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Closed Markovian networks of queues that have the product form
in their stationary probability distributions are useful in the perform-
ance evaluation and design of computer and telecommunication
systems. Therefore, the efficient computation of the partition func-
tion—the key element of the solution in product form—has attracted
considerable effort. We present a new and broadly applicable method
for calculating the partition function. This method can be applied to
very large networks, which were previously computationally intrac-
table. Most of the paper details applications of this approach to a
network class which arose in modeling an interactive processor. We
show that the partition function and derivatives such as mean values
(response times, cPU utilizations, etc) may be represented by integrals
and their ratios. The integrands contain a parameter N which is
large for large networks. Next, the classical techniques of asymptotic
analysis are applied to derive three main power series expansions in
descending powers of N to correspond to normal, high, and very high
usage. This work emphasizes multiple terms in the expansions for
precision and error analyses.

I. INTRODUCTION

The theoretical results on the product form of the stationary distri-
butions of large classes of Markovian queuing networks continue to
have a profound influence on computer communications, computer
systems analysis, and traffic theory." These results make at least
feasible the analysis and synthesis of the large systems of ever increas-
ing complexity being considered in these areas. The subclass of closed
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networks of queues is more difficult to analyze than the open networks
because there is no stationary independence of the network nodes.
However, the incentive for investigating the closed networks does exist
since they have been used to model multiple-resource computer sys-
tems,”® multiprogrammed computer systems,®® time-sharing,? and
window flow control in computer communication networks;*!° net-
works with external inputs subject to blocking require the analysis of
a large number of closed networks.'"'* The closed network model that
we shall use for illustrative purposes arose in the modeling of a central
processor in a node of a computer network. This network is subject to
a variety of processing demands. In recognition of the utility of closed
networks, considerable research and commercial interest has been
directed towards developing efficient procedures for computing the
partition function (the normalizing constant), the only element of the
product form solution requiring significant computation.'®'®

However, as these existing recursive techniques are applied to the
problems of particular interest in the Bell System, wherein the con-
stituents of the closed chains are many and the number of chains are
many, their shortcomings are observed to be severe in the amount of
computing time and memory required and the accuracy attained. A
more detailed account appears in Section 2.4 and Section IX. Briefly,
the existing recursive techniques are largely ineffectual.

We present a new way to view the problem, which surmounts many
of the difficulties associated with large networks. The approach is
broadly applicable—as indicated in Section X—even though the paper
is a detailed account of applications to a specific class of closed
networks. The new approach consists, first, of recognizing that the
partition function may be written as an integral with a large parameter
N present in the integrand to reflect the large size of the network.
Next, the classical techniques of asymptotic analysis are applied to
derive an asymptotic power series, typically in descending powers of
N. The integrand will have fundamentally different properties in
different ranges of the system parameters and this will require corre-
spondingly different expansions. Thus, in this paper we develop three
separate series expansions—Proposition 3 (Section IV), Proposition 12
(Section VII), Proposition 17 (Section VIII)—each corresponding to a
specific range of values of the usage parameter a. It is worth empha-
sizing that, commensurate with an objective of providing solutions
with any desired accuracy, we give procedures for generating multiple
terms in the asymptotic expansions, not just the dominant term. In
Section VIII, we unify the preceding results by giving a common
expansion that holds uniformly in the system parameters. The uniform
expansions introduce in a natural way the parabolic cylinder (or
Weber) functions, a classical family of special functions with many
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antecedents and ties with other special functions." Besides duplicating
the specialized expansions derived earlier, the uniform expansion
makes available for use the many well-documented and tested expan-
sions that are known in connection with parabolic cylinder functions.

Section IX describes a user-oriented software package that has been
written in C-language to implement the approach developed here. We
supply results obtained by the package on four test problems that
arose in analyzing performance of a Bell System project. Also reported
are the results of a comparison with a well known, commercially
marketed package that obtains solutions recursively. Our package is
able to solve the large problems, which are well beyond the range of
the other package, and, surprisingly, solve the small problems as well
with errors that have small bounds.

Section X provides the basis for extending the approach developed
here to quite general multiprocessor, multidiscipline queuing networks.
We show that for most networks that have been shown to have the
product form in their stationary probability distribution, the partition
function has an integral representation. The expansions appropriate
for its computation are not considered here.

Not surprisingly, the new representation of the partition function as
an integral—the starting point of our computational procedures—may
be exploited anew to derive analytical estimates and bounds of the
quantities of interest, such as throughput, mean response time, etc.
We demonstrate particularly in Section 5.3 that these formulas explic-
itly exhibit the system parameters and as such are rather useful as
design and synthesis aids. (The bounds are also useful as checks on
the computational procedure.) Purely computational procedures by
themselves do not yield this particular form of insight into system
behavior.

The asymptotic sequences used typically are power series in N/,
where recall N is the generic large parameter.* Thus, the number of
terms required to achieve the desired accuracy decreases with increas-
ing N. In contrast, with recursive solutions the computational com-
plexity grows with the network size. Also, the asymptotic methods
handle increased numbers of classes of constituents with little incre-
mental difficulty, while the computational complexity in recursive
methods grows geometrically. Thus, the contrasting techniques are
not replacements for each other but complementary: loosely speaking,
the recursions are most effective for smaller networks, while the
asymptotic expansions are most effective for large networks.

The contrasting behavior with respect to a large number of classes
is of particular importance in computer communications where, as
Reiser,? Schwartz,® and others have pointed out, traffic corresponding
to each source-destination pair is treated as a separate class and the
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network closure follows from the windows employed in flow control.
Reiser has developed heuristics to cope with this situation.

References 11, 15, and 16 also contain results pertaining to large
networks.

Il. NETWORK MODEL AND KNOWN RESULTS
2.1 Model

In the model (see Fig. 1) each constituent, which may be thought of
as a terminal or station, of the closed network spends alternating
periods of time in the two nodes that constitute the network—the
‘think’ node (also node 1) and the ‘cPU’ node (node 2). The think time
in each cycle for each constituent is an independent random variable
with an exponential distribution. The time spent in the cPU node
depends on many factors since it is here that there occurs interaction
between constituents being serviced. We stipulate that the cpu disci-
pline is ‘processor sharing’* and that the desired service time (i.e., the
time required to service the job if the entire cPU was dedicated to the
job) is an independent exponentially distributed random variable.!*
The ‘think’ node is thus an c«-server center and in the terminology of
Ref. 4, nodes 1 and 2 are respectively Type 3 and 2 centers.

We stipulate that there is sufficient statistical inhomogeneity
amongst the constituents to justify the existence of several, say p,
classes of constituents, with class i having K; constituents, 1 < i < p.
Statistical homogeneity applies within a class in that p;; and p;z will
respectively denote the mean think time and the mean desired service
time that are common to all in class i. The variations among these
mean values may be quite substantial.

Our involvement with this model arose while modeling behavior of
traffic through a processing node of a computer network. The number
of classes of constituents is at least five, namely, time sharing; inquiry/
response and data-base query; batch and remote job entry; messages
and broadcast; data entry/collect and screen type jobs. The mean
values {p;;} are obtained from benchmark measurements. In another
variation of this problem, a finer classification of constituents was
considered. Our interest is in cases where the individual class popula-
tions {K;} extend to several hundred, while the number of classes is of
the order of ten.

* In the processor-sharing discipline there is no overt queuing because all, say n, jobs
present in the node simultaneously receive service at 1/n times the rate given to a single
Jjob by the processor. Thus, the rate given to a single specific constituent fluctuates with
time. This discipline is the limiting case of the round robin discipline as the time
quantum given to each job becomes arbitrarily small.
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Fig. 1—(a) There are p classes of constituents—shown as terminals—with K; constit-
uents in class j. (b) Constituents spend alternate periods of time in the think node and
processor-sharing CPU node.

2.2 Product form solution

If N, is the stationary random variable denoting the number of
constituents of class i in node j, and if = is the following stationary
probability m(ni, -+, np; Rz, =+, Np2) = Pr{Nu=ny, -+, Npm =
npy; Niz = nag, « -+, Np2 = np2], then it is known that with the left hand
side abbreviated to m(n,, nz),*

1 LAN L AW pis:

m(m, 1) = FR (H n,-lz) (2 ")(H nm!)’ M)
where G(K) = G(K,, Ks, --+, K;) is the normalization constant so
chosen as to make the sum of all quantities in (1) equal to 1. Explicitly,

K, K, p (_{fi—m;) P P Mk
GK)= Y .- ¥ (H(TE'TH) (E}m,—)!([[ _PE') (2)

m,=0 my=0 \i=1 k=1 Mk
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The function G(-) defined on the integer lattice in R? is referred to as
the partition function.*

2.3 System performance

A number of interrelated system performance measures are obtained
from the partition function. We start with N;;(K), the mean number
of constituents of class i in node 1 (‘think’), and obtain directly
from (2),

Nia(K) = paG(K - &,)/G(K), (3)
where e; is our notation for the vector with the " component unity
and all other components zero. Thus, G(K — e;) is the partition
function associated with a new population with one less constituent in
the i*® class. From (3) and Little’s theorem applied to class i and node
1, we obtain for the throughput of constituents of class i,

Ai(K) = G(K - e)/G(K). 4)

The mean response time, i.e., time spent in the cPU in each cycle by
class i constituents, is obtained again from an application of Little’s
theorem:

t{K) = K.G(K)/G(K — e;) — pi1. (5)
Finally, the utilization of the cPu by constituents of class i,

w(K) &Y .- 3

™2 r(m, no) = paG(K — e)/G(K).  (6)
Xnj
The important point to note is that all the mean values given in (3)
through (6) are simply obtained from the knowledge of the partition
function estimated at two neighboring points of the integer lattice in
R”. As the above quantities are all closely related, we shall henceforth
consider only the last, {u:(K)}.

Higher moments of N;;, the random number of constituents of class
{ in node 1, may also be obtained from knowledge of the partition
function:

Ni(K) = {phG(K - 2e:) + puG(K — €))}/G(K), (7)
and, for i # j,
NuNj(K) = pappG(K — e; — e)/G(K). (8)

Of course, the moments of {IV;;} are easily derived from moments of
{Na}.

* The distribution in (1) and (2) is also the stationary distribution of other networks.
For example, if node 2 is first-come-first-served with class independent service rate
1/p2, then (1) and (2) with p:2 = p. is the solution.
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2.4 Recursive solutions

The above results explain why the problem of efficiently computing
the partition function has excited so many researchers.”*'"* For the
problem at hand it is easy to arrive at the following recursion by
established techniques:

L P ok
GEK) =Y p2GK —¢e)) + [] ==. 9

J=) -1 K

The boundary conditions are: G(K) = 0 for K Z 0.

Observe that the partition functions themselves can be scaled on
account of the linearity and the fact that only ratios of partition
function values have physical content. By the same token, implemen-
tations of (9), for large K, typically give rise to values which are either
very small or very large leading to rather severe problems of overflow
and underflow. Proper scaling is only marginally helpful.

The main problems with implementing (9) are with respect to time,
memory required during computation, and accuracy. A straightforward
application of (9) would require an estimated K” iterations, where K
is the generic class size. Similarly, the storage required would be
approximately K”~'. Now these crude estimates can clearly be im-
proved upon by simply pruning or avoiding the computation of inter-
mediate lattice points, but this would be at the cost of increased
algorithmic complexity, and the extent of the accrued benefits are not
generally known. The underflow/overflow phenomenon that affects
the accuracy of the scheme has already been commented on; a no less
severe problem is accumulation of round-off errors in a large number
of iterations.

The recursive solution in (9) is one of several that can be generated
by recently discovered techniques. However, all solutions that we are
aware of are recursive and share to varying degrees the three broad
categories of limitations just discussed.

Ill. INTEGRAL REPRESENTATIONS
3.1 Partition function

We start with Euler’s integral
n! = J’ e ‘t"dt. (10)
0

Substituting for the middle term in braces in (2) we obtain*

* If the range of integer subscripts is not stipulated explicitly, then the range is
understood to be [1, p].
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= K, K, Ki—m; .
- -t % ' pii (pj2)™
G(K)—L e X 3 (H (K,-J—mj)!)(H o )dt

P

= 1 we_, K, - E‘ H K; {r-—mj( o) ™idt
~{IIKY J, m§=o. m; Pt ien

m,=0
1 [C ., B
T KD . e " [I (pn + tpj2)™dt. (11)

To obtain our final form for the partition function, let N be the
generic large parameter to be associated with a large network. Also,
forj=1,2, ... p,let

K;= BN, (12)
o d mean think time _ P
’= mean service time ;s P2
class j
= y,N. (13)

The suggestion in this notation is that {8;} and {y;} are 0(1), which is
the situation to which our work is primarily directed.

There is considerable latitude in selecting N. The following choice
is certainly not essential but as it does ease some of the manipulations,
we use it throughout the paper:

N = ([] rf)"VZ5, (14)
An implication of this choice of NV is that
Y Bjlogy;=0. (15)

We return to (11) to observe
‘_Kj- - -
GEK)=(MM22) | e*[10; + t)%de
K}) ,

I{}_ oo
=(H %) N f e [y, + 2)%%dz. (16)
-y 0

Finally, we have after using (14),

Proposition 1:

KN [

G(K) = (N]'[ ﬂfl) f e Ny, a7
K] J,

where f(z) 4 z— Y Bilog(y; + 2). O (18)
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We shall see that typically there is no need to compute the term in
braces in (17).

3.2 Representations of mean values and some higher moments

We have two options concerning representations of the physically
interesting quantities in (3) through (7). Concerning ourselves with
u;(K) given in (6), we may simply use the respective integral represen-
tations for G(K — e;) and G(K) and obtain forzi=1,2, ---, p,

N Jm e Vo,
Bi o

ui(K) = = , (19)
. N J' e NfEgz
0

Yi

where N and f(-) are defined analogously to N and f(-) but for a
network with one less constituent in the i*" class. Obviously N and N
as well as f(-) and f (-) are going to be close to each other, but the
above option takes no further notice of this fact.

In the contrasting option, we proceed as follows. Observe that

1 GEK+e)

E—————G ® (20)

u;,(K + e,-)'l =

Now, from (16),

Ky e
y o P2 ;3 A -t Y7
GK + e) X+ 1 (H K,-!) L (ri + t)e I,I (r; + t)"idt

K; £
—_ P2 2 17 Pit . —~Nf(z)
= N II L P + ,

K. +1 ( Kj!) J; (i + 2)e dz (21)

where to obtain the last equation we have proceeded just as we did
from (16) to (17). The point to note is that in the above expression N
and f(-) are identical to that used in the expression for G(K) in (17)
and (18). Finally, from (20),fori=1,2, .-+, p

Proposition 2:

j ze Mgz
1 0

= Yit—=
Bi+1/N J' N
0

Notice that the ratio of integrals, the only quantity requiring significant
computation, is common to all classes.

d (22)

u:(K + e,')_l
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The higher moments given in (7) and (8) have similar representa-
tions which are easy to derive. We give the form for one term that
occurs in (7) which reveals the general pattern:

1 GK+2) 1 1
pa  G(K) N2 y(B: + 1/N)(B: + 2/N)

J’ ZE—Nﬂz)dz J’ zze—Nf(z)dz
0 V]

¥i + 2vi + . (23)

I e NI J e Mg,
0 0

The feature to note is that the " moment involves integrals of the
form [§ z/e “dz, j=0,1, ---, 1.

3.3 Properties of the function f

We shall later need to recall certain properties of the function f(2)
in (18), z = 0. As a consequence of (15),

f(0) =0. (24)
Note
f2)= 1= B/(vs+2) fori=1
(1) - 1Y Bi/yi+ 2 fori>1, (25)

and the following alternating sign property that holds for i =
2! 3v ]

(=1)'f=z) >0, z=0. (26)
Also, fori=2,3, ---,
2| < |f0)], z2=0. 27

As the second derivative is positive in [0, ), the function is always
convex.

Let us view the function f(z) in the interval y. < z < o, where
¥m & —min;y; (see Fig. 2). As the figure indicates, the derivative of the
function tends to o« at both ends of the interval. Coupled with the
convexity and the other already established facts, it follows that the
function has a unique stationary point, a minimum, in (yn, ©). As in
the figure, we let Z denote this unique stationary point.

This stationary point may be obtained as the unique real solution in
(Ym, ) to the equation

P .
5 Bi _.
m1Yitz
Thus, the largest real root of a polynomial of order p gives 2.
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Fig. 2—Sketches of the function f(2).

It will be important for us to distinguish the cases Z <0 and Z=0.
The slope of the function f(z) at the origin effectively indicates which
case holds: the first if the slope is positive and the second otherwise.
Thus, a key parameter of the system is

ald —fP0) =Y Bi/vi—1

=Y Ki/ri— 1. (28)
From the previous discus;ion we thus have that
Bg! f(2=f0) if a<0

=f(2) if a>0. (29)

Equation (29) summarizes the background on the stationary point
as needed for most of the paper. For example, Z is needed only if « >
0. However, Section VIII is exceptional in that, while considering small
possibly negative a, the corresponding stationary point Z is required to
be known. Note that as a — 0, 2 ~ a/Y. Bi/¥}.

The parameter a, a > —1, is an indicator of the traffic intensity,
with increasing a corresponding to higher traffic intensities. Our re-
sults, theoretical and numerical, show that a = 0 corresponds to heavy
usage corresponding to close to 100 percent utilization of the cpu.
‘Normal’ usage in large networks will certainly require a < 0 and in all
likelihood a will not be close to 0. For this reason, the most compre-
hensive results given here are for the case a < 0.

IV. ASYMPTOTIC EXPANSIONS FOR NORMAL TRAFFIC
Throughout Section IV we shall consider « < 0.
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4.1 Laplace’s method

We shall first apply Laplace’s method'**** to obtain asymptotic
expansions (see Appendix A for notation) for the integral in the
representation of the partition function in (17), and subsequently to
the other integrals in (22) and (23). Laplace’s method observes that
when N is large, the minimum of Nf(z) at z = 0 is very sharp and that
the dominant contribution to the integral comes from the neighbor-
hood of 0.

In the integral

I= j e Mgz, (30)
0
let us change variables,
ul f(z), (31)
so that
I= j e (d_) du. (32)
0 du

To obtain dz/du, let us begin with the power series convergent in the
neighborhood of 0,

u=f) =3 fie, (33)

where f; = f(0)/)!. Standard procedures allow the series to be
reversed, i.e., give z as a power series in u. Appendix A elaborates on
this procedure and explicitly gives the leading terms. Let the series
obtained by this procedure be

24 gu)=Y g, (34)
j=1
so that
dz .
— !
I Eﬂ a;uw’, (35)

where a; = (j + 1)g;+1. Substitution of this series in (32) yields
I~ a,-j e Mu'du
j=0 o
and thus

Proposition 3:

ey -
I~YLZ s Now O (36)

i=o Nj+1
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The leading three terms of the series are obtained from
a=1/f; a=-2f/f a@a=3@2f- fifs)/fi. (37

The proof that (36) is an asymptotic expansion is available from
various sources.*?**? Indeed an explicit proof is available from the
bounds that we develop in the following section in the course of an
error analysis. Nonetheless, we sketch a proof based on Watson’s
lemma? applied to the integral in (32)—the lemma is anyhow used
later. Watson’s lemma considers the integral [§ e Mh(u)du in which

({) A(u) has a convergent power series expansion in the neighbor-
hood of the origin, and

(ii) there exist constants c;, ¢z such that | A(t) | <c:e™ for £ =0, and
asserts that an asymptotic expansion for the integral is obtained by
replacing h(u) by its power series and integrating term by term. Thus,
series reversion to obtain dz/du and a subsequent application of
Watson’s lemma gives the asymptotic expansion in (36).

The reader will note for future reference that the asymptotic expan-
sion in (36) may also be written as

I~7Y g”0)/N’, (38)
i
where g(-) = f~'(-), as follows from (33) and (34).
Asymptotic expansions of integrals of the form I® = [§ z*™?dz
follow with only slight modifications. Thus, in lieu of (32) we now have

W= g z‘*E du. (39)
A du

In principle, it is straightforward to obtain a power series for (z*dz/
du), which is convergent in the neighborhood of 0 from the power
series in (34). Using the following as the defining relation* for the
sequence {a{*},j=0,1,2, ---,

k
A% ( )y g,-uf) (2 (+ 1)g.f+1uf) =¥ a/u™,  (40)

du Jj=1 Jj=0 j=0

the asymptotic expansion for the integral is obtained after term-by-
term integration, giving

Proposition 4:

™= j 2te™MOdz ~ ¥ (j + R)la" /N7 (41)
0

j=0
as N—oow O

* In this notation, the sequence {a;) in (35) and (36) is {a;”}.
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Let us consider in greater detail the expansion of the integral IV =
% ze V®dz, which will be needed if (22) is used to compute the mean
values. We have derived the following recursive formula which effi-
ciently generates {a,"} from the coefficients {a,”} that are needed
anyhow for the expansion of I: for all j = 0,

J+1
(1) (0) 0
a; = hX aj-k+la.(k—)1/k- (42)
k=1

In particular, the leading three terms of the expansion of I'" are
obtained from,

a =1/fs  al"=-3f/f ai’ =201 - 2hf)/fF.

We have derived, but omit to give, a more general recursive for-
mula—of which (42) is a special case—for generating {a}**"} from

(a}").

4.2 Asymptotic expansions for the utilizations

As discussed so far, both of the two options stated in Section 3.2 for
representing the mean values [see (19) and (22)] require the develop-
ment of asymptotic expansions of two separate integrals and the
subsequent computation of the ratio. Here we observe that a single
asymptotic expansion exists for the mean values. The un-
derlying reason is that the asymptotic sequence {N7}, j =
0,1, - --, form a multiplicative asymptotic sequence.'**

In particular, if as in (36) and (41),

o (0) (0) (0)
_ Qg a as
e Mgy o 2 2+ ..
o N

N? N?
and
bl (81} n (1)
J’ ze NGy ~ 20 2_!"§_ + 3!Lf ...
’
. NN
then

J' ze N dz
0 bj

~ _—

—~ X
_ . jalN
f e .Vf(_Idz
0

where the sequence {b,} is obtained by formal substitution.
The following gives the leading terms for the utilizations derived by

the above procedure.
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Proposition 5:
Fori=1,2 ...,p,as N— o0,

A A A
(ui(K + e)) (B + 1/N) ~ vi + W‘ + Fi + ﬁ}, (43)

where
A =—-1/a; A:z=4f/a® As=—40fi/a’ —18f;/a’. O

In accordance with an earlier observation, all terms of the asymptotic
series other than the first are independent of i.

Proposition 5 contains a justification for treating the parameter a
[see (28)] as an indicator of traffic intensity. Using only the dominant
term,

{(wi(K + e)} ™' ~ vi/B: (44)
and
utilization of cPU = ¥ ui(K) ~ 1 + a. (45)

A necessary caveat is that the above, as indeed all results in this
section, has been derived for the assumption a < 0.

Since the utilization as given by (45) can come close to unity even
with a < 0, (45) justifies another earlier statement that for large
networks normal usage will not extend beyond the range a < 0.

V. ERROR ANALYSIS AND PERFORMANCE BOUNDS FOR NORMAL
TRAFFIC

Maintaining the restriction « < 0 placed in the preceding section, we
supplement in two directions the results obtained so far. First, we
obtain essential results on the error incurred in truncating the expan-
sions. These results containing information extending beyond what is
required as proof of asymptotic expansions are needed for very prac-
tical reasons, such as to know how many terms to use and, more
importantly, to help define the regime of applicability. In the second
part of the section, certain rather special properties of the functions in
the representations are used to derive analytical bounds on the net-
work performance measures.

5.1 Completely monotonic functions

The following result on the function g(-) = f~!(-) is key to much of
the error analysis:

Proposition 6:

(-1)’g(u) <0 for u=0, j=1,23, -.-- 0O (46)
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An inductive proof is given in Appendix B. By virtue of this result,
£'7(-) is a completely monotonic, or alternating, function (see Ref. 23).
The importance of this property stems from the role of g (u) = dz/
du in the integral representation (32).

5.2 Error bounds

In connection with the expansion of the integral I in Proposition 3,
let R,, denote the error that accrues if only the leading m terms are
used, i.e.,

m—1 m
Rn=1- Y jlaf?®/N*'=1- ¥ g“(0)/N-. (47)
Jj=0

Jj=1

Now by the mean value theorem,” for each u there is a £(u) in [0, u]
such that

gVu) = E g 0u/ (G = D! + g™ (Hu"/m! (48)

j=1

On substitution in (32),

I= E g’(0)/N’ + R, (49)
=1

J

where

Rn= $ J’ e Mg E(u)}umdu. (50)
*Jo

A simple corollary to (50) and Proposition 6 is

Proposition 7:

R.>0 if miseven,
<0 if misodd. O

This, of course, means that the terms in the asymptotic expansion
alternate in sign and that the partial sums of the asymptotic expansion
alternately over- and underestimate the true value of the integral in
the following manner.

Proposition 8: For m even,

m = m+1
5 g90)/N' = f e Mgz < Y g9(0)/N. O
i=1 0 =1

The above is quite useful since in most situations the designer would
much rather overestimate than underestimate a measure such as cpu
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utilization. In this context, both the upper and lower bounds are
required since ratios of integrals occur in the measures.

An implication of Proposition 6 is that |g™*(¢)| < |g™*"(0)],
¢ > 0, which together with (50) gives

Proposition 9:

Rn < g™M(0)/N™' if miseven

> g™ (0)/N™! if misodd. O

The above propositions thus state that the error is numerically less
than the first neglected term of the series, and has the same sign. In
particular, we have an explicit proof that (36) constitutes an asymptotic
expansion. More generally, the above results show that, on account of
the specialty of the integral, the main results that we require from an
error analysis are already present in the expansion.

It is useful to examine in detail g2’(0) and thence the bound on Rj:

|Rs| < (bs|a|* + 10|a| b2bs + 15b3)/(|a|'N*), (51)

where b; = (i — 1)! ¥ B;/v;. (A look at the proof in Appendix B will
convince the reader of the presence of |a[*"*'N™" in the denominator
of the bound for |R.|.) The bound does make the suggestion that in
cases where a is so small [i.e., utilization is very large, see (45)] that
a2N is itself small, then |R;| is large. More generally, in the case of
small o2N, the number of terms in the series requiring computation to
meet specifications on the accuracy may be large. Later we return to
consider this case further.

5.3 Bounds on mean values

The following bounds which supplement the computational proce-
dures are presented to serve as aids in design and synthesis. For i = 1,

2, -+, D
Proposition 10:

o Yi _
|:{u,-(K + e)) —m](ﬁg + 1/N)

1+ V1 + 8fz/a’N
2|a|N

’ (52)

Sl (1 - 2 ) (53)
2f 1+ V1 + 16f2/(wa®N)
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Recall that 2f; = f®(0) = ¥, B;/y} while a (here a < 0) and N are as
given in (28) and (14).

To prove Proposition 10, we may use the representation in (22) for
u; in which case it remains to bound from above and below the pair of
integrals appearing there. This is done in Appendix C by making use
of the sign properties of the higher-order derivatives of the function
fle).

Notice that as N — oo, the upper bound in Proposition 10 on
{u:(K + e;)} ! approaches {y: — 1/(aN)}/(8: + 1/N), the sum of the
leading fwo terms of the series for u; in (43). Also, as N — o, the
expressions in (52) and (53) both approach 0.

VI. EXPANSIONS FOR THE CASEa =0

At the end of Section 5.2, we commented that the expansions given
earlier may require a large number of terms in regions where a = 0.
For this case, we here generate a somewhat different and more efficient
series. We shall, however, be quite brief in our exposition because the
uniform asymptotic expansions to be derived in Section VIII also allow
appropriate expansions to be obtained. The ad hoc but direct treatment

here is supplementary.
We need notation that is specific to this section. Let

K.-=b,-N+d;-JITf } i=1.92 ...
ri = a/(N + cVN) 1200

Each of the variables {d:} and ¢ may be either positive or nega-
tive. However, as our interest in this section is in « = 0 and as a ~
¥ bi/a; — 1 as N — «, we require that

Y bi/a; = 1. (55)

In a computational procedure the above restriction poses no particular

problem.
Also, we shall mainly consider the integral

(54)

IA([[ri%) I e I] (ri + £)%dt. (56)
1]

Comparison with (16) shows that the integral is related to the partition
function thus:

K;
G(K) = (H %)1 (57)

As previously, the computation of the quantity in parentheses is not
required to obtain the mean values. Our main result is
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Proposition 11: As N — o,
I~ Y ¢/VN/7, (58)
J=0

where the sequence {¢;} is given below. [J

The proof of the proposition is in Appendix D. Here we comment
on some features of the sequence:

¢ = f e A B (v)d, (59)
0

where A = ¥ b;/a? >0 and B = ¢ — ), di/a; and H;() is a polynomial
of degree 3/ in » with coefficients that are fairly straightforward to
obtain. The key point is that A, B as well as the coefficients of the
polynomials are all 0(1), i.e., N does not enter into their definitions.
Results given in Section VIII indicate how the coefficients ¢; given in
(59) may be effectively computed.

We give below the leading three polynomials in the sequence

{H;(»)}:
Ho(») = 1,
H\(») = ¢ — (¥ di/a})v*/2 + (T bi/al)v®/3,
Hy(v) = —c(Y difai)v?/2 + (Y difal + ¢ ¥ bi/a})v®/3
+[(Y di/a)? - 27 bi/al]v*/8
— (Y di/a}) (3T bi/a)v®/6 + (¥ bi/al)*v®/18.  (60)

VIl. ASYMPTOTIC EXPANSIONS FOR HEAVY TRAFFIC CONDITIONS

Here we obtain asymptotic expansions for the basic integral in (17)
and (18) for the case a > 0. For reasons similar to those discussed
earlier for the case a < 0, the expansions to use for « = 0 are in
Sections VI and VIII. Hence, the expansions given below are for
exceptionally heavy traffic conditions, where a is not only positive but
also not close to 0.

7.1 Laplace’'s method

The key difference from the treatment in Section 4.1 is the presence
of the singularity at  (see Fig. 2), which will be assumed to be known.
For large N the dominant contribution to the integral

I= J e Nz (61)
0
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comes from the neighborhood of 2. A Taylor series expansion around
Z gives

@ =f=3 fjz=2Y, (62)
~
where
=2/, =012 ... (63)

In particular, for j = 2,
fi= (-1 [2 Bi/(vi + Z-)jj|/j- (64)

We make the following specific decomposition of I, which is conven-
ient here and even more so in the error analysis to follow with z: as in

Fig. 2,

z 22
eNfuI _ f E—N(I(ZI—fo]dz + f e—N( f(ZJ—ﬂ:}dz
0

F3

+ f e NU@hl gy, (65)

2
Consider the terms in turn starting with the middle term. If we let
uldf2—fo 2=3 (66)
and use the series in (62) for the right-hand side, then we may reverse

the series, as discussed in Appendix A, to obtain

z—ZAgu= § giu'"? (67)

Jj=1

with the coefficient g; depending only on the coefficients f5, fs, - -,
fi. Now,

22 _ —fo
J e NUE@~) gy — J’ e*Nug(l)(u)du
3 o

z

—fo ®
= I e ™ ¥ au""du, (68)
0 J=0
where a; = (j + 1) g;+1/2. The individual integrals in the sum will be
recognized to be incomplete gamma functions.
On returning to (65) and the first term in the right-hand side, we
find by an identical argument that
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i ~fo =
J e~ NU@h) gy = J' e ™ ¥ (=1)aqu""*du. (69)
0

0 7=0

The two integrals in (68) and (69) may conveniently be combined to
give

—fo oo il
e”f“I-—-J’ e Y 2ayu’"*du +J e NU@-hlgy, (70)
1] J=0 2

At this stage, the following two approximations are made, with their
effects bounded in Section 7.2 in the course of the error analysis: the
integration interval in the first term is extended to [0, =) and the
second term is ignored. Nonetheless, the error analysis shows that

I~ e'N’:’J’ e™ Y 2ayu’"*du, (71)
0 i=0

giving Proposition 12.
Proposition 12: As N — o,

I= f e MWdz ~ e™Vh Eﬂ 20(j + %)agy/N"2 O (72)
o j=
Recall that I'(}2) = Var and forj=1,2,---,
T(j + %) = ¥ [[4=1 (i — ).
We give the leading three coefficients:
ao = (%) /f3?,
az = (%) (153 — 1202 fu) /77,
as = (%se) (—64f3fs + 224f3fsfs + 1127313
— 504f>f3f: + 231f3) /5. (73)
The procedure for obtaining the asymptotic expansion for the
integral
"= J " oM (74)
0

is similar. Notice

IV = 2I) = e J (z — 8)e N /@-hlgg; (75)
o
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we find it convenient to expand the integral on the right-hand side.
The expression analogous to (71) is

o

(Im _ éI) ~ e—NEJ e“N“ E ZQ%LIuj_lﬂdu, (76)

0 J=1

where, forj=0,1,2, ...,
J+l

1
a’ == ¥ kgi-r28m (77)
243

which is to be compared with the expression for a; following (68). The
following is a useful formula for efficiently generating the sequence
{a'"} from {a;}, which is needed anyhow for computing I

J
a =2 k);ﬁ airar/(k+1), j=0,1,2 ... (78)

Recognizing the gamma functions in (76) gives Proposition 13.

Proposition 13:
. o= 1 _
IV = 2 ~e™Nb ¥ o1 ( j+ 5) ay) /N2 (79)
J=1

as N — o, [

The asymptotic expansions in Propositions 12 and 13 may also be
combined, as discussed earlier in Section 4.2 to yield an asymptotic
expansion for the mean values. In particular, we obtain Proposi-
tion 14.

Proposition 14: As N — o,

{u(K + )} '(Bi + 1/N) ~ (yi + 2) + % + %,
where
A= =3f/4f3,
Ay = (6 fafi — 15f3f:/8 — 135f3)//3.0 (80)

7.2 Error analysis

The analysis to be presented supplements the result in Proposition
12 and the error estimates to be given provide guidelines for the use of
the expansions. The broad outline of the analysis have been suggested
in Ref. 23.

As in Section 5.2, let R, denote the error incurred when only n
leading terms of the series in Proposition 12 is used, i.e.,
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. n—1 1 .
R.=I-e ™ ¥ T (j + — | 2a0;/N7*2, (81)
j=0 2
For I we will use the expression given in (70) and decompose the error
R, thus

R, = —€,1(N) + €n2(N) + €s(N), (82)
where
Y e n—1
€1(N) = e'"f°J e N (Z 2a2,-uf""2) du, (83)
i =)
_ _fU -]
ena(N) = ™ J " (,2 2az,-u"_”2) du, (84)
o =n

es(N) =J e Nz, (85)

2

Thus, the three terms on the right-hand side of (82) respectively
denote components arising from the extension of the integration inter-
val from [0, —f] to [0, =) in (70) and (71), the use of only n leading
terms from the infinite series in (71), and the neglect of the second
term in the right-hand side of (70). Each component is now bounded.

To bound €,1(N), we make use of known bounds on the incomplete
gamma function:*

J’ E—Nuuj—l,fzdu =T (J + %, - Nfo)/NjH/sz

0

Nfy j+1/2
< e (leol) N for n]ﬁ,|>max(f-%,0)-
NfHﬂ{Nl fol — max (f' ~ 3 0)}
Thus,
2 " 41
(V)| S e . ARTe 86
N =, % laal 1A o

where 8, = max(n — 3/2, 0).
In bounding €,2(N), we will postulate the existence of a finite valued
o, with the property that

< |2as.|u"" e, 0 <u<|fol. (87)

* -
Y 2axu’?
j=n

This approach fails when o, is infinite but the characteristics of the
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integral and the specific decomposition (65) that has been employed
preclude this possibility. Let

o, = max Y,(u), (88)
lul<|fol
where
1 E 2azju”1’2
Ynlu) = ; In W‘ (89)

Small u is where (see Ref. 23) the danger of unbounded o, is usually
most manifest. However, as

2

a. a2n a

Yn(2) ~ 2n+2+( 2n+4 2:+2)u+--- (90)
2n aan Qan

when u — 0%, no problem arises here.
Using (87) in the defining expression for €,2(N) in (84)

 fal
|€n2(N)| < eV h| 2as,| f e~ Wmonhu yyn=172qy
0

= e M| 2ay,|T(n + %) /(N — 0,)"2. (91)

The last term to be considered from (82) is e3(IN). We use the
following property.

f(2) = f'(z2)(z — 22), z= 2z, (92)
which yields

|ea(N)| = (93)

1
Nf'(z2)’
a small quantity compared to the right-hand side of (91). This con-
cludes the process of bounding the components of the error term R.,.
A corollary is the proof to Proposition 12.

The bound in (91) is the largest component in the error bound. In
examining (91), we observe that the condition in which the bound is
large is when az,/N" is large. Now the expression for as. contains in
the denominator a term f3"*/%, as (73) attests. Thus, whenf3N is small,
we expect the asymptotic expansions in Section 7.1 to be inefficient.
We return to this case later in Section 8.2, where this as well as the
similar difficulty encountered in Section 5.2—where a was negative
and small—is treated in a unified manner.

VIll. UNIFORM EXPANSIONS

This section has two objectives. The first is to show that there is a
framework that unifies the expansions in Sections IV, VI, and VII.
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This consists of showing that the integrals of interest may each be
given by a common expansion valid uniformly for the entire range of
values of the system parameters. These expansions turn out to be in
parabolic cylinder (or Weber) functions.'**** The advantage derived
is that these classical special functions have extensively documented
expansions for the entire range of parameter values.'** Indeed, using
these expansions we sketch in Sections 8.3 and 8.4, at the cost of some
duplication, derivations of the expansions obtained earlier in Sections
IV and VII for @ < 0 and a > 0, respectively. The second objective is
to derive a computationally efficient expansion for the case « = 0, i.e.,
where the stationary point Z is very close to the boundary of the
integration interval. The error analysis in Sections 5.2 and 7.2 has
shown the need for a separate treatment. The expansion that is
obtained for this case in Section 8.2 is obtained from an appropriate
expansion of the parabolic cylinder functions.

8.1 Uniform expansions in parabolic cylinder functions
Consider the integral

I= j e Nz (94)
0

without restrictions on the parameter a. Following Friedman,* con-
sider a change of variables from z to v given by

v? — 2av = f(2), (95)

where a is a parameter of the transformation to be fixed later. The
objective of the transformation is that the component of the integrand

in braces below
I= J’ g N2 (%) dv (96)
0

satisfy the dual requirements of boundedness and a convergent power
series, as required for an application of Watson’s lemma (see Section
4.1 following Proposition 3). [The reader may verify that the simpler
transformation v = f(2) violates the boundedness requirement when-
ever a > 0 and z = 3 since f”’(2) = 0.] For the transformation in (95),

dz 2(v-a)

% - f(l](z) . 97)
This suggests the selection of the parameter a to be such that v = a
when z = 2, with the accompanying indeterminacy and the possibility
of boundedness of dz/dv. This key clue does indeed give a unique map
of the form in (95) with the desired properties, as summarized below.
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Proposition 15: For z = 0, let

v(z) = a + sgn(z — 2V f(z) — f(2), (98)
where the constant a depends on all the system parameters:
a = (sgn a)v—£(2). (99)

The transformation is monotonic, increasing and maps [0, «) to
[0, o). Also dv/dz is continuous and uniformly bounded. (]

The transformation is used to derive for dz/dv a convergent power
series Y5 Cjv’ in a neighborhood of the origin. This is achieved in three
steps:

(i) Use (98) to obtain

v(2) = A1z + Apz® + Az’ + ... . (100)
(ii) Reverse the series (see Appendix A) to obtain
2(v) = Biw + Bv® + Bv® + .+ . (101)
(iii) Differentiate term by term to obtain
%=CQ+CJU+0202+---, (102)

where C; = (j + 1)Bj+1.
The reader may verify that the leading terms of the sequence {C;}
thus obtained are as follows [recall from (33) the definition f; =

£200)/511:
CG=—||—) £—-1]. (103)
o o

The above tacitly assumes that £ and hence a have been evaluated.
The power series expansion for dz/dv may now be substituted in
(96) to yield

I=YC J' e~ NW-2avy,jq, (104)
J=0 0

The integrals appearing above are simply related to the parabolic
cylinder functions U(-, -); thus: forj=0,1,2, ...,

eNa2/2 !

- -]
—-N(v?-2av) ,jp,
j e v'dv (2N)(j+1)/2
0

U(j + % - an_N). (105)

Expansions for related integrals such as
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I(l) = J' ze—Nf[Z)dz (106)
(1]

are only slightly different. Here the term dz/dv is replaced by zdz/dv,
which has the power series expansion

zdz/dv =Y C'Pv/, (107)
J=1
where, see (101),
CP = E B;_1Ch. (108)

Specifically,
o= (%),
a
SIS

The following summarizes the expansions in parabolic cylinder
functions of the two integrals of main interest, with the expansion
valid for all a.

Proposition 16:

I=J e—Nf(z)dz = 2 CJ’j e—N(uﬂ_zav)vjdv

0 J=0 0

: (1
= eMa /2J§)WU(1+§,-GW). (110)

- -]
IV = J ze N1z

0

ot & JICY -
=e ZWU _]+§,—a 2N, (111)

where the sequences {C;} and {C'} are respectively as obtained by
the procedures in (100) through (102) and (108). Specifically the
leading terms are as given in (103) and (109). O

We should add that the above expansions are not strictly asymptotic
expansions since the parabolic cylinder functions do not satisfy the
requirements of asymptotic sequences for certain ranges of the param-
eter a’N." The interested reader will find in Ref. 27 a description of
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the process for obtaining uniform asymptotic expansions of the inte-
grals. However, we have not found it necessary to undertake the
additional effort required to obtain the coefficients of the uniform
asymptotic expansions. This is because for a®’N small, the case treated
below in Section 8.2 and of main interest, the functions U(j + %, —
av2N), j = 0, have all the desirable properties that are required of
asymptotic sequences.

A noteworthy property of the functions U(-, -) that can be important
in computations is that it satisfy the recursion'

xU(j+ %, x)=U(j— "% x)— (J+ DU + %, x). (112)

8.2 Expansions for the case of a’N small

To motivate the results to be given here, observe that the stationary
point of the curve of f(z) (see Fig. 2) is close to 0 when a is small
(utilization of cpu is high), since

Z2~a/(2f) as 25 0. (113)
On enquiring how the parameter a behaves for small Z and a, we find

from (99) that

2(f),,2+0(a”) as a—0. (114)

Thus, the case of small «, which we know from Section 5.2 requires
special treatment, corresponds to small a.

Small a is also implied by small f; and is therefore also of interest on
account of the discussion in Section 7.2. This follows from

a=:3(f)"?+0(¥) as Z-0. (115)
For small a*N, it is known" that for j = 0,

i e N2, igy, = ——Na ) Ulj+ . av2N
. (2N)(J+l)/2 2’
\/_ 1) 2 (j)
NU+1)/2 []JO + (a\/_).u / (a‘/ﬁ) l-‘éj + -], (116)
where
y JI o2yl . . .. .
#5’ FW(J+1)(J+3)...(J+;—1), 1 even
j! 2(i+l)/2—j—l

=Em(;‘+2)(1‘+4) e (JHE—1), {odd. (117)

In these relations, notice first in (116) the desirable presence of the
powers of N in the denominator. Secondly, in connection with the
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sequence {u!”"}, observe that p{Z3/u”’ = 2(j + i + 1)/{(G + D + 2)}.
Thus, for fixed j, the sequence converges rapidly to 0 with increasing
i. These observations state that when using the expression (116) in the
expansions of Proposition 16, first, it is necessary to compute only
up to small values of the index j and, secondly, with avN small, the
computation of the bracketed quantity in (116) also needs very few
terms.

The following summarizes the important computational procedure
described above.

Proposition 17: For small a®N,

I= \/;jgﬂ N(;C:An/'z [Ea (a\/IT’)‘nE”], (118)
m
"= ‘/"_’El‘ﬁ%f—e [gﬁ (am)‘u.”’]. (119)

where p{” is in (117), and a, {C;}, {C'} appear in Proposition 16. [J

8.3 Expansions for normal traffic

For normal traffic, « < 0 and consequently a < 0. If in addition,
a < 0 or, specifically, a®N > j*, then"

j e—N(vz—Zav)vjdv
0
1 . G+2)!  (j+4)!
~— | 1= + F---|. (120
(—2aN) ™ (J 4(a’N) * 32@N)?E (120)

It can be shown after some manipulations, which we omit, that this
expansion when substituted in Proposition 16 is identical to the main
result of Section IV, namely, the expansion in Proposition 3. The
bridging relation is

(v—a)’=u+d’ (121)
where u is the integration variable in Section IV [see (31)] and v is the

similar variable in the uniform expansion [see (98)].

8.4 Expansions for heavy traffic

For heavy traffic, a > 0, and therefore a > 0. When a*N >> 1 as well,
then'

- ) N i(j—1)
-Nw2-2av) iy, = oNe il J\J
J; e vdv=-e i a + 2N

JU-1DG=-2)(j—-3)
+ P + ) (122)
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Notice the departure from the expressions in (116) and (120) in the
absence of N’ in the denominator.

It may again be established, although not in a simple manner, that
the main result of Section VII, the expansion in Proposition 12, is also
obtained by substituting the above expansion in Proposition 16. The
bridging relation is

v—a)l=u, (123)

where the variable u is as in (66).

IX. COMPUTATIONAL NOTES

The asymptotic expansions of integral representations of various
quantities in the closed queueing networks discussed above, have been
implemented as a user-oriented interactive package on Digital Equip-
ment Corporation’s VAX 11/780 operating under programmers work
bench UNIX* system version 3. The package written in C-language
has about 400 C-language statements and occupies about 60 Kbytes of
storage.

The number of classes and constituents} that the package can
accommodate is so large that in effect no restriction is placed on these
parameters. The other main features of the package are enumerated
below.

(i) The package is user oriented and easy to use. The user is
prompted for relevant problem data. As this is supplied, validation and
feasibility checks are made and the user informed of any errors.

(ii) The output of the package includes all relevant statistics on
each class (response time, utilization, etc.) including the percentage
error incurred in the expansion. As an option to the last named, the
user can display the various terms used in the expansion.

(iti) The package is partly adaptive in that it automatically detects
the divergence of the asymptotic expansion and truncates the series at
the point of divergence.

(iv) Numerical stability is enforced by proper choice of N.

Numerous computational experiments were performed to compare
the efficacy of our package, called ASYM, to the current version of a
popular commercially available package CADS. CADS is marketed by
Information Research Associates and a version of it runs on a VAX
11/780 operating under UNIX time sharing system. The test problems
run on both these packages are real-world problems encountered in
performance analysis of a Bell System project.

* Trademark of Bell Laboratories.
+1In the computer science applications, the class sizes in closed networks {K;} are
referred to as degrees of multiprogramming.
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The results of the experiments indicate that CADS is unable to
solve our moderately sized, closed-queuing-network problems. Two
features that accompany the breakdowns are noteworthy. One is
numerical instability which manifests itself as overflows or underflows.
Recent experience is that rescaling the service rates, an often-men-
tioned device to combat the problem, does not help in substantially
increasing the problem size. This accuracy problem is of course relieved
with the use of more powerful floating-point machines like the CDC
6600 (manufactured by Control Data Corporation) or IBM 3033. The
other feature is the built-in limitations of the package. For instance,
the current version of CADS limits the degree of multiprogramming
for any one class to 100. There is also a limit of three classes.

The above discussion is not intended to disparage the usefulness and
success of CADS. CADS is extremely powerful in solving small
queueing-network problems. Packages implementing recursions, as
CADS does, and implementing expansions of integrals complement
each other and, when integrated, will provide a powerful general-
purpose package.

The computational experiments (see Tables I to IV below) yielded
the interesting fact that the asymptotic expansions are quite effective
(i.e., yield a small percentage of errors) even for small problems,
provided the right expansion is used. This in conjunction with the
linear growth in computation time with increased number of classes

Table |—Results for test problem
No. 1*

Mool Utilization of CPU o Given
gr ing Given by CADS by ASYM
10 0.0417 0.0414
20 0.083 0.0829
30 0.124 0.124
40 0.166 . 0.165
50 0.207 0.207
60 0.249 0.248
70 0.290 0.289
80 Breakdown 0.331
‘90 Breakdown 0.372
100 Breakdown 0.413
110 Breakdown 0.618
150 Breakdown 0.618
200 Breakdown 0.819

* Problem specification:
No. of classes = 1
Think time = 240 seconds
Processing time = 1 second
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Table IV(a)—Problem specification for
test problem 4

. Service  Degree of
Class  Gimime  Satect  Multore
ARS Server for PU for gr i

‘s Clags  This Class fOEThlﬂ

1 0.0033 20.0 5
2 0.033 2 b
3 0.0033 4 5
4 0.033 4 5
5 0.033 4 5
6 0.033 6 5
7 0.033 20 5
8 0.00033 0.6 5
9 0.000556 0.6 5
10 0.0033 0.6 5
11 0.00033 0.2 5
12 0.00055 0.2 5
13 0.0003 0.2 5
14 0.033 1 5
15 0.00033 1 5
16 0.00065 1 5
17 0.0003 1 5

Table IV(b)—Results of test problem 4
output by ASYM

Response

¥ P % Error in
Class Time Utilization )
(seconds) Utilization

1 0.09 0.008 0.05

2 0.834 0.080 0.045
3 0.43 0.004 0.05

4 0.42 0.046 0.048

5 0.42 0.040 0.049

6 0.28 0.027 0.049
7 0.09 0.008 0.05
8 2.85 0.003 0.06
9 2.9 0.005 0.05
10 2.82 0.027 0.05
11 8.530 0.008 0.05
12 8.523 0.013 0.05
13 8.540 0.007 0.05
14 1.63 0.156 0.04
15 1.71 0.002 0.05
16 1.72 0.003 0.05
17 1.71 0.001 0.05
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makes the use of the asymptotic expansions attractive even in cases
where the recursive implementation does not break down.

Tables I and II display the results of problems run both on CADS
and ASYM. Tables III and IV show the results on two large problems
that were not admitted by CADS, but were solved with good accuracy
by ASYM.

It may be observed from Table I that the results from ASYM and
CADS agree rather well, even for small degrees of multiprogramming.
In the cases solved by both CADS and ASYM, a was small and N
(about 240) large. Observe also that CADS was unable to solve cases
with K, larger than 70, even though higher values of K, correspond to
quite low usage of the cpu and are quite interesting.

Table II shows that CADS also broke down on a relatively small
problem with 2 classes and 60 customers in each class.

Tables III and IV display the output given by ASYM for the large
problems. Table III corresponds to a problem where the total degree
of multiprogramming is 3500. For Table IV the total degree of multi-
programming is 85, but there are 17 classes. As shown, the percentage
error in both cases is well within an acceptable range.

In conclusion, the computational experiments suggest that the ap-
proach based on expansions of integral representations is robust,
computationally fast, and to be recommended for a variety of problems,
large and small.

X. GENERALIZATIONS: INTEGRALS IN NETWORKS WITH MANY
PROCESSORS

This section shows that for a large class of closed Markovian
networks, the partition functions possess simple integral representa-
tions. This result provides the basis for future work on the computa-
tions of the integrals from expansions rather like those given in this
paper. The above-mentioned class of networks allows an arbitrary
number of service centers with flexibility in operating disciplines. It is
in fact the same class of networks shown by Baskett et al,, in Ref. 4,
that has the product form in the stationary distributions, except that
we do not allow the service rate in Type 1 centers to depend on the
number in queue. (T'o some extent this is only for convenience because
for some specific and interesting dependencies, we have obtained the
integral representations.)

The representation of the partition function that is obtained is as a
multiple integral, i.e., as an integral in Euclidean space of dimension g
where g is the number of queuing centers, which are the centers of
Type 1, 2, and 4 in the notation of Ref. 4. However, in spite of the
complexity of the partition function, the form of the integrand is
remarkable for its simplicity.
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10.1 Background on product form solutions

As previously, we let the number of classes of constituents be p. We
henceforth consistently index the classes by the symbol j; when the
index for summation or multiplication is omitted, it is understood that
the missing index is j, where 1 = j =< p. A total of s service centers are
allowed. We will find it natural to distinguish the centers of Types 1,
2, and 4, which have queuing, from the remaining centers of Type 3,
which do not. Thus, centers 1 through ¢ will be the queuing centers
while (g + 1) through s will be the Type 3 centers, which have also
been called think nodes and infinite server nodes.

Let the

stationary state probability = #(y1, ¥z, -+, ¥s), (124)
yi & (i, naiy -+ -, Np), 1S I,

n;; & number of class—j jobs in center i.

The well-known results on Markovian closed queuing networks with
product form solutions may be given in the following form:'*

(Y, oo, ¥s) = é [1 mya, (125)
i=1
where mi(y:) = Cni)! [] (%;—:;), 1=i=gq,
jee
=[[(i‘d:), (g+l)=<i=<s. (126)
nji:

In the above formulas we have taken into account the previously
stated assumption, namely, for the first-come-first-served discipline in
Type 1 centers the service rate is independent of the number of jobs
in queue. Also, in (126),

_ expected number of visits of class J jobs to center i
service rate of class j jobs in center i

pji ’

where the numerator is obtained from the given routing matrix by
solving for the eigenvector corresponding to the eigenvalue at 1.
In (126) G is, of course, the partition function and it is explicitly

G=3 - 3 =iy (127)

1'n,=K, I'n,=K, i=1

where we have written 1’n; for }{-) n;; and the condition 1'n; = K; to
indicate the conservation of jobs in each class. Thus,
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10.2 Integral representation
Using Euler’s integral, see (10),

[ il (Hpﬂ)]du1---duq. (129)

i=g+1 n]l

Now by the multinomial theorem,

omor [ [l

K;
11 (E pjilti + 2 p,.) duy -« dug. (130)
i=1 i=g+1
It is noteworthy, but not surprising, that the parameters p;; for all the
Type 3 centers appear lumped together.
We now introduce the large parameter N and define

K
B=x 1=i=p (131)
exactly as in (12). However, we define
vi=| —2— N, l1=j<p, l=i=g, (132)
E Ojm
m=g+1

which is reciprocal to the natural extension of the parameters {y;}
defined in (13). In common with Section 3.1, the suggestion in the
notation is that in the generic large network {v;:} and {8} are O(1). A
tacit assumption being made is that all job classes are routed through
at least one Type 3 (infinite server) center.

On substituting (131) and (132) in (130) and after a change of
variables we obtain a form for the partition function, which is sum-
marized below.

Proposition 18:

p 8 ’cJ o o
G=(N"]’[ [(2 pjf) /K,-!])J’ J’ e Mgy, (133)
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where

r

z=[21,22, ,Zq],
flz) =1z — i Bilog(1l + I'}z),

1=[1,1,.--,17,
I‘J= [th Yizs v "qu}’, 15_]5]) O

As before, the term in brackets in (133) will typically not be required
to be computed.

Future work will consider the expansions appropriate for the com-
putation of the integral in (133).

APPENDIX A
Notation for Asymptotic Expansion, Series Reversion

Asymptotic expansion: A series Y5-0 a;/N’ is said to be an asymp-
totic expansion'**** of a function F(N) if

F(N)- ¥ a/N'=0(N") as N-oo

J=0
for everyn =1, 2, ... . We write
F(N) ~ E aj/Nj.
j=0
The series itself may be either convergent or divergent.

Series reversion: If u = f(z), uo = f(20), '(20) # 0, then by Lagrange’s
expansion'®**

J
2 u—uw) | & [ z—=2
e=z+ ¥ [ e (f(z) ” : (134)

In particular, if f(-) is specified in a Taylor series, the above expansion
identifies the coefficients { g;} in the reversed power series z — 2o =
Yi-18(u— uo)’. We specifically identify the leading coefficients of two
reversed series that have been used in Section 4.1 and Section 7.1.

If

u=fiz+f2"+ -+, (135)
then z=guu+gu*+ -+, (136)
where
hg =1,
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fige=—fz,

figs=2f - fifs,

fle.=5fffs = fifs — 513,

figs = 6fifefu + 3fif5 + 14f2 — fifs — 21fififs.
Similarly, if

u=f2*+ 2+ fiz* + -, (137)
then z=gu'"?+ gou+ g+ ..., (138)
where
fg=1,
fig: = —f/2,

fi%gs = (5f3 — 4f2f4) /8,
figi= BhRfsfs — fofs — 23 /2,
g = (—64f3fs + 224f3 fu fs + 11213 f1 — 504f f3 fu + 231f3)/128.

APPENDIX B
Proof of Proposition 6

Before giving the proof, it is worthwhile to generate expressions for
the leading derivatives of g(-). In the notation of Section 4.1, u = f(2)
and z = g(u),

&M u) =

o

Py

%) = - f2(2)/(fM(2)),

g%9u) = [-f=2) fV=2) + 3(fP N1/ (f(2)°,

g9w) = [-f9@)(fV(2))* + 10f(2) f*(2) f*(2)

— 15( @)%/ (fV(2))". (139)

For notational convenience, let y: and ¢: denote, in this appendix only,
£“(u) and f*)(z) respectively. Recall that ¢; > 0 and that (—=1)'¢; > 0
for i = 2, 3, ... . We will show by induction that (—-1)"y, < 0, n =
1,23, -

Let the induction hypothesis be the following

neven: ¢i" yn = -+ — (6)¥(X) + ($)*UY) -..,  (140)

where 0 < i; max [2i, 2i + 1] < 2n — 1; X and Y are arbitrary products
of ¢2, ¢pa, -++, ¢n with arbitrary positive numerical weight and the
property that X > 0, Y <0 for all z= 0.
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nodd: ¢ lya = .-+ + (@)H*(U) — ($)*(V) -1, (141)

where UV and V are like X and Y including that U > 0, V < 0 for all
z=0.

For the proof, take the case of n even, first. A key observation
is that since ¢, does not occur in either X or Y, dX/dz < 0 and
dY/dz > 0. That is, in common with the functions ¢, ¢s, --- the
derivative has opposite sign from the function. Also, from (140)

Y
U S (142)

¢L{n—2i—1 ¢%n72i—2

Differentiate with respect to u,

1 (—X(Zn—2i—1)¢2 X' )

Yn+1 = o — gl‘ ¢%n—2: (b%n—Z:'—l
1 /-Y(@2n—2i—2 Y’
+ E ( ( 1%;1—2:—1 )é ¢%n—2i—2) + o
Hence,

G ypsr = o0 + ($1)¥(X (20 — 20 — 1)¢p2)
— (G)FX + Y(2n — 2i — 2)¢2) + (p)**H(Y") ---  (143)

which has the form appearing in (141) as part of the hypothesis.
Now take the case of n odd where, from (141),

U |4

¢%n—2i—1 - (,b%"_zj—z trt . (144)

Yn = --- +
Differentiate and rearrange to obtain,

¢%n+l'}’n+1 = 0. = (Q”l)zi( U@2n — 2i — 1))
+ (o) *NU + V(2n = 2 — 2)¢2) — (d)* (V") - -+ .

As U’ < 0, V' > 0, the form in (140) of the induction hypothesis is
satisfied. This concludes the proof.

APPENDIX C
Proof of Proposition 10

In the following we shall need the sign property of the derivatives of
f(-) as given in (25) and (26). Also recall f; = f'(0) = —a
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J ze Mgz < j ze Mz = 1(Na)® (145)

J’ e N f|2+f222)dz

e e™N/4h(1 — erf(— a VN/4f,)
4fz fz
1
+ sz (146)
Similarly,

f e Mgz = —1/(aN) (147)
1]

> 4 [T _ e™Nit(1 — orf(— o VN/AF,
> 4Nf2e (1 — erf(— a VvN/4f2)). (148)
Thus,

ze Mgz

fo - Vaf/7 e N

J T vragy N L= erf(— « VN/4f)]
[}

1+ Vv1+8f;/a’N
, (149)
2|a|N

where, to bound the term dependent on the error function, we have
used the left inequality in the following™

(x+ Vi +2) < e™ f e 'dy <[x(1 + V1 + 4/(mx®)]". (150)

We obtain from (146), (147) and (150) the results analogous to (149):

f Nf(Z)dz
2
= > lal () — —]. @51
j gNreg, 2P 1+ V1 + 16f;/ (me®N)
(1]

Equations (149) and (151) taken together with the representation for
the utilization given in (22) is the content of Proposition 10.
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APPENDIX D
Proof of Proposition 11

To prove the proposition, we begin by substituting (54) in the
expression for I in (56) to obtain after a change of variable

I=(VN+o¢) I e~ N+ TT (1 + »/(a: VN4 dy,  (152)
1]

We may write (152) as

I= j e~ 2 Brp(y IN)dy, (153)
0

where

A =Ybi/a?, B=c—Ydi/ai (154)
and
h(y, VN) = (VN + ¢) exp[Ar?/2 + Bv

— w(VN + OTI( + v/ (@ VN))P M) (155)

The quantity h(, VN) has been defined so that when the second
bracketed expression [-] is written as exp(log [-]) and then the log
[-] term expanded, a cancellation of the leading terms is effected by
multiplication with the exponential term in (155). In this step, notice
has to be taken of the constraint in (55) in that exp[A»?/2 + By —

»(VN + ¢)] = exp[Ar?/2 — »(vVN N ¥bi/a; + Ydi/a))]. In this manner we
obtain,

Ay, VN) = (VN + c)exp(g E(u)/Jﬁf), (156)
where

(_1)jF:f("') = (—E _;+1) (J +2 2 J'+2) 7, (157)

In (156) we have an exponential of a power series in 1/v'N which may
equivalently be represented directly as a power series in1/ VN:

h(r, VN) = (VN + ¢) § G,;(»)/VN'. (158)

Jj=0

For example, Go = 1, G = Fy, G, = F{/2 + F5, Gy = F1/6 + F\F; + Fs.
A feature to observe is that G;(») is a polynomial of degree 3;j in ».
For the final form,

hiv, N) = 3 H,0)/VN, (159)
j=0
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where H;(v) = Gj(v) + ¢Gj-1(v), also a polynomial of degree 37 in ». It
is understood that G_,(v) =
Insertion of (159) in (153) yields Proposition 11, namely

I=3 c/VN"7, (160)
=0
— A2 92—
where = f e B (v)d. (161)
0
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