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This paper reports on results that complement those in an earlier
paper by this writer which gives a constructive proof of the existence
of an algorithm that, for each right-hand side a, produces a sequence
which converges globally and superlinearly to a solution x of f(x) =
a whenever f is a C'-diffeomorphism (i.e., is a continuously-differen-
tiable invertible map with continuously-differentiable inverse) of a
Banach space B onto itself and either B = R" or f satisfies certain
other conditions that are often met in applications. Here we consider
the case in which f' is Lipschitz on each bounded subset of B. We
give results which, while along the lines of those obtained earlier,
concern a fundamentally different Newton-direction algorithm which
does not appear to have been introduced previously, and which has
the advantage that its implementation does not require the use of
certain search procedures.

I. INTRODUCTION

Let f be a function from U into B, where B is a Banach space with
norm |- |, and U is a nonempty open subset of B. We say that f is
differentiable on a set S C U if f has a Frechet derivative f'(s) at each
point s of S.} (If, for example, B = R" with the usual Euclidean norm,
then f is differentiable on U if it is continuously differentiable on U in
the usual sense.) By f a C'-diffeomorphism, we mean that f is a
homeomorphism of U onto B, and f” and (f~')’ exist and are continuous
on U and B, respectively. (We emphasize that here continuity refers to
the dependence of the derivatives on the points at which they are

* This paper was presented at the Fourteenth Asilomar Conference on Circuits,
Systems, and Computers (Pacific Grove, California, November 17-19, 1980).

+ In other words, f is differentiable on S C U if for each s € S, there is a bounded
linear map f'(s):B — B such that f(s + h} = f(s) + f'(s)h + o(|h|) as |h| — 0.
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evaluated, not to their boundedness as operators, which is assured by
definition*) C'-diffeomorphisms frequently arise in applications.

The purpose of this paper is to report on results that complement
those in Ref. 1 where a constructive proof is given of the existence of
a Newton-direction algorithm that, for each a € B, generates a se-
quence in U which converges globally and superlinearly to a solution
x of f (x) = a whenever fis a C'-diffeomorphism of U onto B and either
B = R" or f satisfies certain other conditions that are frequently met
in applications. (For the case of an important class of monotone
diffeomorphisms f in a Hilbert space H, the “other conditions” reduce
to simply the requirement that f’ be uniformly continuous on closed
bounded subsets of H. A specific example in which H is infinite
dimensional is given in Ref. 1.)

The algorithm described in Ref. 1 typically involves the recursive
determination of positive scalars yo, y1, -+ (which determine the
successive steplengths) such that a certain ratio Rx (y:) (which depends
on the kth iterate x*) lies between prescribed bounds for all £ = 0, 1,
2, .... While it is proved that the yx can be chosen as required, and
that yx = 1 for all sufficiently large &, the actual determination of the
& in a specific case would ordinarily require the use of a one-dimen-
sional search procedure for a finite (and possibly large) number of
values of k.

In this paper we address the case in which U = B and f is Lipschitz
on bounded subsets of B (i.e., is such that for each bounded subset S
of B there is a constant A such that | f'(z) — f'(v) | = A|u — v| for all
u and v in S). We give results which, while along the lines of those in
Ref. 1, concern a fundamentally different Newton-direction algorithm
that does not appear to have been introduced earlier, and which does
not require the use of search procedures to solve subproblems of the
type outlined above.

Our results are presented in Section II. As a consequence of the
Lipschitz hypothesis, proofs are comparatively simple and we are able
to establish quadratic (rather than superlinear) convergence. (Recall
that a sequence x', x%, - - - in B converges quadratically to an element
x of B if the sequence converges to x and there is a constant ¢ such
that |x**! — x| < c|x* — x|* for all k.1)

General relationships between diffeomorphisms and computation of
the type described in Ref. 1 and in Section II do not appear to have

* And of course, this continuity is with respect to the usual induced norm of a
bounded linear map of B into B.
t Quadratic convergence results follow easily from those in Ref. 1 under the Lipschitz
lS'nypothe%s) used here. (In this connection, see the last part of the proof of Lemma 1 in
ection II.
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been reported on earlier by other writers. On the other hand, as in
Ref. 1 our approach involves the minimization of a functional, and
therefore in a general sense there is a vast related literature. [See, for
example, Ref. 2 and note (p. 190) that the least-squares Newton-
direction methods described there require, in particular, the existence
of second derivatives of f (our notation).] Additional background
material can be found in Ref. 1.

Il. PROCESSES N, and N,

Throughout this section we use the terms Lipschitz and converges
quadratically in the way indicated in Section I, we denote the usual
induced norm of a linear map A of B into B by | A |, and we take U =
B.

With f differentiable on B, but not necessarily a C'-diffeomorphism,
and with x° and a any two elements of B, consider the following
process, in which s, denotes | f(x*) — a| whenever x* € B is defined.

Process N;: Choose p € [%, 1) and A > 0. Do the following for & =
0,1, -

If f(x*) = a, set x**1 = x*,

If f(x*) # a, determine ¢ € B such that

f'(x*)¢x = @ — f(x*). Then
1. Let Y = (AS}Jf1 if s> 2pA_l

=1 if sp= 2pA_l.

2. Let ka =x*+ Yrdr.

3. Set x**' = y**! if either sy > 2oA~" and |f(y**") — a|=[1 -
(2Ask) ']k, or s = 2pA " and | f(y**') — a| =< % Asi. If neither pair of
conditions is met, replace A by 2A in Step 1 and the sentence preceding
this sentence, and return to Step 1.

Our main result is the following.

Theorem 1: Suppose that f is a C'-diffeomorphism of B onto B. Let
f' be Lipschitz on bounded subsets of B, and let | (f™')’| be bounded
on bounded subsets of B. Then for each a and each x°, Process N,
can be carried out, and x', x*, --- converges quadratically to the
unique solution x of f (x) = a.

2.1 Proof of Theorem 1

Let a and x° be given.
We first prove two lemmas which concern cases in which f need not
be a C'-diffeomorphism. Let L = {v € B:|f(v) — a| = |f(x°) — a|},
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and let L denote {w + a f'(w) '[a — f(w)]):w € L, a € [0, 1]} when
f/(-)"" exists on L. (Assuming that L is defined, notice that it is
bounded if L is bounded and | f’(-)™"| is bounded on L. This observa-
tion is used later in the proof of Theorem 1 and in connection with
Lemmas 1 and 2, below.) With n a positive constant, consider the
following process.

Process Ny: Choose p € [%, 1). Do the following for £ =0, 1, ---.
If f(x*) = a, set x**! = x*.
If f(x*) # a, determine ¢ € B such that
f(x*)dx = a — f(x*). Then let
ve = (nsp)”" if s> 207"
=1 if sp=<2om .

Set x*¥*' = x* + yats.

Lemma 1: Assume that L is bounded and that f'(+) and f'(-) " exist
on L with |f'(w)™"'| = K for w € L and some constant K. Assume also
that f'(-) exists and is Lipschitz, with Lipschitz constant A, on L.
Then for n = AK?,

(a) Process Ny can be carried out, and for each k such that s; # 0
we have

s =[1- (2nsk)_']sk if s> 2p1f], (1)
Spr1 < Yo NSk =< pSk if sp=2pm . (2)

(b) s = 0as k — .

(c) If there is an x € B such that f(x) = a and x* — x as k — oo,
then {x*} converges quadratically.

2.1.1 Proof of Lemma 1

We will use the following proposition.

Proposition 1: Suppose that the hypotheses of Lemma 1 are met. If
x* € L, and y € [0, 1], and ¢, denotes f’'(x*)"'[a — f(x*)], then, for n
> AK? we have | f(x* + yr) — a| = (1 — y) | f(x*) — a| + Yoy® | f (x¥)
-al

Proof: We have

| f(x* + you) — a| = |f(x*) — a + f'(x*)ydr + 8|
in which

8 = f(x* + you) — f(x*) = F'(x*)yon.

342 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1981



Thus
|fx* + you) —a| = (1 = Y |f(x) — a| +]8],

and

6= J [F/(x* + Byow) — f'(x")] dB- v

Since | 8| = %Ay?K?|f(x*) — a|’, we have proved the proposition.*

Assume now that n = A K?, and that the hypotheses of Lemma 1 are
met.

Let % be such that either £ = 0, or Process N, can be used to generate
x', +o., x* with 2’ € L forj =1, 2, ---, k. Suppose that s; # 0. Since
x* € L, ¢» can be determined. Since p € [, 1), when s > 20m " we
have (nsx) ' < 1. Thus, by the proposition, (1) holds. On the other
hand, obviously "ns, < p when s, < 2pn ', and thus, by the proposition,
(2) is met. This shows that x**! can be determined, that it satisfies (1)
and (2), and that x**' € L, which proves Part (a).

Part (b) is a direct consequence of Part (a), because, by Part (a), if
sx does not approach zero as k — o we must have s; > 2pm~" for all &
in which case [1 — (27s0) '] € (0, 1) and sx < [1 — (2750) ~']*s0 for & =
1, which is a contradiction.

Assume now that B contains an x such that f(x) = a and x* — x as
k — .1 Since x* € L for all k, and L is closed, x € L. Let J denote
f’(x). Since JJ is an invertible bounded linear map of B into itself, there
are positive constants 8, and . such that 8| u| = |Ju| < B2|u| for u
€ B. For each &, we have

|f(x*) —a| =|f(x) — a+ J(x" — x) + 8]
in which | 8| (|x* — x|)™' > 0 as k — .
Notice that for some m,
|J(x* —x)|=2|8| for k=m

Thus for & = m,

If(ah) —a| = |J(x* —x) | =8| = %|J(x* = x) | = B | 2" — x|,
and, on the other hand,

If(x®) —a| = |J(x*—x) |+ 8] =% |J(x* = x)| =% Ba|x" — x|,

We have s, < Y%msi for k = M for some M = m.

* With regard to the origin of the formula for v« in Process N, notice that the right
side qf the main inequality of the proposition is minimized with respect to y at y =
(k).

+ The existence of such an x follows from our hypotheses, but this fact is not needed
for our purposes.
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Therefore,
| 2" — x| =% B Bi|x*— x|, k=M,

which completes the proof of the lemma.*}

Lemma 2: Suppose that L is bounded, and that f'(-) and f'(-)™"
exist on L with |f’(-)™"| bounded on L. Suppose also that f'(-) exists
and is Lipschitz on L. Then Process N, can be carried out, we have
sy — 0 as k — x, and if there is an x € B such that f (x) = a and x*
— x as k — o, then x', x°, - -- converges quadratically.

2.1.2 Proof of Lemma 2

Consider Process N,. By Lemma 1, there is a constant Ay that
depends only on f, a, and x° such that if A in Step 1 and the first
sentence of Step 3 satisfies A = Ao, and if either 2 = 0 and s, # 0, or &
> 0 and Process N, can be used to determine x* with s, # 0 and s, <
so, then Step 3 can be carried out on the first pass. Notice that
whenever x**! is set equal to y**! in Step 3, we have sy41 < Sg.

Since for any A > 0 there is a nonnegative integer p such that 2"A
= Ao, it follows that Process N; can be carried out, and that for some
nonnegative integers ¢ and r, we have s**' < g;s* for & = q, where a;
=[1 — (2"*'As,)”'] when s* > 20(27A)~" and o, = p otherwise. Since
o, < 1for k = q, it is clear that s, — 0 as 2 — o, and therefore that s+,
< % 2"As} for £ = M for some M. Thus, by the proof of Part (c) of
Lemma 1, our proof of Lemma 2 is complete.

Now let the hypotheses of Theorem 1 be met. The proof of Theorem
3 of Ref. 1 shows that L is bounded, that f’(-)~! exists on B, and that
| f/(-)""| is bounded on L. Since f is a homeomorphism of B onto B, s
— 0 as k — o implies that x* — x as £ — o, where x satisfies f(x) =

a. By Lemma 2, this completes the proof of Theorem 1.

2.2 Monotone diffeomorphisms in Hilbert space

Let ¢:[0, ) — [0, =) be continuous, strictly increasing, and such
that (0) = 0, Y(a) — = as @ — o, and & 'Y(a) = ¢ for a € (0, &) for
some positive constants ¢ and &. Notice that, for example, y(a) = «
meets these conditions.

* The fact that {x*} converges quadratically follows from a direct extension of a
known result (see Ref. 3, p. 312) since either s, = 0 for some £, or there is an M such that
v« = 1 for k = M. The short proof given above is included for the sake of completeness.

1 D. J. Rose has informed this writer that in recent independent joint work with R.
Bank,' done subsequent to the appearance of preprints of Ref. 1, a corresponding result,
as well as a result corresponding to Theorem 1, was obtained for a process in which y,
= (1 + m8%)~', where the 7, satisfy certain inequalities. They study a case in which an
approximation Mj to f'(x*) can be used in place of f’(x*). Also, earlier related work
along different lines concerning uniformly monotone gradient maps f: R" — R" was done
by Bank and Rose.”
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Theorem 2: Let f map a real Hilbert space H, with inner product
(-, -), into itself such that (f(u) — f(v), u —v) = |u—v|Y(|u—v|)
for all u, v € H. Assume that f' exists and is Lipschitz on bounded
subsets of H. Then f is a C'-diffeomorphism of H onto H, and the
conclusion of Theorem 1 holds.

Using Theorem 1, a proof of Theorem 2 can be obtained by trivially
modifying the proof of Theorem 4 of Ref. 1.

23B=R"

The following complete result is a direct corollary of Theorem 1 (see
the proof of Theorem 5 of Ref 1).

Theorem 3: Let B = R", and let f' be Lipschitz and continuously
differentiable on bounded subsets of R". Then fis a C L diffeomorph-
ism of R" onto itself if and only if

(i) Process N, can be carried out for each a and each x°.

(it) For each a, the sequence produced by Process N, converges
quadratically to a solution x of f(x) = a, and x does not depend on x°.

2.4 Comments

As in Ref 1, our primary purpose is to focus attention on general
relationships between diffeomorphisms and computation. Clearly, no
attempt is made to optimize the performance of all aspects of the type
of algorithm described. However, there are some basically self-evident
modifications that are sometimes useful. For example, the total num-
ber of iterations required in a specific case can sometimes be reduced
significantly by repeatedly, or occasionally, stopping the algorithm
after a number of steps and resetting the initial value of A in Process
N, to a smaller number. (It is not difficult to give rules of thumb
concerning when to stop the algorithm and by how much to reduce A,
but we have not tried to prove theorems that bear on these matters.)
Of course, bounds on the location of the solution and estimates of K
and A, which are available in some problems, can be used in an obvious
way. Similarly, if for example B = R", a globally convergent steepest-
descent process (see Ref. 6)* might be used initially to obtain a better
approximation to the solution before the Newton-direction algorithm
is used. (In fact, a well known and often useful strategy is to combine
steepest descent and pure Newton iterations in this way.})

* We take this opportunity to correct a typographical error in Ref. 6. On page 1004,
left column, line 2, [2] should be replaced with [21].

t This paragraph was motivated by a helpful observation by D. J. Rose to the effect
that, as the algorithm stands, there are cases in which many iterations are required.
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