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Several variations on algorithms for dynamic time warping for
speech processing applications have been proposed. This paper com-
pares two of these algorithms, the fixed-range method and the local
minimum method. We show that, based on results from some simple
word spotting and connected word recognition experiments, the local
minimum method performs considerably better than the fixed-range
method. We describe explanations of this behavior and techniques
for optimizing the parameters of the local minimum algorithm for
both word spotting and connected word recognition.

I. INTRODUCTION

Time registration of a test and a reference pattern is one of the
fundamental problems in the area of automatic speech recognition.
This problem is important because the time scales of a test and a
reference pattern are not perfectly aligned. In some cases the time
scales can be registered by a simple linear compression or expansion'?”;
however, in most cases, a nonlinear time warping is required to
compensate for local compression or expansion of the time scale. For
such cases, the class of algorithms known as dynamic time warping
(pTw) methods has been developed. Work by Sakoe and Chiba,’

* The work presented here is based, in part, on the MS thesis, “A Comparative Study
of Several Dynamic Time Warping Algorithms for Speech Recognition,” by C. S. Myers,
MIT, April 1980.
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Itakura,’ and White and Neely” has shown that DTw algorithms are an
effective method of time registering patterns in isolated word recog-
nition systems. Bridle® and Christiansen and Rushforth® have studied
the applicability of pTw algorithms to word spotting, and recently,
Sakoe,” Rabiner and Schmidt,® and Myers and Rabiner,” have success-
fully applied dynamic time-warping techniques to connected digit
recognition. A great deal of work has been done in the area of
performance evaluation of the various DTW algorithms as applied to
discrete word recognition.'™'? However, the effects of the DTW param-
eters on the overall performance of the algorithm for either word
spotting or connected word recognition are not as well understood.
The purpose of this paper is to discuss several proposed methods of
applying DTW algorithms to word spotting and connected word recog-
nition, and to study some of the factors which determine the perform-
ance of these algorithms.

The organization of this paper is as follows. In Section II we review
the basic dynamic programming method of time alignment and show
how it may be used efficiently in either a word spotting or a connected
word recognition problem. We describe, in detail, two different bTw
algorithms for which we have performed extensive evaluations. Section
III contains a description of the experiments which we performed to
evaluate the performance of the different pTw algorithms and the
effects of the parameters associated with them. In Section IV we
summarize the results of these experiments and draw some general
conclusions on the use of DTW algorithms for word spotting and
connected word recognition.

Il. DYNAMIC PROGRAMMING FOR TIME ALIGNMENT

In this section we first review the basic principles of brw algorithms
as applied to discrete word recognition, and then point out some of the
inherent difficulties involved in applying these algorithms to word
spotting and connected speech recognition. We then show how it is
possible to modify the basic DTW idea so that it may be used for both
connected word recognition and word spotting applications.

2.1 Dynamic time warping for discrete word recognition

The problem of time alignment for discrete word recognition is
illustrated in Fig. 1. A reference pattern, R(n), n = 1, 2, ..., N,
consisting of a time sequence (i.e., frames) of a multidimensional
feature vector is to be time registered with a test pattern, T(m), m =
1, 2, ..., M, which is also represented as a time sequence of a
multidimensional feature vector. In Fig. 1, for the sake of clarity, both
R(n) and T(m) are shown as one-dimensional functions. We shall
assume that both the reference and the test pattern are measured from
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Fig. 1—Time warping of a reference and a test pattern.

the acoustic waveform of a single word, spoken in isolation, and that
both the beginning and ending points of the reference and the test
pattern have been accurately determined. The problem of time align-
ment is to find the path, here parameterized by the function pair (i(%),
j(k)), which minimizes a given distance metric. A typical distance
metric* is of the form

K
¥ d(i(k), j(k)W(k)
D(i(k), j (k) == n , (1)
N(W)
where K is the length of the path, d(i(k), j(k)) is the local distance, or
dissimilarity, between frame i(k) of the reference pattern and frame
J(k) of the test pattern, W(k) is a weighting function applied to the
path, and N(W) is a normalization factor which is based on the
particular weighting function that is chosen.

In addition to minimizing the global distance, the time alignment
path is chosen to have certain desirable properties. One important
property is the proper time registration of the beginning and ending
points of the test and reference patterns, i.e.,

* D is shown here as a functional of the path function pair (i(k), j (k)).
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=1 j1)=1, (2a)
i(K)=N, JjK)=M. (2b)

Also, the time alignment path is required to obey certain shape and
slope constraints. For example, it would not be reasonable to allow a
path for which a 10 to 1 expansion or compression of the time axis
occurs. Another consideration is the preservation of time order, i.e.,
the functions i(k) and j (k) must both be monotonically increasing.
These local continuity constraints are generally described by speci-
fying the full path in terms of simple local paths which may be pieced
together to form larger paths. For example, to reach a grid print (n, m)
it may be reasonable to have come from any of the grid points (n — 1,
m—1),(n—1,m—2), or (n — 2, m — 1), as shown in Fig. 2, part a. We
refer to these constraints as Type I local constraints. Some other
proposed sets of local constraints are shown in parts b, ¢, and d of Fig.
2. The crossed out arc in part d signifies the restriction that a path
may not move horizontally for two consecutive segments.* All these
local constraints limit the overall slope of the time alignment contour

mo o mo
m—1 [e] m—1
m-20 o} m-20 o]
n—2 n—1 n n—2 n—1 n
TYPE I TYPED
(a) (b)
mQ m O— >
m—1 o m-10 o
m—2 o} m-2 O o}
n-2 n-1 n n—-2 n—1 n
TYPE M ITAKURA
(c) (d)

Fig. 2—Local constraints used for dynamic time warping.
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to be between % and 2, in accordance with the results found by Sakoe
and Chiba.’

To solve for the optimal time-alignment path, both the weighting
function, W(k), and the normalization factor, N(W), must be specified
in addition to the local constraints. Typically W(k) is chosen to be
either of two functions, i.e.,

Wi(k) = i(k) — i(k — 1) (Type a), (3a)
Wi(k) = i(k) — itk = 1) + j(k) — j(k—=1)  (Typeb). (3b)

These two weighting functions are referred to as the asymmetric
weighting function, Type a, and the symmetric weighting function,
Type b, and were originally proposed by Sakoe and Chiba.’ Weighting
function Type a weights all frames of the reference pattern equally,
while weighting function Type b weights all frames of both the refer-
ence and the test equally. For initialization purposes, i(0) and j(0) are
defined to be 0 and thus W(1) = 1 for weighting function Type a and
W(1) = 2 for weighting function Type b.

The choice of N(W) is typically made such that D(i(k), j(k)) is the
average local distance along the path defined by i(%) and j(k), and is
independent of both the lengths of the reference and test patterns, as
well as the length of the time alignment path itself. The natural choice
for N(W) is thus

K
N(W) = ¥ W(k). 4)
k=1
For weighting functions Types a and b the normalization is given by

K
N(W.) = ¥ (i(k) — i(k — 1)) = i(K) — i(0) = N, (5a)
k=1

K
N(W,) =% (i(k) = ik = 1) + j(k) — j(k—1))
k=1

=i(K)—-1i0) + j(K)—j0O=N+M (5b)

Given a weighting function and a set of local constraints it is possible
to define the optimal time-alignment path as that path which mini-
mizes the total distance D(i(k), j(k)). More formally, if we denote the
distance associated with the optimal path as D, then

D= min_[D((k), j(k)]. (6)
K.i(k),j(k)

The solution to this problem may be found by dynamic programming
by use of the following optimality principle:

Local Optimality: If the best path from the grid point (1, 1) to the
grid point (n, m) goes through a grid point (n’, m’), then the best path
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from the grid point (1, 1) to the grid point (n, m) includes, as a portion
of it, the best path from the grid point (1, 1) to the grid point (n’, m’).

Thus, if we define Da(n, m) as the minimum total distance along
any path from the grid point (1, 1) to the grid point (n, m), then Da(n,
m) can be computed, recursively according to the optimality principle,
as

Da(n, m) = min [Da(n’, m’) + d((n’, m’), (n, m))], (7)

where d((n’, m’), (n, m)) is the weighted distance from the grid point
(n’, m’) to the grid point (n, m). For example, for Type I local
constraints and an asymmetric weighting function, n’ and m” may take
on any of the following values,

n',me{ln-1,m-1),n—-1,m-2),n—-2,m—-1)} (8
and d((n’, m’), (n, m)) is given by

d((n — 1, m — 1), (n, m)) = d(n, m), (9a)
d((n — 1,m — 2), (n, m)) = d(n, m), (9b)
d((n — 2,m — 1), (n, m)) = 2d(n, m). (9¢)

Thus the full pTW recursion for Type I local constraints and weighting
function Type a is given by

Da(n, m) = min[Da(n — 1, m — 1) + d(n, m), Daln — 1, m — 2)
+d(n,m), Dain — 2, m — 1) + 2d(n, m)]. (10)

Using the local optimality principle, a complete DTW algorithm is given
by the algorithm

Step 1. Initialize Da(1, 1) = d(1, 1) W(1).
Step 2. Compute Da(n, m) recursivelyforl=n=<N, 1=m=M.
Step 3. D = Da(N, M)/ N(W).

This completes our review of the basic principles involved in apply-
ing dynamic programming to discrete word recognition. We will now
describe the difficulties which arise when pTw algorithms are applied
to connected word recognition problems and then we will show how
the DTW principle can be modified for word spotting and connected
word recognition applications.

2.2 Difficulties in connected word recognition

We shall assume that we are given a test pattern consisting of a
sequence of connected words, spoken in a normal manner, for which
the global beginning and ending points have been accurately located
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and for which no further segmentation has been attempted. Given
such a framework, the word spotting problem is to determine all
subsections of the test pattern, if any, which match with a specified
reference pattern, called the keyword. Thus, for word spotting a
multiplicity of regions of the test pattern must be compared with the
keyword pattern.

The connected word recognition problem, on the other hand, is to
piece together reference patterns (obtained, in all our work, from
isolated occurrences of words) to match the test pattern. The general
approach to this problem will be the one proposed by Levinson and
Rosenberg,'? namely:

(i) Find the reference pattern that best fits a given section of the
test pattern.

(ii) Use the position within the test pattern at which the best match-
ing word ends to postulate the beginning of the following word.

(iii) Continue to concatenate reference patterns in this manner until
the test pattern is exhausted.

Dynamic time-warping algorithms, as they have been applied to
discrete word recognition applications, are not directly applicable to
either the word spotting or the connected word recognition problem.
There are two reasons why this is so. Figure 3 illustrates some of the
problems which are encountered. In this figure we show the time

(a) CONSECUTIVE ISOLATED
ENERGY
ENVELOPE
N .any»/P\\\\rr\\\/\d._,n,h Ao A, s
v ] g g ——y U ~7
TIME ——=
(b) CONNECTED WORDS
ENERGY
ENVELOPE
Fav.y . WSVE M’\-’-\...—‘_.,..J\.._ -

7 4 ! g ‘

TIME ——=

Fig. 3—Log energy for two speech utterances.
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pattern for log intensity of two speech utterances, “3,” “8” in part a,
and “38” in part b. The utterance in part a was spoken with a
discernible pause between the “3” and the “8,” while the utterance in
part b was spoken with no discernible pause between the “3” and the
“8.” Dynamic time-warping algorithms, as they have been applied to
discrete word recognition, require a reliable set of word boundaries.
However, as seen in Fig. 3b, a reliable segmentation for the utterance
“38” is difficult, if not impossible, to obtain.

Another difficulty in using DTW algorithms, based on isolated word
reference templates, for connected speech applications is the problem
of coarticulation between words. For example, the final /i/ of the word
“3” and the initial /e’/ of the word “8” coarticulate strongly with each
other. Thus, another fundamental assumption that has been relied on,
namely that the characteristics of the isolated reference words which
we are trying to match to our test utterance can be truly found in the
test pattern, is not valid. In the next section we will describe the basic
techniques that will be used to overcome these difficulties.

2.3 Basic approaches to connected speech recognition problems

In our approach to connected word recognition and word spotting
we will make two changes from the structure of the isolated word pTw
algorithm. One change is to no longer attempt to find the entire
isolated reference pattern in the test pattern. We will still use isolated
words as our reference patterns but will only expect a good match in
the middle of the word, and not necessarily near the ends. Thus, we
will not require that we be able to accurately match the beginning and
ending points of the reference pattern to points within the test pattern.
As a result, we would like to consider the possibility of overlapping
reference patterns to recognize connected speech. In this manner we
hope to account for both errors in the endpoint locations and for some
of the gross features of coarticulation.

Another fundamental modification to the basic bTw algorithm is the
use of beginning and ending regions rather than beginning and ending
frames. In this manner we hope to avoid some of the problems inherent
in requiring an accurate segmentation of the test utterance. Figure 4
defines, within a test pattern, a beginning region of size B (frames),
with potential starting frames between b, and b (B = b, — b, + 1), and
an ending region of size E, with potential ending frames between e,
and e; (E = e; — e; + 1). One possible pTw constraint would be that
the best time-alignment contour may begin anywhere within the
beginning region and end anywhere within the ending region. Three
such potential paths are shown in Fig. 4. Such a framework would be
used for word spotting, in which the beginning and ending regions
correspond to the entire test pattern, or for connected word recogni-
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Fig. 4—Illustration of the use of beginning and ending regions.

tion, in which the ending region for one word is used to hypothesize
the beginning region for the next word.

The use of beginning and ending regions modify the basic pTw
algorithm by changing the constraints which are imposed on the ends
of the time-alignment contour, i.e.,

1) =1, j(1) =5, bi=b=<b,, (11a)
I(K)=N, J(K)=e, e1< e<e,. (11b)

Thus, to find the optimal time-alignment contour, every possible
beginning and ending point pair must be tried, that is,

min I: min |: min [D(i(k), j(k)) s.t. j(1) = b, j(K) = e]H. (12)

by=b=b, | ey=e=e, | K,i(k),j(k)

The amount of computation required to solve eq. (12) for the optimal
path can be excessive, i.e., theoretically we require B - K separate time
warps in the most general case. However, the amount of computation
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required to solve eq. (12) may be reduced to a single time warp by
judicious selection of the weighting function. If W(k) is chosen to be
the asymmetric weighting function, Type a (Walk) = i(k) — i(k — 1)),
and N(W) is chosen appropriately (N(W.) = N), then D may be
computed efficiently by a modified bTw algorithm as follows:

Step 1. Set Da(1, b) =d(1,b) for b =b=<b,,
Step 2. Compute D(n, m) recursively for 1 = n < N,
by=m =< e,

Step3. D =1iV min [Da(N, e)].

e <e<e,

This algorithm works because Step 1 initializes all possible beginning
points, Step 2 computes the best path to a point (r, m) from any of the
potential beginning points initialized in Step 1, and Step 3 finds the
best possible ending point along any path from any possible beginning
point. The particular choice of the asymmetric weighting function is
important because its normalization factor is unaffected by the choice
of the beginning or ending points, i.e., its normalization factor is always
N. A dependence on the length of the test pattern, as in the symmetric
weighting function, Type b, would require a separate time warp for
each set of beginning and ending points because the effective length of
the test (e — & + 1) depends on the choice of the beginning and ending
points.

An important factor, even with the savings of a single time warp, is
the large amount of computation required for the pTw algorithm. Step
2 of the modified DTw algorithm is defined for Ll=n<=N,bi=m=<e;
and this region may be as large as N.M. It is also not possible to
significantly reduce this size by using restrictions on the slope of the
warping contour when the ending region is left unspecified. This point
is illustrated in Fig. 5, where the slope of the warping function
is restricted to be between % and 2. We observe that, even with
this restriction, when no ending region is specified, the area for which
Da(n, m) must be computed is %N? + B. N.

Two modifications to the pTw algorithm have been suggested to
reduce this amount of computation. In particular, Sakoe and Chiba®
have proposed that a time-warping path not be allowed to deviate
significantly from a straight line, i.e., for any i(k), the value of j(k) is
restricted such that

|j(k) —i(k) — b+ 1| <R, (13)

where & is the center of the beginning region [b = (&, + b;)/2] and R
is the maximum deviation which is allowed. R must be chosen to at’
least cover the entire beginning region, i.e., 2R + 1 = B. This algorithm
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Fig. 5—Region of the (n, m) plane which is examined in a time warp for which no
ending region is specified.

will be referred to as the fixed range DTW algorithm and is illustrated
in Fig. 6a. Another range-reduction technique, proposed by Rabiner,
Rosenberg, and Levinson' and described in detail by Rabiner and
Schmidt® is shown in Fig. 6b. Here j(k) is restricted to be within a
fixed range about the best path so far, that is, the local minimum
Formally, we have

|j(R) — clk)| =€ (14a)
c(k) = argmin[Da(i(k) — 1, m)], (14b)
e(1) =6, (14c)
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Fig. 6—Illustration of the fixed range and the local minimum DTW algorithms.

where c(k) is the position, in the vertical direction, of the local
minimum of D4(i(k) — 1, m), and e is the allowable range about this
local minimum. Thus, if Da(n, m) is computed in successive vertical
strips, i.e., n is fixed and m is varied, then the range of one vertical
strip is +e about the local minimum of the previous vertical strip. This
algorithm is referred to as the local minimum pTw algorithm.
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Two fundamental differences exist between these two algorithms.
The fixed range DTW algorithm, a priori, specifies the ending region
from the specification of the beginning regions, i.e.,

E=2R+1, (15a)
er=b+ N-R, (15b)
e2=b+ N+R, (15¢)

while the local minimum pTw algorithm defines the ending region
implicitly from the local minimum of the last vertical strip, i.e.,

E =2e+1, (16a)
er=c(K) — e (16b)
es=c(K) + e (16¢)

The other fundamental difference between the two time-warping
algorithms involves the number of time warps required to cover a
beginning region. For the fixed range DTW algorithm the entire begin-
ning region is most efficiently covered in a single time warp with
2R + 1 = B, rather than several smaller time warps, because overlap-
ping time warps may be merged together without loss of accuracy.

However, an analogous specification of the local minimum time-
warping algorithm (2¢ + 1 = B) may not be truly optimal. Since one
application of the local minimum DTW algorithm may follow only one
local minimum path, erroneous decisions may be made because the
true path may be “lost,” i.e., the globally best path may not be within
e frames of the locally best path. As such, it may be better to try
several smaller local-minimum time warps, thus allowing several dif-
ferent local-minimum paths to be tried, and to compare the results of
these paths to determine the overall “best” path. Such a procedure is
illustrated in Fig. 7. We assume that NTRY local minimum time warps
are to be computed. Each time warp has (about its respective local
minimum) a local range of e and the centers of two adjacent time
warps are initially separated by 8. The entire region covered by the
NTRY time warps is given by

A=2+1+ (NTRY —-1)-6. (17)

To cover the entire beginning region, NTRY, € and 8§ are chosen so
that A = B.

In the next section of this paper we describe experiments designed
to measure the relative strengths and weaknesses of the fixed range
and the local minimum DTW algorithms and also to determine reason-
able choices for the parameters 8, €, and NTRY for both word spotting
and connected word recognition applications.
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Fig. 7—Illustration of the parameters of the local minimum pTw algorithm.

lll. EXPERIMENTS IN DYNAMIC TIME WARPING FOR CONNECTED
SPEECH RECOGNITION

This section presents the results of experiments designed to compare
the fixed range and the local minimum DTW algorithms. We also
describe the results of several experiments designed to study the
parameters of the local minimum algorithm. Finally, we show how
these results may be applied to the problems of word spotting and
connected word recognition.

3.1 Comparison of the time warping algorithms

In our initial experiment the recognition accuracies achieved by
both the fixed range and the local minimum pTw algorithms for a
modified isolated word recognition problem are compared. The test
utterances consisted of 54 words from a vocabulary of computer terms,
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spoken by each of 4 talkers, for a total of 216 utterances. The test
utterances were recorded over a dialed-up telephone line, band-limited
to 3.2 kHz, digitized at 6.67 kHz, and analyzed every 15 ms with an
eighth-order LPc analysis using a 45-ms window (i.e., successive frames
overlapped by 30 ms). Local distance scores, d(i(k), j(k)),were calcu-
lated using Itakura’s log likelihood ratio. The reference patterns
consisted of two templates per word of the vocabulary formed by a
speaker-independent clustering technique.'*

To evaluate the relative performance of the two pTw algorithms the
test utterances were modified so that a beginning region could be
specified as some range about the true beginning point. No ending
region was specified. For the sake of comparison, R and € were both
set equal to eight framest and NTRY was set to one. Figure 8 shows
the recognition results for both algorithms as a function of the four
different local constraints (used in the pTw algorithms) defined in
Section 2.1. We observe that the local minimum DTW algorithm per-
formed better than the fixed range pTW algorithm for all local con-
straints.

In another comparison we generated ten pseudo-connected test
sequences by artificially embedding (at an arbitrary frame) an isolated
digit into a connected.digit sequence, both uttered by the same talker.
We then used both DTW algorithms to “spot” the embedded digit using
two speaker-dependent templates per digit. The parameters of the two
DTW algorithms that were used were the same ones as in our initial
experiment (e = 8, R = 8). To spot the embedded digit, every possible
beginning region of size 2¢ + 1 (= 2R + 1) was tried. The number of
times that the pTw algorithm found the (correct) best path (as deter-
mined by the lowest overall distance achieved by any beginning region)
was recorded. We also recorded the ending point of the embedded
word, as estimated by the word spotting procedure. Results showed
that both the local minimum and the fixed range pTw algorithms were
able to locate the endpoint of the embedded word with a high degree
of accuracy. (The average error between the true ending frame and
the estimated ending frame was 1.2 frames for both DTW algorithms.)

Figure 9 shows the relative performance of the two pTw algorithms
for this simple word spotting experiment. These figures plot the
number of times that the particular bTw algorithm found the proper
path (as determined by the lowest-distance score achieved) for each of

* The speaker-independent reference template set was a subset of the 12 template
per word set used in Ref. 14. This modification was used to reduce computation (and
hence reduce accuracy somewhat). For the purpose of our experiments (i.e., the relative
comparison of the fixed range and the local minimum pTw algorithms) this modification
was of little consequence.

T Setting R and € equal is a fair comparison of the two methods since the computation
is the same for both methods.
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Fig. 8—Results for word recognition using both the fixed range and the local minimum
DTW algorithms.

the ten embedded digits. We observe from Fig. 9 that the local
minimum DTW algorithm found the best path more often than the
fixed range pTw algorithm for almost all digits.

We also observe that the local minimum algorithm was able to find
the best path 17 times (the maximum number possible, 2¢ + 1) for 8 of
the 10 digits, while the fixed range algorithm never achieved this
accuracy.

20
TYPE I LOCAL CONSTRAINTS

O O o
LOCAL MINIMUM (€ = B)

COUNT

10+

FIXED
RANGE (R =8)

0 1 2 3 4 5 6 7 8 9
EMBEDDED DIGIT

Fig. 9—Results for word spotting using both the fixed range and the local minimum
pTW algorithms.
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The results of these two sample experiments showed that the local
minimum DTW algorithm performed consistently better than the fixed-
range DTW algorithm. In the next section we describe experiments
designed to more fully study some of the parameters of the local-
minimum time-warping algorithm.

3.2 Examination of the parameters of the local-minimum dynamic time-
warping algorithm

To understand the effects of the various combinations of the param-
eters A, 8, NTRY, and € on the performance of the local minimum
pTW algorithm, a series of connected digit-recognition experiments was
performed. A total of 80 strings of from 2 to 5 connected digits each
(20 strings of each length) were recorded by each of the two talkers.
These strings were the same as those used by Rabiner and Schmidt.”
In the recognition task we used two speaker-dependent templates per
digit. The first step in the experiment was to “spot” the ending point
of the first digit in each string via a local-minimum algorithm (e = 11,
NTRY = 1) using the known beginning point of the first digit. Then
an attempt was made to recognize the second digit in the string.
Because of inaccuracies in “spotting” the ending point of the first digit,
and because of coarticulation effects, it was not possible to precisely
determine the beginning point of the second digit, and, as such, a
beginning region for the second digit was centered around the ending
frame of the first digit, as determined by the “spotting” procedure.
The best candidate for the second digit was chosen as that template
which achieved the lowest overall average distance, regardless of where
it ended. Several values of € 8, A, and NTRY were used and the
accuracies and distance scores for the recognition of the second digit
were recorded.

Figure 10 shows, for a large value of A (27 in this case), the average
best distance score for all NTRY time warps as a function of §, for
several values of €. Two curves are shown in each part of the figure.
The solid curve is the case when the reference word is the same as the
second word in the test strings. The dashed curve represents the case
in which the reference is different from the second word in the test
string. Examination of Fig. 10 shows that the average best distance for
both “same words” and “different words” increases as § increases.
However, we observe that when the reference is different from the
second digit in the test utterance (i.e., the dashed curves), the average
distance generally increases as § increases, but, when the reference and
the test words are the same (i.e., the solid curves), the average best
distance is constant for small values of § and increases only beyond
the critical value § = 2¢ + 1. This critical value, § = 2¢ + 1 (shown by
a caret in the scales of Fig. 10), is a particularly important value of §

DYNAMIC TIME WARPING 319



because for § < 2¢ + 1, consecutive time warps overlap in their
beginning regions, and for § > 2¢ + 1 there are frames between two
consecutive time warps which are not covered by either beginning
region. When § = 2¢ + 1, we have the case where there is no overlap
in adjacent beginning regions and no skipped frames between these
regions. From the results shown in Fig. 10 we conclude that, on
average, there is no loss in performance in the local-minimum pTW
algorithm as long as no potential beginning frames are skipped, i.e., as
long as § < 2¢ + 1.

One explanation of why 8§ may be taken as large as 2¢ + 1, i.e., no
overlapping of beginning regions, without an appreciable loss of accu-
racy, is shown in Fig. 11. Here we show the progress of a set of typical
paths in which the starting regions overlap. By the nature of the local-
minimum DTW algorithm, best paths from overlapping time warps tend
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Fig. 10—Distance scores for the local minimum pTW algorithm as applied to con-
nected digit recognition.
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Fig. 11—TIllustration of path merging for two adjacent local-minimum time warps.

to merge if there is a good path common to both of their beginning
regions. Figure 12 shows the effects of path merging (of the local
minimum DTW algorithm) on the digit recognition accuracies. Here we
plot the recognition error rate for the second digit in the test sequences
as a function of 8 for various values of e. We see that, for a fixed e, it
is possible to increase § with essentially no loss in accuracy as long as
6=2+1*

Figure 12 also shows that € = 6 provides the minimum error rate. It
is reasonable to expect that as € is made too small, good paths may
easily become lost; but as € is made too large, incorrect paths may
start to generate low scores and thus cause errors. Thus, a finite value
of € is probably optimum. Unfortunately, such a value will have to be
determined for each application.

Another interesting effect on recognition accuracy for various com-
binations of €, 8, A, and NTRY is shown in Fig. 13. Here we plot
recognition error rates for the second digit of our test utterances for
two cases, namely € = (A — 1)/2 (NTRY = 1), and for the best
combination of ¢, 8§, and NTRY (as determined by the lowest-recog-

* Note that for A fixed, the largest possible § is § = A — 2e — 1 (NTRY = 2) so that
the curves for the various values of € in Figure 12 are defined only for those values of §
such that § == A — 2e — 1.
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Fig. 12—Digit error rate for connected digit recognition using the local minimum pTw
algorithm and several values of € and 6.

nition error rate). We see that, for smaller values of A, a single warp
performs as well as any combination of ¢, §, and NTRY, and as A
increases, the differences in error rates between the best possible ¢, §,
and NTRY combination and a single warp remains less than 2.5%.
Thus, it might be possible to perform some type of connected word
recognition using only a single local-minimum time warp per word. In
the next section we describe how the results of our experiments have
actually been applied to both word spotting and connected word
recognition applications.

2
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2 | | | | 1
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Fig. 13—Digit error rates for connected digit recognition using the local minimum
DTW algorithm.
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3.3 Application of DTW algorithms to word spotting and connected word
recognition

We have shown that, both for connected word recognition and word
spotting applications, the local minimum DTW algorithm performs
consistently better than the fixed range pTW algorithm. We have also
shown that, given a value of €, § may be chosen as large as § = 2¢ + 1
without significant degradation in the performance of the local mini-
mum DTW algorithm. Since, for a fixed beginning region (i.e., a fixed
A), the number of time warps is given by NTRY =1 + (A — 2¢ — 1)/
8, the best choice for 8 is § = 2¢ + 1. This minimizes the number of
time warps which need to be performed. For the problem of word
spotting the obvious choice for A is A = M, i.e., the entire length of the
test pattern. For this case optimal values of e and NTRY must still be
determined. In general, the selection of € and NTRY depends on
several factors. As e is increased, the chance of a missed keyword
decreases because more paths are examined, but the chance of a false
alarm increases. Also, as € increases, the value of NTRY decreases
[NTRY = A/(2¢ + 1) for § = 2¢ + 1], thereby reducing the amount of
computation required. Thus, misses, false alarms, and the amount of
computation must be traded-off in the selection of € and NTRY for a
word spotting application.

In a connected word recognition application, however, we not only
must choose € and NTRY but must also choose A. We have shown
that for A =< 17 frames, it is possible to do connected digit recognition
using only a single local-minimum time warp per word. However, we
also found that the best recognition accuracy was achieved with A =
21 but not with a single local-minimum time warp. Thus, there is an
apparent trade-off between recognition accuracy and speed of com-
putation. However, work by Rabiner and Schmidt® has shown that it
is better not to center the beginning region of one word around the
end of the previous word, as we did, but, rather, to center the beginning
regions of one word several frames earlier than the ending region of
the previous word. The reason for this is that the isolated reference
patterns tend to be longer than the spoken connected words, and thus,
the time warps tend to overestimate the ending frame of each word.
We tried a simple experiment in which the beginning region of one
word was centered eight frames earlier in the test pattern than the
end of the previous word. The values of ¢, NTRY, and A were € = 8,
NTRY = 1, and A = 17. Using these values and the same test
utterances used by Rabiner and Schmidt,’ i.e., 80 sequences of from 2
to 5 digits each spoken once by each of six talkers, we achieved a string
recognition rate of 429 correct strings out of 480 possible. This may be
compared with a total of 442 correct strings using € = 8, 8 =3, and
NTRY = 4, as reported by Rabiner and Schmidt. It should be noted,
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however, that the system of Rabiner and Schmidt used multiple
candidate strings while our simple experiment did not. When we reran
the system of Rabiner and Schmidt using only a single candidate string
(e =8,8 =3, NTRY = 4) we found only 430 correct strings out of the
480 possible. Thus, with a single local-minimum time warp per word
we achieved results comparable to those achieved by the use of four
local-minimum time warps per word.

IV. CONCLUSIONS

We have shown that dynamic time warping algorithms can be
efficiently applied to both word spotting and connected word recogni-
tion. We have demonstrated the relative performance superiority of
the local minimum pTw algorithm over the fixed-range pTw algorithm.
It was also shown that the beginning regions of successive applications
of the local minimum DTW algorithm need not overlap to achieve
accuracy comparable to overlapping beginning regions. We have found
that, for small beginning regions (small A), a single local-minimum
time warp [with € = (A — 1)/2, NTRY = 1] was as accurate as (and
more computationally efficient than) any combination of the param-
eters ¢, §, and NTRY. Finally, we found that an extremely simple
connected digit recognition system, i.e., a single local-minimum time
warp per word using only one candidate string, achieved a string
recognition rate of nearly 90 percent.
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