Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 60, No. 3, March 1981
Printed in U.S.A.

Program Development by Stepwise Refinement
and Related Topics

By N. GEHANI
(Manuscript received September 22, 1980)

Computer program development by stepwise refinement has been
advocated by many people. We take another look at stepwise refine-
ment in light of recent developments in programming languages and
programming methodology such as abstract data types, correctness
proofs and formal specifications, parallel programs and multiversion
programs. We offer suggestions for the refinement process and discuss
program maintainability.

I. INTRODUCTION

The correct design of nontrivial programs and systems of programs
is an intellectually challenging and difficult task. Often programs are
designed with very little time spent on the design itself, the effort
being concentrated on coding. This could be due to management’s
desire to see something working as soon as possible to be assured that
work is progressing, or it could be due to the programmer’s desire to
“attack the problem right away.”

Not only is there no emphasis on design, the approach to it is also
not systematic or disciplined. This results in programs that do not
meet specifications in terms of correct output and performance require-
ments.

What we want is a programming methodology that puts some
discipline and structure in the design process without stifling creativity.
A programming methodology should:

(i) Help us master the complexity of the problem being solved and
give us some guidelines on how to formulate the problem solution.

(ii) Provide us with a written record of the design process. The
design can then be read by others, and the design decisions can be
appreciated or constructively criticized.

(iii) Result in programs that are understandable.

347

(iv) Lead to programs whose correctness can be verified by proofs.
Since proofs are difficult, the methodology should allow for a sys-
tematic approach to program testing.

(v) Be generally applicable and not restricted to a class of problems.

(vi) Allow for the production of efficient programs.

(vii) Allow for the production of programs that can be modified
systematically.

In this tutorial we discuss a programming methodology called step-
wise refinement and informally show that it satisfies these criteria.

Il. STEPWISE REFINEMENT

Stepwise refinement is a top-down design approach to program
development (first advocated by Wirth*). Wirth really gave a sys-
tematic formulation and description of what many programmers were
previously doing intuitively. According to Brooks,” stepwise refinement
is the most important new programming formalization of the decade.
Stepwise refinement is applicable not only to program design, but also
to the design of complex systems.

In a top-down approach, the problem to be solved is decomposed or
refined into subproblems which are then solved. The decomposition or
refinement should be such that:3*

() The subproblems should be solvable.

(i) A subproblem should be solvable with as little impact on the
other subproblems as possible.

(itf) The solution of each subproblem should involve less effort than
the original problem.

(iv) Once the subproblems are solved, the solution of the problem
should not require much additional effort.

This process is repeated on the subproblems; of course, if the solution
of a problem is obvious or trivial, then this decomposition is not
necessary.

If Py is the initial problem formulation/solution, then the final
problem formulation/solution P, (an executable program) is arrived
at after a series of gradual “refinement” steps,

Pip=P =P=...=P,.

The refinement P;., of P; is produced by supplying more details for
the problem formulation/solution P;. The refinements Py, ---, P,
represent different levels of abstraction. Py may be said to give the
most abstract view of the problem solution P,, while P, represents a
detailed version of the solution for P,.

As an example of abstraction levels, consider a program that auto-
mates the record-keeping of an insurance company. At the highest
level of abstraction, the program deals with the insurance company as

348 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1981

an entity. At succeeding lower levels of abstraction, the program deals
with

e different insurance categories (auto, home, life, etc.)
e groups of policies in the above categories

¢ individual policies in the above groups

o details of individual policies

Each refinement P; consists of a sequence of instructions and data
descriptions Py, :

P,
Pm‘-

In each refinement step, we provide more details on how each P; is to
be implemented. The refinement process stops when we reach a stage
(i) where all the instructions can be executed on a computer, or

(if) where instructions can be easily translated to computer execut-
able instructions.

Pictorially, the refinement process may be depicted as shown in
Fig. 1. The final program is a collection of the nodes at the last
refinement level P,.

The design can be probed to any desired level of detail i (0 <i=<n).
Understanding the design process is aided by the fact that level i
provides an overview of levels i + 1 through n.

We illustrate the stepwise refinement process with annotated ex-
amples. The notation we will use for conveying our ideas will be
Pascal-like” and include guarded commands.® pL/1 will be used to show
the executable versions of some programs.

Py

Fig. 1—The refinement process.

STEPWISE REFINEMENT PROGRAM DEVELOPMENT 349

The guarded commands are
(i) Selection

if b1 e d SL1
[]bg —d SL2
[l — 8L,
fi

The b/s are called the guards (Boolean expressions) and the SL; are
statement lists. For a successful execution of the selection statement,
at least one of the guards must be true. If only one guard is true, then
the corresponding statement list is executed. If more than one guard
is true, then one of the corresponding statement lists is selected
nondeterministically (i.e., the user cannot tell beforehand) and exe-
cuted, e.g.,

if a=b — max:=a
[lb=a — max:=b
fi

If a = b, then both the guards are true and either of the statements
max := a or max := b may be executed. Either way, the answer is
right. This symmetry is aesthetically pleasing when compared to
conventional deterministic programming.

(if) Repetition

dO b] e SL1
[]bz b d SL2

[1bn. — SL,
od

The loop is repeatedly executed as long as one of the guards is true.
If one guard is true, then the corresponding statement list is executed.
As in the selection statement, if more than one guard is true, then one
of the corresponding lists is arbitrarily selected and executed.

Implementation of these statements in C, Pascal, PL/1, etc., will be
deterministic. For example, in PL/I:

() Selection

IFb,
THEN DO; SL;; END;
ELSE IF b, THEN DO; SL,; END;

ELSE IF b, THEN DO; SL,; END;
ELSE ERROR,;

350 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1981

(it) Repetition

L:DO WHILE (‘1° B);
IF b,
THEN DO; SL,; END;
ELSE IF b, THEN DO; SL,; END;

ELSE IF b, THEN DO; SL,; END;
ELSE GOTO LE;
END L;
LE:;
Note: These statements could be more conveniently implemented
using the new pL/1 SELECT and LEAVE statements.

lll. EXAMPLES OF STEPWISE REFINEMENT

The examples used to illustrate stepwise refinement are small out of
necessity. The reader is encouraged to apply stepwise refinement to
larger problems.

Example 1

Write a program to simulate a week in John’s life.
Initial refinement Po:
Simulate a week in John's life

If we were programming in a language that understood the above
instruction, then we wouldn’t have to refine it further.

Refinement P;:

a. d := monday {next day to be simulated is d}
b. repeat

C. simulate day d in John's life

d. d := next day

e. until week over

A refinement consists of programming language instructions mixed
with English statements.

Refinement Ps:
Line ¢ of P, is refined as

Sleep until alarm goes off
Go through morning ritual
Spend the day

Go through evening ritual
Prepare to sleep

Line d is refined as

STEPWISE REFINEMENT PROGRAM DEVELOPMENT 351

monday
SUCC(d)

if d=sunday — d:
[Id # sunday — d:
fi

where the Pascal function SUCC gives the next day in the range of
values monday, tuesday, - - - , sunday. Line e: “week over” is refined as
“d = monday.”

Collecting these refinements of P,’s instructions, we get refinement
pPs.

d := monday

repeat
Sleep until alarm goes off
Go through morning ritual
Spend the day
Go through the evening ritual
Prepare to sleep
if d=sunday — d:

[ld #sunday — d:

fi
until d = monday.

monday
SUCC(d)

I

This collection can be done mechanically and we shall in general omit
it.
“Spend the day” may be refined as

if weekday — go to work
work
return home

[lweekend — read newspaper

laze around
read book
watch TV

fi

Similarly, the other instructions of P, may be refined and the
refinement process continued to the desired level of detail. In the
refinement we have tried to model processes of the problem domain.’

An initial decomposition might not be feasible or nice, in which case
we back up and try another decomposition. We shall only present the
final set of decompositions.

Example 2

Write a program that reads in a list of positive numbers a;, as,
-++, @p (n = 0) and prints the sums of all natural numbers up to each
a;, i.e., the sums:

2

a] - 2 - an .
¥ i, i, e+, Y 0L
=0

=0 i=0

352 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1981

Initial refinement Po: Print ¥ %o 7, ¥%0 ¢, - - -, Y i L.
Pt

read a
do while there

a
exists data — Compute sum =) .
i=0

Print sum
read a
od

Because we are aiming for an executable program in a sequential
programming language, the refinement P, reflects the decision to read
in an input element, compute its sum, print the sum, and then read
another input element. Alternately, had our target been a parallel
computer we would have probably read in all the input elements,
computed the sums in parallel, and then printed them out. Many
implicit decisions underlie every refinement.

P;: o while there exist data
is refined to
not EOF
e Compute sum = Y7 o1
is refined to
i:=0
sum:=0 {sum=04+1+2+ ... +1i}
doi#a — i:=i+1;sum:=sum +/od
Let us now examine the concept of a loop invariant. A loop invariant
is an assertion about program variables; it statically captures the
meaning of a loop thus helping us understand it. Loop invariants are
true before and after the execution of a loop, and before and after each
execution of the loop body. Dijkstra® suggests some ways of finding
the loop invariant using the desired post-condition (state of variables
after the loop terminates). The loop invariant can actually aid in
determining the guards and the corresponding statement lists.
Let I be the loop invariant sum =0+ 1+ 2 + ..+ + i. I is true
initially because i = 0 and sum = 0. Evaluation of the guard i # a does
not affect I; the statement i := i + 1 destroys I, resulting in sum = 0
+ 142+ ... +i— 1. But sum = sum + i restores the validity of
invariant I. When the guard evaluates to false, i.e., i = @, the loop
terminates. Now in addition to I being true we have i = a, implying
the desired result sum =0+1+2+ ... + a.
How can we demonstrate loop termination? For this we must show
the existence of a function, initially = 0, whose value is decreased by

* The fact that we have two read statements in P, shows that our design is influenced
by our target language (PL/1 in this case). In PL/1, unlike in Pascal, a read must occur on
an empty file before an end-of-file is indicated (via the variable EOF in our case).

STEPWISE REFINEMENT PROGRAM DEVELOPMENT 353

one every time the loop is executed. When this function becomes < 0,
we stop. Such a function is a — i; executing i := { + 1 decreases its
value by 1. When a — i = 0, we have i = a which is when the guard
evaluates to false and the loop terminates.

Continuing the refinements we get

Pa:
read a .
do not EOF — {compute sum = Y i}
i=0
i:=0
sum:=0 {sum=0+1+2+ ... +i}
doi#a - ji=i+1
sum = sum + |
od
print sum
read a
od
Py (in PL/1):
SUM: PROC OPTIONS(MAINY);
DCL (A /*NEXT INPUT ELEMENT */
1 /*LOOP VARIABLE */
SUM /*SUM=04+142+...4+]*/
JFIXED DEC,
EOF BIT(1) INIT('O’'B);
ON ENDFILE EOF="1'B;
GET LIST(A);
DO WHILE (TEOP);
I=0; SUM=0;
DO WHILE (I"™=A);
I=I+1; SUM=SUM+1; END;
PUT SKIP LIST (' SUM UPTO’, A, ' IS ', SUM),
GET LIST(A);
END;
END SUM;
Example 3

Write a program to determine the maximum element value of an m
X narray A (m,n=1).

Py: determine the max element value of A

P,: i:=0 ({last row examined}
initialize max {max is the maximum element
of rows 1 ... i—Iloop invariant I,}

354 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1981

do all rows - =i+

not examined max:=maximum(row i, max)
od
P,: ® initialize max is refined to
max := A[1, 1]
® all rows not examined
is refined to
i#m
e max := maximum (row i, max)
is refined as
j =0 {max = maximum of rows 1.../— 1 and elements
1 ...jof row i—loop invariant /»}
do all elements of - ji=j+1
row i not examined max 1= MAX(max, A[/, j])
od

I is the loop invariant. As an exercise, the reader should try and show
that the loops leave I; and I invariant, i.e., unchanged.
P;: @ all elements of row j not examined
is refined as
Jj#n
e max ;= MAX(max, A[i, j])
is refined as
if max=A[i,j] — skip
[Imax = A[i, j]] — max:=A[j, j]
fi

where skip denotes the null statement.

The iterative feature is the most important feature of a programming
language.® The do --- od construct allows us to express algorithms
clearly and succinctly. The above example could have been done better
had the author not used the do - .- od construct to just simulate the
while statement. Making fuller use of the do - - - od construct, we get
the following program for the above problem:

Py i:=0 {number of rows examined so far}
j:=0 {number of elements of row i + 1 examined so far}
initialize max {max is the maximum of all the elements in the first

i rows and the first j elements of row i + 1} —/
do i<mrowsandj<n — j=j+1

elements of row i + 1 max := MAX(max, A[i, j])
examined

[1i < m rows and all — move to the next row
elements of row i + 1
examined

od

STEPWISE REFINEMENT PROGRAM DEVELOPMENT 355

Pi: i:=0;, j:=0
max = A[1, 1] {max is the maximum of all the
elements in the first i rows
and the first j elements of row i + 1} —/
do i<mandj<n — j:=j+1
max := MAX(max, A[/, j])
[li<mandj=n — i:=i+1;j:=0
od
Gries also shows that the do - -- od construct usually eliminates the
need for loop exits necessary in programs that use the while state-
ment.®

Example 4

The Touch-Tone® telephone provides an easy but limited means of
communicating with a computer (see Fig. 2). The problem is to write
a program that provides a simple adding machine to the user.” For
example:

e User offhook 1 # 5x2 # 4x5 # onhook
input:
® System “one” “six “ten
response: point point
(audio) two” seven”

The characters # and * represent + and -, respectively.

The following modules are available to the programmer:

e SPEAK (string)—provides an audio response for the number
represented by the string.

1 2 3
4 5 6
7 8 9
* 0 #

Fig. 2—The Touch-Tone® telephone’s pushbutton dial.

356 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1981

[1 T .75 13 [nul |

e ADD(stringl, string2) — stringl := stringl + string2

8 . 3 [null | string 1
+ 4 null string 2
1T 27 - [3] nul| string 1

e waitsignal(char)—sets char to the next input character when
available.

The input/output specifications written more formally are:

input: offhook fi # fo # --- # fo # onhook,
integer one or more digits

_) real —one or more digits followed by
us’,-r‘;,,, - —one or more digits followed by * and at
least one digit
—one * followed by at least one digit

where

output: SPEAK(SUM,), SPEAK(SUM.), - - -, SPEAK(SUM,)
where SUM, = }:};l fi,1=i1=n,
and the audio response occurs after the character # is input.
We assume that the maximum length of numbers input will be & —
1. To focus on the refinement process, we make the following additional
assumptions:
(i) one addition session,
(if) no errors of any kind.
In the second version of the solution we will eliminate these restric-
tions.
Refinement Py: Do telephone addition.

P,: Compute and speak out the running sum of the numbers
input.
Ps: plus := ‘#'; point:= "+’

waitsignal(c) {c contains the next
input char to be processed;
offhook is the first one}
waitsignal(c) {get char after offhook}
initially SUM is O
do ¢ # ‘onhook’ — read number into A
ADD(SUM, A)
SPEAK(SUM)
waitsignal(c) {+ consumed}

od

STEPWISE REFINEMENT PROGRAM DEVELOPMENT 357

The number variables SUM and A are implemented as strings because
modules SPEAK and ADD expect strings as arguments.

Each variable is represented by

(i) wvariable of type string,

(i) an integer variable that denotes the length of the string,
where type string = array [1 --. k] of char.
In addition to SPEAK and ADD we need

(i) a procedure ZERO to initialize the numbers represented as strings
to 0,

(it) a procedure APPEND to help build a number.

They are defined as

procedure ZERO(var X:string; /:integer);
begin /:=1; X[/]:=null end

procedure APPEND(var X:string; /:integer; c:char);
begin X[/]:=c; I:=1 + 1; X[I]:=null end

The implementation of numbers and their operations in terms of
strings is an example of data refinement.
® Read number into A is refined as

ZERO A
doc#plus — ifc=point — APPEND ‘'.'to A
[1c#point — APPENDcto A
fi
waitsignal(c)
od

Collecting the refinements together we get

const point = '+'; plus = ‘#';
type string = array[1 -- k] of char;
var SUM, A:string;
ISUM, /A:integer; {lengths of SUM, A}
begin waitsignal (c); waitsignal (c);
ZERO(SUM, ISUM);
do c # ‘onhook’ — {read number into A}
ZERO(A, IA)
do ¢ # plus
if c = point — APPEND(A, /A, '.")
[1c#point — APPEND(A, /A, c)
fi
waitsignal(c)
od
ADD(SUM, A);
SPEAK(SUM);
waitsignal(c)

358 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1981

od
end

Instead of including inline the refinement of “read number into A”
in the final version of the program, it would have been more appropri-
ate to make the refinement into a procedure READ and to call READ
from the final version. This is because READ and the operations ADD
and SPEAK (which appear in the final program) operate on numbers
thus representing the same level of abstraction. Also, if an instruction
appears more than once, then it should perhaps become a procedure
call. The instruction would then be refined only once.

In the followingversion of the above program we eliminate the
restrictions of a single session and no errors. The following types of
errors are considered possible:

illegal characters,

n = 2 decimal points per number,
only a decimal point—no digits,

+ follows +, offhook, i.e., null number,
session starts with other than offhook.

The initial problem formulation Py is
do true — Do telephone addition od

P,:® Do telephone addition is refined as
Compute and speak out the running sum of the numbers input
so far.

This is refined as

P waitsignal(c)

if ¢ # 'offhook’ — error
[1 ¢ = ‘offhook’ — skip
fi
waitsignal(c)
check for valid char {digits, plus, point, ‘onhook '}
initially sum is O
do ¢ # ‘onhook’ — Read number into A
ifc =plus — ADD(SUM, A)
SPEAK(SUM)
waitsignal(c)
check for valid char
[l ¢ = ‘onhook’ — skip
fi
od

STEPWISE REFINEMENT PROGRAM DEVELOPMENT 359

Using the procedures APPEND and ZERO defined before, we refine
read number into A as

ZERO A
digits, # pts := 0;
docisa

digit or a point

— if c is a point — Append '-'t0 A
if#pts =0—- #pts:= #pts + 1
[1 # pts # 0 — error
fi
[1 cis a digit — Append c to A
digits := # digits + 1
fi

waitsignal(c);
check for valid char
od
if # digits = 0 — error
[1 # digits # 0 — skip
fi

Continuation of this refinement process is similar to the error-free
version and we omit it.

Example 5. McDonald's warehouse problem °

Given a list of item cards ordered by item number, produce the
management report shown in Fig. 3. Each invoice has an item number,
a code D for delivery, and R for received, and the quantity received or
delivered.

P,: Produce management report

P,: a. Print heading

b. Process the item groups
c¢. Print number of item groups changed

. MANAGEMENT REPORT
ITEM NET CHANGE
Py 25
Py 236

CHANGED = 20

Fig. 3—From item cards to management report.

360 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1981

e Line b is refined as

changed := 0

read item
do there are more — process an item group
item groups print item and net change
changed := # changed + 1
od

e there are more item groups
is refined as
not EOF

® process an item group
is refined as

netchange := 0
itemgroup # := item#
do item in group and not EOF
— if code = R — netchange := netchange + Qty
[1 code = D — netchange := netchange — Qty
fi
read item

od

® jtem in group
is refined as

itemgroup # = item#

This concludes the example.

Example 6

Using insertion sort, sort the array A (size n = 1) in nondecreasing
order, ie, A, < A, < ... = A,, and the new values of array A are a
permutation of its old values.

Py: Sort the array A
Pictorially we can characterize the input and output specifications of
the array A as

(i) initially

1 n
L | B
/7 ~
sorted unsorted
part part

STEPWISE REFINEMENT PROGRAM DEVELOPMENT 361

(it) finally

1 n
sorted / =, unsorted
part part

At some intermediate stage of the sorting we will have

1 i n
L [|
sorted S unsorted
part part

This picture corresponds to our loop invariant. It is true initially if
i = 1. At the end of the loop, i = n implies that the whole array is
sorted. So the purpose of the loop body will be to exchange the values
of A in such a way that i can be increased until it equals n. P, is
therefore refined as
Pl .
i:=1 ({A[1 .- i] sorted}
do i # n — Extend sorted portion to include A[i + 1]
i=i+1
od .
e Extend sorted portion to include A[i + 1]
is refined as

a. t:=A[i+ 1]
b. shift all elements of A[1 -.. i]>t

one place to the right such that

A1 .- j—1]=tand A[j+1-.--i+1]>t
c. Alj]:=t

e Line b of the above refinement is developed as

ji=i+1{A[j+1 .- i+1]>1t)
do A[j — 1] > t — shift A[j — 1] to the right
ji=j—-1
od
On loop termination we have A[j+ 1 .- i+ 1]>¢tand A[j — 1] =
t. This, along with the fact that at the start A[1 ... {] was sorted,
leadsusto A[1 --- j—1] =t
As we have not taken proper care of the end condition, the guard in
the above loop will cause a subscript error when j = 1. So we modify
it to

i#1cand A[j—1]>t

362 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1981

where cand is similar to and but the second operand is evaluated only
if j # 1 (C has a similar operator). This allows for a simple high level
design.

e shift A[; — 1] to the right is refined as

Alj]:=Ali - 1]
Collecting all the refinements we get
i=A1
doi#n—-t:=Ali+1];j:=i+1
doj#1cand A[j— 1] >t— A[j] = A[j — 1]

jr=j—1
od

Alj] =t

i=i+1

od

We conclude this section with some comments on program mainte-
nance and efficiency. Program maintenance, i.e., program modification
that is due to changing specifications or in response to design errors,
should be carried out by making changes in the refinements and not
just the final program. Making changes in only the final program
renders the design (i.e., refinements) obsolete; consequently, an up-
dated version of the design will no longer exist and subsequent program
maintenance becomes increasingly difficult.

When program specifications change, start from the initial refine-
ment and locate the refinement affected. Modify this refinement and
carry the effects of this change down to the last level of refinement.

When a design error is detected, locate the most abstract refinement
in which the design error was first made. Then carry the change caused
by the removal of the design error down to the final refinement.

A program that does not have the desired efficiency (i.e., perform-
ance) characteristics must be redesigned. We locate the most abstract
refinement R where a design decision was made that resulted in these
characteristics. A proper design modification from refinement R on-
wards leads to the desired efficiency characteristics. Predecessors of
refinement R remain unchanged.

IV. RECURSION

Stepwise refinement and recursion blend naturally with each other.
Many programmers avoid recursion and treat it as a novelty." Some
problems are best expressed recursively, even though languages like
FORTRAN and COBOL are not recursive, and this inhibits programmers
from thinking and designing recursively. Also, the examples of recur-
sion in text books, e.g., factorial, Fibonacci numbers, etc., are not
convincing about its utility.

STEPWISE REFINEMENT PROGRAM DEVELOPMENT 363

Efficiency has often been cited as a reason against using recursion.
In these days of increasing software costs and decreasing hardware
costs, this reason is not very convincing. It is better to have a recursive
design that is simpler, easier to understand, and easier to show correct
than a corresponding nonrecursive version. If efficiency is still a
criterion, then the recursive design can be systematically transformed
into a nonrecursive one." The following examples illustrate the devel-
opment of recursive programs:

1. Write a procedure to print a binary tree with root R (Fig. 4).
Each node is of the form

VALUE
LEFT | RIGHT

where

(z) VALUE is the data at the node,

(it) LEFT, RIGHT are the pointers to the subtrees,

(i) a NIL pointer value denotes the absence of a subtree.
Initial refinement Py: Print binary tree with root R

P] .
if R % NIL — Print binary tree with root LEFT(R)
{left subtree}
Print VALUE(R)
Print binary tree with root RIGHT(R)
{right subtree}
[JR = NIL — skip
fi

Fig. 4—A binary tree with root R.

364 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1981

The notation p (x) denotes the component p of the node pointed to by
x. Writing the above in Pascal we get:
procedure print (R: 1 node),
begin
if R # nil
then begin print(R 1. LEFT);
writeln(R 1. VALUE);
print(R 1. RIGHT)
end
end
2. This example illustrates a fast sorting technique called quicksort
(Hoare'?). Array A, with bounds L and U (L = U), is to be sorted in
nondecreasing order.
Initial refinement Py,: Quicksort(A, L, U).

P] .
if one element — skip
[Jtwo elements — order them
[Jmore thantwo elements — Partition A such that
L j i U
=r|r|=r
or L j i U
=r =r
(at least one element per partition
in this case)
where r is an arbitrary value
Quicksort(A, L, j)
Quicksort(A, i, U)
fi

P»: ® one element
is refined as
U-L=0
e two elements isrefined as U — L =1
e order them
is refined as
if AlU]=A[L] — swap(A[L], A[U]

[JA[U] = A[L] — skip

fi
e more than two elements

1s refined as
U-L>1

STEPWISE REFINEMENT PROGRAM DEVELOPMENT 365

e Partition A such that - - .
is refined as

r=A[(U+L)+ 2]
ir=L;j;=U{A[L..i—1]=rand A[j+ 1 ..U]=r— Invariant /}
doi<j — Extend left partition by increasing i
Extend right partition by decreasing j
Rearrange elements so that invariant / is
restored

od
Py e Extend left partition - - -
do Ali]<r — i:=i+1od{Ali]=r}
e Extend right partition - - .
doA[j]l>r — ji=j—1od{A[j]l=r}
® Rearrange ---
ifi<j — swap (A[i], A[i]D
i=i+1;,j=j—1
[1i=j — skip
fi

V. MULTIVERSION PROGRAMS

A set of programs is said to constitute a program family if it is worth
while to study programs from the set by first studying the common
properties of the set and then determining the special properties of the
individual family members. A typical family is the set of versions of an
operating system distributed by a manufacturer." Such a family is also
called a set of multiversion programs. Stepwise refinement enables
multiversion programs to be developed conveniently and naturally.

Multiversion programs may be built for the following reasons:'*"!

(i) Economics. It is cheaper to build one program and then modify
it to get another version than it is to build the second program from
scratch.

(if) Experimentation. Experimental prototypes may be built to study
the feasibility of building a particular system. The experimental ver-
sions along with the final program constitute the multiversions.

(iit) Faulty program design. Another version of the program is built
to correct the design faults of a prior version.

Classically, multiversion programs have been built by first building
one working version of a program. Another version is built by modify-
ing this program and so on, as shown in Fig. 5. A set of multiversion
programs produced as in Fig. 5 has one common ancestor. According
to Parnas,"” it is common for the descendants of one program to share
some of their ancestors’ characteristics which are not appropriate to
the descendants. In building the earlier version, some decisions were

366 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1981

INCOMPLETE
PROGRAM

X FINAL PROGRAM

T

Fig. 5—Traditional way of building multiversion programs.

made which would not have been made in the descendant programs
had they been built independently. Removal of these decisions entails
a lot of reprogramming. Consequently, programs have performance
deficiencies because they contain decisions not really suitable for them.
To build another program version, the program must first be complete
and working. Relevant changes in an ancestor program that are not
reflected in the descendant program cause maintenance problems.

Stepwise refinement allows us to develop multiversion programs
without the above problems. Never modify a complete program; always
begin from one of the intermediate refinements which does not contain
any design decisions unsuitable for the new version. This process is
illustrated in Fig. 6.

INITIAL REFINEMENT

-

D REFINEMENTS

| X FINAL PROGRAM

L

X

Fig. 6—Multiversion program development by stepwise refinement.

STEPWISE REFINEMENT PROGRAM DEVELOPMENT 367

All decisions made above a branch point are shared by the descen-
dants. Refinements are developed so that common decisions of multi-
version programs are above the branch point. A branch point results
when two or more versions require different strategies (e.g., storage
management techniques).

Also refinements below a branch point may be carried out in
parallel—we do not have to wait until a working program is available.

V. SUGGESTIONS FOR REFINEMENT

1. Develop the program in a gradual sequence of steps.

2. In each step, refine one or more instruciions of the given refine-
ment.

3. Terminate the refinement process when the instructions have
been expressed in the desired programming language or when they can
be mechanically translated to the programming language.

4. Use information about the problem and its domain in the for-
mulation of abstract instructions.

5. Use notation natural to the problem domain.

6. Make up abstract instructions as desired. However, they must
eventually be translatable to an executable form.

7. Make refinements reflect the instructions they represent in de-
tailed form.

8. Be aware that every refinement represents some implicit design
decision and consider alternate solutions. Keep a written record of the
major decisions made along with the refinements.

9. Use recursion when appropriate. Even if the language does not
support recursion, recursive solutions should still be considered. If
recursive solutions are selected, they can be systematically converted
to nonrecursive solutions.

10. Use data refinement along with instruction refinement.

11. Postpone representation of data as long as possible. This mini-
mizes modifications to the design when an alternate representation is
to be used.

12. If an instruction appears more than once, use a procedure call;
refine the instruction only once. Use procedure calls when they clarify
program structure.

13. Recognize abstract data types and separate their refinements
from the rest of the program, i.e., do not refine the data type operations
in line—use procedure calls.

14. Try to use loop invariants to develop loops; they give a better
idea of the instructions in the loop body and the guards.

15. If a refinement solution does not turn out to be appropriate,
repeat the refinement process using the additional knowledge derived
from the previous attempt; stepwise refinement is an iterative process.

368 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1981

VII. TOPICS RELATED TO STEPWISE REFINEMENT

In this section, the idea of abstract data types is explained along
with the concept of data refinement. This is followed by a discussion
of the formal specifications of abstract data types. We then show how
stepwise refinement may help simplify program correctness proofs.
Finally, we briefly argue that stepwise refinement can be used in
developing parallel programs.

7.1 Abstract data types

A data type is not only a set of values but also the operations that
can be performed on them." A primitive data type is a data type that
is available in the programming language. An abstract data type is a
data type not available in the programming language and is imple-
mented in terms of other abstract and primitive data types.

The implementation of a data type consists of three parts—storage
allocation, initialization, and the definition of operations. Consider the
following implementation of the data type integer stack of size 100 in
PL/I:

(i) storage allocation

DCL (S(100)
,NS /*NUMBER OF ELEMENTS IN S*/
JFIXED BIN;
(it) initialization
NS = 0;
(ifi) operations

PUSH:PROCEDURE(A, NA, X),
DCL (A(100), NA, X) FIXED BIN;
IF NA = 100
THEN PUT SKIP LIST ('OVERFLOW ERROR");
ELSE DO; NA = NA + 1; A(NA) = X; END;
END PUSH;

POP:PROCEDURE(A, NA);
DCL (A(100), NA)FIXED BIN;
IF NA=0
THEN PUT SKIP LIST (‘'UNDERFLOW ERROR’);
ELSE NA = NA — 1,
END POP;

TOP:PROCEDURE(A, NA) RETURNS (FIXED BIN),
DCL (A(100), NA)FIXED BIN;
IF NA=0
THEN PUT SKIP LIST('ERROR-STACK EMPTY');
ELSE RETURN(A(NA));
END TOP;

STEPWISE REFINEMENT PROGRAM DEVELOPMENT 369

EMPTY: PROCEDURE(A, NA)RETURNS(BIT(1));
DCL (A(100), NA)FIXED BIN;
RETURN(NA = 0);

END EMPTY;

Such implementations of abstract data types suffer from many
disadvantages. Representation details are not hidden from the pro-
grammer. This leads to the following:

(1) Representation dependent programming, perhaps for “effi-
ciency” reasons. For example, the programmer may directly inspect
the top of the stack instead of using the procedure TOP; a change in
the representation will then require changes in the program.

(ii) Violation of the specifications of the abstract data type. For
example, in case of the stack the programmer may delete an element
in the middle of the stack. If such an ability is desired, then the
specifications should be changed.

(iii) Inadvertent or malicious violation of the integrity of the ab-
stract data type. For example, NS could be set to 0 even if the stack is
not empty.

In addition, the programmer has to be concerned about which
components of the representation have to be passed as arguments to
the procedures associated wth the abstract data type. To be uniform,
we have passed all the components of the stack representation for
every operation.

Modern programming languages such as cLU and Alphard' pro-
vide data abstraction features, called clusters and forms, respectively,
that remove the above problems. In addition, they support data
refinement. We use CLU’s clusters to illustrate data refinement and
give an example of programming with abstract data types. The nota-
tion used is similar to that of cLu.

16-18

stack
rep

cluster is push, pop, top, empty;
record [ns:integer;
s: array[1 - . 100] of integer]
create = oper() returns cvt;
s:rep
s.ns:=0
return s
end
push = oper(a:cvt, x:integer)
ifa.ns =100
then overflow error
else begin a.ns := a.ns + 1
a.s[a.ns] := x
end

I

370 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1981

end
pop = oper(a:cvt)
ifa.ns=0
then underflow error
else a.ns :=a.ns — 1
end
top = oper(a:cvt) returns integer
ifans=0
then stack empty error
else return a.s.[a.ns]
end
empty = oper(a:cvt) returns boolean
returna.ns =0
end
end stack

Having defined the stack cluster, the programmer can declare vari-
ables of type stack, e.g., b:stack.

The first line of the stack definition states that the operations
available to stack users are push, pop, top, and empty. The operation
must be prefixed by the type name, e.g., the special operation create
is automatically executed when a variable of type stack is declared.

The line beginning “rep = " specifies that a stack is represented by
an integer array and an integer. This information cannot be used
outside the cluster, thus making the rest of the program representation
independent.

The special symbol evt (convert) means that the variable is of the
abstract type outside the operation and of the representing type inside
the operation.

An operating system example

Suppose we are writing an operating system. Jobs are to be sched-
uled according to their priority (10 being the highest and 1 the lowest).
The next job to be executed is the one with the highest priority. If
there is more than one job with the highest priority, then the one
selected for execution is the one that waited the most (FIFO):

begin {operating system}

Add job j with priority p to the list of
jobs waiting for execution

Wait until there is a job to execute
let j be the next job to be executed

end {operating system}

STEPWISE REFINEMENT PROGRAM DEVELOPMENT 371

To implement the job scheduling we define a cluster called spq (system
of priority queues), with operations add, empty , and next job.

spq = cluster is add, empty, nextjob
rep = array[1 -- 10] of queue
create = oper() returns cvt
s:rep
return s
end
add = oper(s:cvt, job:integer, prty:1 .. 10)
queue$add(s[prty], job#)
end
empty = oper(s:cvt) returns boolean
i:integer := 0
while i # 10 do

begini:=i+1
if queue$empty(s[i]) then return false
end

return true

end

nextjob = oper(s:cvt) returns integer
icinteger := 11
j:integer
while j # 1 do
begini:=j-1
if ~ queue$empty(s[i])
then begin j := queueS$front(s[/])
queue$delete(s[i])
return j
end
end
end
end spq

The cluster spq is implemented in terms of the abstract data type
queue. For example, cluster spq’s operation add uses cluster queue’s
operation add, i.e., queue$add. We refine instructions of the abstract
data type queue by implementing a queue cluster. For this example,
we assume that no more than 50 jobs of the same priority will be
waiting at the same time. We shall use a wrap-around array represen-
tation for the queue in which

(1) an array of size 51 is used; only 50 elements can be stored in the
queue,

(1i) F = L means that the queue is empty,

372 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1981

(iii) mod(F, 51) + L points to the next element in the queue,
(iv) mod(L, 51) points to the last element in the queue,
(v) mod(L, 51) + 1 = F means that the queue is filled.

queue = cluster is delete, add, front, empty;
rep = record[a:array[1 - . 51] of integer; F, L:integer]
create = oper()returns cvt

g.rep
qgF:=0
glL:=0
end

delete = oper(q:cvt),
ifgF=gq.L
then error-empty queue
else q.F := mod(q.F, 51) + L
end
add = oper(qg:cvt, j:integer)
if mod(g.L, 51)+ 1 =q.F
then error-queue full
else begin q.L = mod(qg.L, 51) + 1
galq.L]:=j
end
end

front = oper(g:cvt) returns integer
ifqgF=q.L
then error-empty queue
else return g-a[mod(F, 51) + 1]
end

empty = oper(q:cvt) returns boolean
return g.F =q.L
end

end queue

7.2 Formal specifications of abstract data types

In this section, we consider the formal specifications of abstract data
types. In particular, we take a brief look at the algebraic specification
technique proposed by Guttag."™ Abstract data types are imple-
mented in terms of other data types by the refinement or decomposi-
tion of specifications.

The algebraic specifications consists of two parts:

(i) the syntax—here the operations of the data type are listed
indicating the number of arguments, the argument types, and the
result type.

STEPWISE REFINEMENT PROGRAM DEVELOPMENT 373

(if) the semantics—here axioms are given that relate the values
created by the operations.

In the basic notation which we will use, the operations are functions
without side effects; none of the arguments are changed. Guttag® has
extended the notation to allow for changes in arguments, i.e., to allow
procedures.

We shall present algebraic specifications for the abstract data type
stack considered earlier. We shall then give specifications for an array.
Finally we shall refine the stack operations in terms of array operations.
To keep the specifications as simple as possible, we shall consider
unbounded (i.e., infinite size) stacks and arrays.

Stack specifications:

1. type stack

2. syntax

3. create() — stack

4. push(stack, integer) — stack
5. pop(stack) — stack

6. top(stack) — integer

7. empty(stack) — boolean

8. semantics

9. declare s:stack; x:integer

10. pop(create()) = underflow error
11. pop(push(s, x)) = s

12, top(create()) = empty stack error
13. top(push(s, x)) = x

14. empty(create()) = true

15. empty(push(s, x)) = false

Line 3: specifies the syntax of the create operation. The result of
calling create, which has no parameters, is an object of type
stack.

Line 4: operation push takes as input a parameter of type stack and
a parameter of type integer. It returns a value of type stack.

Line 10: The result of applying the pop operation on a stack that has
just been created is an underflow error. “=" is the equality
operator (not assignment).

Line 11: The result of popping a stack s on which the last operation
was to push a value x is the initial stack s.

These specifications specify the abstract data type completely. For
details on how to construct the specifications, see Ref. 20. We now
give the specification for the type array which will be used to imple-
ment the type stack.

1. type array
2. syntax

374 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1981

3. createarray() — array
4. assign(array, integer, integer) — array
5. access(array, integer) — integer
6. semantics
7. declare a:array; i, j, x:integer
8. access(createarray(), i) = undefined error
9. access(assign(a, i, x), j)
=ifi=j
then x

else access(a, j)

Operation assign(a, i, x) stands for an array whose ith element has
been assigned the value x. Operation access(a, i) stands for the ith
element of a.

We now implement the abstract data type stack by decomposing
stack operations in terms of array operations. We give axioms called
programs that give the effect of stack operations in terms of array
operations.

1. stack implementation

2. syntax

3. STK(array, integer) — stack

4, programs

5. declare a:array, t, x:.integer

6. create() = STK(createarray(), 0)

7. push(STK(a, t), x) = STK(assign(a, t + 1, x),

t+ 1)

o

pop(STK(a, t)) =ift=0
then underflow error
else STK(a, t — 1)
9. top(STK(a, t)) =ift=0
then empty stack error
else access(a, t)
10. empty(STK(a, t)) = (t = 0)

Given the formal specifications for an abstract data type, an initial
inefficient implementation, called the direct implementation, can be
automatically generated.” Thus one can test some facets of a high-
level data type before fixing upon a particular implementation. Thus
a true top-down implementation methodology can be achieved.

7.3 Program correctness

Stepwise refinement provides a natural environment for reducing
the problem of showing the correctness of a large program into showing
the correctness of several smaller programs.

A program is said to be correct if it meets its input and output

STEPWISE REFINEMENT PROGRAM DEVELOPMENT 375

specifications (which may include performance criteria). Alternately,
a correct program is one that transforms a state (i.e., data values)
representing the input specifications into one representing the output
specifications. A program is thus viewed as a specification transformer
(Dijkstra® calls it a predicate transformer). Let

(i) I and O be the input and output specifications for the problem
being solved.

(&f) P, be the initial problem formulation and P¢ the corresponding
final program.

Then we say that P, has been solved correctly if P¢ is correct with
respect to I and O. If P, is a nontrivial problem, then proving the
correctness of P¢ will be correspondingly nontrivial.

Stepwise refinement allows the correctness proof of a program to be
reduced to the correctness proofs of smaller programs. Suppose P, is
refined or decomposed into the subproblems Py, Py, ---, Pi,, with
each P,; having specifications S, and S,+, (So = I and S+, = 0). The
problem of proving P§ correct is now reduced to proving P (0 <i=<
n) correct, where P}, is the program corresponding to P,;. Owicki*
provides an example of such a correctness proof.

In summary, stepwise refinement provides a natural medium for a
difficult proof to be decomposed into several smaller proofs. A proof is
any convincing demonstration of a program’s correctness. However,
the conventional approach to understanding programs in terms of how
computers execute them is inadequate. A more mathematical approach
is needed even if it is used informally.** Alagic* contains many exam-
ples of programs designed with correctness proofs in mind.

7.4 Parallel programs

The development of parallel programs is no different than the
development of sequential programs as far as stepwise refinement is
concerned. Instead of using only sequential constructs, like begin S;,
Sz; ---; s, end in Pascal, we now use constructs for parallel program-
ming,” *® as shown below:

(i) cobegin S,, S,, ..., S, coend
The statements S,, S, ..., S, are executed in parallel.
(ll) when by, — SL,
[]bg hd SL2
(b, — SL,
end

Wait till one of the guards b; is true and then execute the
corresponding statement list

376 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1981

(itt) cycle b, — SL,

(b — SL:
[lb. — SL,
end

Endless repetition of a when statement.
If several guards are true within a when or a cycle statement, then
one of the corresponding statement lists is executed nondeterministi-
cally.

VIll. CONCLUSIONS

In this tutorial, we have tried to illustrate the stepwise refinement
technique, its advantages, and related topics. Stepwise refinement can
be learned easily with some practice. It blends in naturally with the
newer concepts in programming languages and methodology (e.g.,
abstract data types, parallel programming, etc.).

Stepwise refinement does not provide a solution to the problem. No
methodology, old or new, is going to discover algorithms (i.e., problem
solutions) for the programmer. The algorithms must come from the
programmer’s education, experience, and ingenuity.

Stepwise refinement encourages the development of a problem
solution in a systematic fashion that is easy to understand, modify,
and improve upon. The various refinements should not be discarded
once the final program version is arrived at. They are part of the
program documentation. Understanding the final program without
them is hard even if the program is small (e.g., the eight-line final
program version of insertion sort in Section III).

The reader is urged to try stepwise refinement on some problems,
especially large ones.

IX. ACKNOWLEDGMENTS

I am very grateful to the following people for their constructive and
critical comments, which were very valuable. They are (in alphabetical
order) A. P. Boysen, Jr., R. H. Canaday, D. G. Dzamba, A. R. Feuer,
T. B. Muenzer, and D. A. Nowitz.

REFERENCES

1. W. A. Wulf, “Alphard: Toward a Language to Support Structured Programs,”
Computer Science Dept. report, Carnegie-Mellon University, Pittsburgh, Penn.,
April 1974

2. F. P. Brooks, The Mythical Man-Month, Reading, Mass.: Addison-Wesley, 1975.

3. C. Alexander, Notes on the Synthesis of Form, Boston; Harvard University Press,
1970.

STEPWISE REFINEMENT PROGRAM DEVELOPMENT 377

. N. Wirth, “Program Development by Step Refinement,” Commun. ACM, 14, No. 4

(1971).

. K. Jensen and N. Wirth, Pascal User Manual and Report, New York: Springer,

1974,

. E. W. Dijkstra, A Discipline of Programming, New Jersey: Prentice Hall, 1977.

. M. A. Jackson, “Information Systems: Modelling, Sequencing, and Transforma-

tions,” Proc. Third Int. Conf. Software Engineering, Atlanta, Ga., 1978.
D. Gries, “A Note on Iteration,” TR77-323, Department of Computer Science,
Cornell University, Ithaca, NY.
. G. D. Bergland, private communication.
. D. Gries, “Recursion as a Programming Tool,” TR75-234, Department of Computer
Science, Cornell University, Ithaca, NY.

11. S. Sickel, “Removing Redundant Recursion,” Technical Report, Information Sci-
ences, University of California, Santa Cruz, Calif., 1978.

12. C. A. R. Hoare, “Quicksort,” Comput. J., 5, No. 1 (1962).

13. D. Parnas, “On the Design and Development of Program Families,” IEEE Trans.
Software Eng., March 1976.

14. R. H. Canaday, private communication.

15. J. I&I Morris, Jr., “Types are Not Sets,” ACM Symp. Princ. Prog. Lang., Boston,

ass., 1973.

16. B. Liskov and S. Zilles, “Programming with Abstract Data Types,” Proc. SIGPLAN
Symp. Very High Level Lang., Santa Monica, Calif., 1974.

17. B. Liskov, “A Note on CLU,” Computation Structures Group Memo 112, MIT
Project MAC, Cambridge, Mass., November 1974.

18. B. Liskov et al., CLU Reference Manual, Cambridge, Mass.: MIT Laboratory for
Computer Science, 1978.

19. J. V. Guttag et al., “Abstract Data Types and Software Validation,” Commun. ACM,
21, No. 12 (1978).

20. J. V. Guttag, “The Algebraic Specification of Abstract Data Types,” Acta Inform.,
10 (1978).

21. J. V. Guttag et al, “Some Extensions to Algebraic Specifications,” Proc. Lang.
Design for Reliable Software, March 1977.

22. 8. Owicki, “The Specification and Verification of a Network Mail System,” CSL
TR-159, Computer Science Lab. Report, Stanford, California (1979).

23. D. Gries, “On Believing Programs to be Correct,” Commun. ACM, 20, No. 1 (1977),
pp. 49, 50.

24. S. Alagic and M. A. Arbib, The Design of Well-Structured and Correct Programs,
New York: Springer, 1978.

25. P.(Br';gch Hansen, “Structured Multiprogramming,” Commun. ACM, 15, No 7

1972).
26. P. Brinch Hansen, “Distributed Processes: A Concurrent Programming Concept,”
Commun. ACM, 21, No. 11 (1978).

o® ® =N, o A&

—

378 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1981

