.aB) ), 7 T@ ¥
T'(a + 2) ok ylati-le™y

~ @RGP @ ), Ta+2) ¥

_ (a + 1)aGa+2(aR)
" (aR)’G.(aR)

_ (a + 1)Gani(aR)Gas2(aR)
"~ aR’G.(aR)Gu.(aR)

a+1 Gas2(aR)
a ) R*FG...(aR)’

This along with eq. (46) implies V(w) = G.

Computational formula for F
Let

8alx) = L x* e dx.

T'(a)
From Ref. 11, page 262, 6.5.21,
Gas(x) = Galx) - (g-) gal).
Now define

Bu@) = 3 1), T) =1,

x x?

s . X
T(l)—T(l—l)[mjl—l+a+1+(a+1)(a+2)+...

By Ref. 12, page 3,

Galx) = (g) ga(%)Ba(x).

Putting eqs. (48) and (49) together implies
Ga(x)

Fel) = Gai(x)
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_ (x/a) ga(x)Ba(x)
(x/a) ga(x)Ba(x) — (x/a)ga(x)

_ Balx)
- Ba(x) - 1.
So
__B.aR) )
B.(aR) -1 (
Computational formula for G
Directly by definition, it follows that
+1
Baw(x) = (a )[Ba(x) -1]. (51)
Therefore,
| 1
Fa+1(x) Bu+1(x)
[(a + 1)/x][Ba(x) — 1]
x
=1- (a T 1)[F.,(x) - 1] (52)

Now plug eq. (52) into the first term in the square bracket of eq.
(45) and get

a+ 1\ Gasz2(aR) _ a+1 1
a ) RG.(aR) \ a ) RF.ul(aR)

)zl @]

a
F—-
a R - { 1). (53)
So
1 a+1 1

G'ﬁ[( aR) (F_l)‘iﬁ]‘ (54)
APPENDIX D
Moments of functions of the sample index

If
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x,| 0: ~ Poisson(e;b‘:),
02 Yz
2 —_ L
0¢|0, Y GB.IIHIIB.(_YZ, 0):

then x| 8, y* is a negative binomial with density .

I‘(x;+92/72)|: 1 H 0/ery? ]"2’*”

2 =
f(x:] a, Y ) x‘!r(82/72) 1+ 9/3‘72 1+ 0/3!'}’2

Let
1 = mean of x,,
i, = vth central moment of x;, v=23, ---.
Then according to (Ref. 11, page 929),
= P,
p2 = aP@,
ps = aPQ[Q + P],
ju = aPQ + A(aPQ)’, (55)
where
a=0%/y’*
P=+y'e/0,
@=1+P,
A =3+ 6y*/0%
Now let
£ = mean of I,

£, = vth central moment of I;, v=23, +...

It follows from (55) that

El =,
(]
= 2+-—
£2 Y E¢,
2y 3y @
=+ L+,
€; €
2 2 2
b= Ayt 4 2AN A *r L8 (56)
e e; €

* A different a from the one in the main text.
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An application of these formulas is
VIL-0)*]=¢—-£&
=A-1Dy'+

_ 2 _ 2 2
2(A — 1)8y +[(A 1)8 +Y]+£3. 57)

e et e
Now define
Y.= (.- 8)* - L/e:.
Further applications of (56) are

E(Y,) = 52 - £1/€t

=7 (58)
and
V(Y,) = E(Y?) — v
2
=E[(L—o)2—l(L—m —3] -
€ €
A= 1)y 4 2A DO~ 476
€
A —1)8° — 4°
4 L )e? ] (59)
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