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We present numerical results for some traffic overflow systems with
queuing. Traffic is offered by two independent streams to two groups
of trunks, with a finite number of waiting spaces for each, and some
overflow capability from the primary group to the secondary group.
We consider three different overflow systems, two of which model
feature packages offered in Dimension® PBX. For given offered loads
and unit mean holding time, we determine the number of trunks and
waiting spaces in the two groups so that the blocking probabilities,
and the average delays of queued calls do not exceed prescribed
values. We also calculate various other quantities, such as the occu-
pancies of the trunk groups and the probability of overflow from the
primary group to the secondary group. Finally, we examine the effect
on the blocking probabilities and the average delays of varying the
loads offered to a given system.

I. INTRODUCTION

In this paper we present numerical results for some traffic overflow
systems with queuing. Traffic is offered by two independent streams
to two groups of trunks with a finite number of waiting spaces for each,
and some overflow capability from the primary group to the secondary
group. The holding times of the calls are independent, and exponen-
tially distributed. In two of the three systems considered, the overflow
capability models feature packages (Fp) offered in Dimension® PBX.
The third system, which is considered for comparison, differs from the
other two systems in that no overflow is permitted if there is a waiting
space available in the primary queue.

Since there are a finite number of trunks and waiting spaces in each
group, arriving calls may be blocked and cleared from the system. For
given offered loads and unit mean holding time, we determine the
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number of trunks and waiting spaces in the two groups so that the
blocking probabilities and the average delays of queued calls do not
exceed prescribed values. We also calculate various other quantities,
such as the occupancies of the trunk groups and the probability of
overflow from the primary group to the secondary group. In addition,
we examine the effect on the blocking probabilities and the average
delays of varying the loads offered to a given system.

The numerical results are based on different techniques developed
by Kaufman' and Morrison.”® The basic problem is to solve a large
sparse system of linear equations for the steady-state probabilities of
the number of calls in the two groups. Kaufman used a numerical
technique involving matrix separability (block diagonalization), and in
addition obtained numerical solutions by means of successive over-
relaxation techniques. Kaufman has also applied her techniques to
overflow systems with more than two groups. Morrison confined his
attention to overflow systems with two groups, and he adopted an
analytical approach which considerably reduces the dimensions of the
problem.

We have been able to obtain very accurate numerical results by the
methods presented in this paper. Indeed the various steady-state
quantities of interest obtained by the procedures of Kaufman' and
Morrison®® agree to many significant figures. These results are consid-
erably more accurate, and less expensive to obtain, than simulation
results. They may be used as a check on the accuracy of approximate
methods which have been developed for dealing with overflow prob-
lems, some of which are mentioned later in this section.

We now describe in detail the overflow systems which we consider,
as depicted in Fig. 1. There are n; trunks and ¢; waiting spaces in the
primary group, and n: trunks and g, waiting spaces in the secondary
group. Traffic is offered to the two groups by two independent Poisson
streams S; and S;, with rates A; and Az, respectively. The holding times
of the calls are independent, and exponentially distributed with mean
1/p. If all n; trunks in the secondary group are busy when a call from
stream S, arrives, the call is queued if one of the g, waiting spaces is
available, otherwise it is blocked and cleared from the system. Calls
waiting in the secondary queue are placed in service on a first-in first-
out basis as secondary trunks become available.

Three cases are considered for the treatment of calls offered to the
primary group. The first two cases model feature packages offered in
Dimension pBX. For these two cases, if all n; trunks in the primary
group are busy when a call in S, arrives, it is placed in service in the
secondary group if there is a trunk available and there are no calls
waiting in the secondary queue. If no trunk is available, then the call
is queued in the primary group if one of the g; waiting spaces is
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Fig. 1—Mean flow rates for an overflow system with queuing.

available, otherwise it is blocked and cleared from the system. The
treatment of calls waiting in the primary queue depends on which
feature package is being modeled. Corresponding to Fp8, calls that are
waiting in the primary queue are not allowed to overflow to the
secondary group, but must wait for a trunk in the primary group to
become available. Corresponding to FP4 (or FP7), calls waiting in the
primary queue may be served by an idle trunk in the primary group,
or by an idle trunk in the secondary group, provided that there are no
calls waiting in the secondary queue, which have priority. The overflow
systems corresponding to FP8 and Fp4 are depicted schematically in
Figs. 2 and 3, respectively.

The two cases considered above, although an idealization of the
actual situation, embody the essential features of the packages. For
comparison, we consider a third case, which we denote by FP0 and is
depicted schematically in Fig. 4. In this case, if all n; trunks in the
primary group are busy when a call in S, arrives, the call is placed in
the primary queue if one of the g, waiting spaces is available. As with
FP8, a call that is queued in the primary must wait for a trunk in the
primary group to become available. If all n; trunks in the primary
group are busy and all g, waiting spaces are occupied when a call in S,
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Fig. 2—Schematic of the overflow system corresponding to Fp8.

arrives, it is placed in service in the secondary if there is a trunk
available and there are no calls waiting in the secondary queue,
otherwise it is blocked and cleared from the system. Note that no
overflow is permitted if there is a waiting space available in the
primary queue. This restriction was invoked by Anderson.*

We remark that the systems corresponding to Fp4 and Fp0 are
particular cases of the system considered by Rath in connection with
ACD-ESS (automatic call distributor-Ess).® He considered a system
composed of two queues, in which one of the queues is allowed to
overflow to the other, under specified conditions involving the queue
lengths. He obtained numerical solutions in the case corresponding to
FP4 by using a Gauss-Seidel iteration technique. He also developed an
approximate procedure for analyzing his system based on the use of
the interrupted Poisson process (IPP).® An approximate analysis of the
system corresponding to FP4 has been given by Crater under the
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assumption that the number of waiting spaces in each queue is unlim-
ited.” More recently, Shulman described a method of iteration and
successive approximation, using the IPP as a traffic model, for analyzing
the system corresponding to Fp8 with several bands of groups.® He has
used this method in the optimal design of facilities for Dimension PBX
with overflow and queuing features.

Section II outlines the numerical procedures for evaluating the
quantities of interest, based on the analytical results of Morrison.”* In
Section III two iterative techniques used by Kaufman to obtain nu-
merical results are discussed.' The numerical results are discussed in
Section IV. These results were obtained by Morrison’s method and at
least one of Kaufman'’s two methods.

Il. AN ANALYTICAL PROCEDURE

We begin by outlining the numerical procedures for evaluating the
quantities of interest based on the analytical results of Morrison.*’
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Fig. 3—Schematic of the overflow system corresponding to Fp4.
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Fig. 4—Schematic of the overflow system designated as Fp0.

The interested reader may consult these papers for the details of the
analysis. Let p;; denote the steady-state probability that there are i
calls in the primary and j calls in the secondary, either in service or
waiting. These probabilities satisfy a set of generalized birth-and-death
equations, which take the form of partial difference equations con-
necting nearest-neighboring states. The basic technique is to separate
variables in regions away from certain boundaries of the state space.
This leads to some eigenvalue problems for the separation constant.
The eigenvalues are roots of polynomial equations, and they may be
evaluated numerically with the help of some interlacing properties.’
The probabilities p;; are then represented in terms of the corresponding
eigenfunctions, which can be calculated from simple recurrence rela-
tions. The constant coefficients in these representations are deter-
mined from the boundary conditions (one of which is redundant), and
the normalization condition that the sum of the probabilities is unity.
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When engineering the system, there are various steady-state quan-
tities of interest that can be expressed in terms of the probabilities p;;.
The quantities include the blocking (or loss) probabilities L, and Lo,
and the average delays (or mean waiting times), W, and W, of calls
that enter the queues. These quantities may be expressed directly in
terms of the constant coefficients that occur in the representations for
the probabilities p;;. Thus the steady-state quantities of interest can
be calculated directly, once the coefficients have been determined from
the boundary and normalization conditions, without having to calcu-
late the probabilities p;;.

For FP0 there is just one set of n» + g2 + 1 eigenvalues and
corresponding eigenfunctions. There are then n; + g2 + 1 constants to
be determined numerically from the boundary and normalization
conditions. We remark that in this case there are (n, + ¢1 + 1)(nz: +
g2 + 1) probabilities py;, so that the analytical approach considerably
reduces the dimensions of the problem. For FP4 there is an additional
set of g, eigenvalues, and corresponding eigenfunctions. In this case
there are g1 + nz + g2 + 1 constants to be determined numerically
from the boundary and normalization conditions. This compares with
the qi(gz + 1) + (n1 + 1)(n2 + g2 + 1) probabilities p;;. We note that
there are fewer nonzero probabilities p;; for FP4 since it is impossible
for calls to be waiting in the primary queue when there is an idle trunk
in the secondary and no calls are waiting in the secondary queue. For
FP8 this is not the case, and the probabilities p;; in the corresponding
region of state space are expressed in terms of ¢, additional constants
and a fundamental solution of a partial difference equation. However,
it is possible to solve for these additional constants in terms of the
other ¢, + nz + g2 + 1 constants, by inversion of a triangular matrix.

Some conservation relations were used as a check on the accuracy
of the numerical calculations. These involve the steady-state quantities
depicted in Fig. 1. Thus @, and @; are the probabilities that calls from
streams S; and S., respectively, are queued upon arrival. The mean
departure rate from the primary queue to the primary trunks is Ry,
and the mean rate of overflow from the primary queue to the secondary
trunks is R;;. Note that Rz = 0 for both rp0 and FP8. The mean
departure rate from the secondary queue, to the secondary trunks, is
R». Since the mean rate of arrival of calls at each queue is equal to
the mean departure rate, we have

MA@ = Ru + Ry, A2@Q2 = R (1)

Also, I, is the probability that a call from stream S, overflows
immediately. Moreover, let X; and X, denote the average number of
calls in service in the primary and secondary groups, respectively.
According to Little’s formula, the average number in a queuing system
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is equal to the average arrival rate to that system times the average
time spent in that system.? If we apply this result to the primary and
secondary trunk groups, it follows that

pXi = A(1 — Ly — Iz) — Ry, pXz = A2(l — L3) + AiIi2 + Ry, (2)

since 1/p is the mean holding time. Since the various quantities in (1)
and (2) may be expressed in terms of the constant coefficients that
occur in the representations for the probabilities p;;,2® these relation-
ships provide a useful numerical check.

A package of computer programs has been developed by Seery to
calculate the various steady-state quantities of interest, based on the
procedures outlined above. The documentation provides the informa-
tion necessary to use the programs.'®

lll. SPARSE MATRIX TECHNIQUES

The birth-and-death equations which determine the steady-state
probabilities, and which are mentioned in the beginning of Section II,
may be written as

Ap=0, (3)

where A is a singular, nonsymmetric matrix with negative off-diagonal
elements and column sums equal to zero. It has only five nonzero
diagonals.

For example, for FP4 when n, =1, no =1, by = n; + ¢, and k; =
nz + gz, the matrix A is defined by the equations

[A1(1 = ir, Xj—n,) + A2(1 — 8jr,) + p min(i, ny) + p min(Jj, nz)]py;

= (1 = Xi-1-n,Xny-1-7)[A1(1 = 8i0) pi1,j + p(1 — 8jx)min(j + 1, no) pi 41
+ (1 = 8;0)[Mi8in,Xny—s + A2l = Xic1-n,Xny-) 1 Pij1
+ p(1 = 8 )[(1 = Xi-n,Xn,—1~j) MIn(i + 1, n1) + RaXi-n,0n,] Pi+1.js

where

5 = 1, r=m and L, r=0
m 0, r*m Xr 0, r<0

and0=<i=<k and 0 <j =<k,

We will describe two iterative techniques for solving (3). The first
method, based on inverse iteration, requires a few expensive iterations.
The second, based on splitting A into the sum of two matrices, requires
many inexpensive iterations.

Inverse iteration may be written as follows:
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Pick p”, an approximate null vector of A.
Iterate until convergence:

For k=12, ...,

(k) (k—1)

for v*, (4)

set p* = v/ v® ..

solve Av® = p

Usually only two iterations are required even if the initial guess is a
random vector. Because of the near singularity of the matrix A repre-
sented in the computer, the vectors v!*' will be very large; they will
also become richer in the direction of the null space of the A matrix."

Using a linear equation solver designed for band matrices, eq. (4)
may be solved in approximately 3kik:max(k:, k2) locations. When
k1 ks > 500, using a sparse matrix solver will require fewer operations
and less space. However for larger problems (i.e., k1%; > 1000) it pays
to use some of the algebraic structure of the problem. For example, for
FP4 the matrix A and the vectors p and v can be permuted and
partitioned so that (4) becomes

BOX\ [v¥ pE?
ocy || v |=[p¥™]), -
ZQE | \v¢ p&

where pa corresponds to p; where 0 =i < n, and 0 =j =< k;, ps
corresponds to p;; where n; < i= % and n; <j =< k;, and p¢ corresponds
to p;; where i = n;, 0 < j < k; and j = nz, n1 < i < ky. The matrices B
and C have the form

SO FO Gnl+1 J
HS F K Guw J
B = . . . , C = . .- ,
H Snrz Fn,—z K Gk1—1 J
H Sn]-l K le
where
Fi = —u(i + DIgyr1xm,+1, J = _.”'nlI'thIzr
= =A1Tpyr1xky+1, K = _Aquan;;,
Si = 8 + vk +1xp,+1, and Gi = yilgxq, + G,
where

= A1+ p min(i, ny), if i< ky,
L it i=ky,

and S and G have the form
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Xo €o Xn,+1 €
—)tz X1 e —'Az Xn,+2 e
S = . . . s G= .
—Az Xky—1 €ky—1 —Az Xk,—1 €
—Az Xk, —Az Xk,

where

X = A2 + pmin(j, n2), if j<k,,
! #n2, if j = kz,

e, = —p min(j + 1, ns),
e = —lns.

The matrices X, Y, Z, @, and E are very sparse (there are only &, + 1
nonzero elements in X) but they do not possess any relevant algebraic
structure as B and C do. The eigendecomposition of B can be expressed
in terms of the eigendecomposition of an n; X n, tridiagonal matrix
and the eigendecomposition of the (k2 + 1) X (k2 + 1) tridiagonal
matrix S. Similarly the eigendecomposition of C can be expressed in
terms of the eigendecomposition of a ¢, X ¢; tridiagonal matrix and
the g; X g- tridiagonal matrix G. Using block Gaussian elimination
and the eigendecompositions of B and C, solving (4) entails formulating
and solving a dense system of k; + 1 + ¢1 equations.

The second method, line successive overrelaxation (sor), is much
easier to implement and can be easily generalized to more queues. it
uses the fact that A and p can be permuted and partitioned so that (3)
can be written as

Ty Ey Po
D] T1 E] P1

[
L

Dy-1 Tr-1 Eg—a
Dy, Tk, Px

where p; corresponds to p;j, 0 < j < k.. The T matrices are tridiagonal
and the E and D matrices are diagonal. The exact elements of the
matrices depend on the feature package modeled.

In line SOR, initial vectors p{” and a parameter w are chosen and the

following iteration rule is executed:

For k=1, 2, ... until convergence,
fori=0,1,2, ..., &y,

solve T;v = Dp*1" + Epl®, for v,

(k+1) __ __ (k)

set p; =p; +w(-v —pf-k’).
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After convergence,
set p < p/|p|.

The off-diagonal elements are never stored, but generated each time.
Each iteration requires about 5m multiplications, 7m additions, and
2m divisions, where m is the size of the state space. The number of
iterations depends on the ratios of the A’s to u's, the size of the problem,
the choice of w, the feature package, and the required accuracy. Most
of the examples given in Section IV required between 50 and 150
iterations for problems of between 500 and 2500 unknowns.

When o = 1, line soR is called block Gauss-Seidel and is known to
converge (see Kaufman'). For our problems a 10 percent change in w
sometimes doubles the number of iterations, as Table I illustrates.
Usually the optimal w is about 1.7 and choosing w above 1.9 causes
divergence. A heuristic algorithm was developed for adjusting w as the
iterative scheme progresses. The algorithm uses the theory developed
in Ref. 12 to obtain an overestimate of w and takes into consideration
the fact that as w is increased, the relative error tends to initially
increase before decreasing if the choice of w yields a convergent
scheme.

Various other splitting schemes have been tried. Chebychev accel-
eration with Gauss-Seidel preconditioning requires about the same
amount of computational effort as line sor with the optimal w.'
Chebychev acceleration also requires the estimation of certain un-
known parameters but the course of the algorithm seems to be much
less sensitive to their values. Chebychev acceleration with an incom-
plete LU preconditioning has been successful for problems, such as
the ones we have, in which the graph underlying the matrix is two-
cyclic. A block sor method in which each diagonal block is a separable
matrix has also been tried. For the problems we have considered, the
increase in the amount of work per iteration is not compensated by
the decrease in the number of iterations.

Table |—w vs number of

iterations for FPO, p = 1,
Ay =40,A; =36, n =
40, n, = 40, g = 10,

g- = 10, stopping criteria

~107°
No. of
w Iterations
1.60 184
1.70 119
1.75 94
1.80 114
1.90 217
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IV. NUMERICAL RESULTS

The criteria we use for engineering the system are that the blocking
probabilities, L, and L, and the average delays, W, and W5, of calls
which enter the queues, do not exceed specified values. For prescribed
loads a; = A;/p and a» = A2/, the aim is to choose the number of
primary and secondary trunks n, and n., and the number of waiting
spaces g and g», so that the criteria are met. The procedure used was
to select values of n; and ng, and then determine the smallest values of
g1 and g: for which the criteria on the blocking probabilities are met.
The process was repeated for different sets of values of n; and n,, to
find sets for which the criteria on the average delays are also satisfied.
A search was made to determine the smallest total number of trunks
ni1 + ng for which the criteria on both the blocking probabilities and
the average delays are met, with appropriate choices of ¢; and g2.

In the numerical results given below, we take u = 1, so that the
average delays are given in units of mean holding time. Two sets of
results were obtained. The first set corresponds to primary and
secondary loads a@; = 3 and a; = 8, and the desired criteria were
max(Li, L:) = 0.01 and max(W,, W;) = 1. The results in Table
II, which correspond to four primary and nine secondary trunks,
indicate how changes in the number of waiting spaces affect the
blocking probabilities and the average delays. The results of the search
to minimize the total number of trunks required are depicted in Table
II1. In none of the cases were we able to satisfy the criteria with a total
of only 12 trunks. Moreover, for both FP8 and FPO, for a total of 13
trunks we required 4 in the primary group and 9 in the secondary
group. This was not the case for Fp4. However, if we take into account
the fact that primary trunks are less expensive than secondary ones,
then for rr4 we would choose the set with four in the primary group

Table Il—Blocking probabilities and average delays for offered loads
a, = 3 and a; = 8, and unit mean holding time, ny = 4andn, = 9
trunks, and different values of g; and g;

FP @ q: 10°L, 10°L, Wi Wa
8 6 18 1.063 1.027 0.612 0.727
8 7 18 0.725 1.027 0.650 0.727
8 6 19 1.076 0.904 0.613 0.748
8 7 19 0.735 0.905 0.651 0.748
0 7 17 1.226 1.070 0.730 0.705
0 8 17 0.907 1.069 0.777 0.705
0 7 18 1.232 0.943 0.730 0.727
0 8 18 0.911 0.941 0.777 0.727
4 6 18 0.945 1.059 0.519 0.727
4 7 18 0.637 1.060 0.5649 0.727
4 6 19 0.959 0.932 0.521 0.748
4 7 19 0.648 0.934 0.552 0.748
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and nine in the secondary group. Also listed in Table III are other
steady-state quantities of interest, as defined in Section II. In addition,
Oz = Al + Ry is the total mean overflow rate from the primary
group to the secondary group.

It is of interest to compare the results for the three cases in Table
III corresponding to n, = 4 and n; = 9, bearing in mind the differences
in the number of waiting spaces and the results in Table II. Calls
arriving at the primary group are most likely to be queued, and (by
far) least likely to overflow (immediately), for FPO, as is to be expected,
since overflow is permitted only when the queue is full. Moreover, the
average delay in the primary queue is largest for Fp0, and larger for
FP8 than for Fr4, since for FP8 no overflow is permitted from the
primary queue. Also, the total mean overflow rate for Fp4 exceeds that
for rp8, although the immediate overflow probability is smaller for
FP4. It is apparently the capacity for overflow from the primary queue
which accounts for the other solutions for Fp4 with a total of 13 trunks.

The second set of results corresponds to primary and secondary
loads a@; = 10 and a; = 5, and the desired criteria were max(L,, L;) <
0.005 and, at first, max(W;, W2) =< 0.8. The results of the search with
a total of 17 trunks are depicted in Table IV. There are no solutions
for FP0 which satisfy the criteria, and just two for Fp8. Three solutions
are given for Fp4. Although it is not possible to satisfy the criteria with
a total of 17 trunks and more than 10 in the primary group, it is
expected that there are solutions with less than 8 in the primary group,
but we have not checked this. There are no solutions for FP4 or FP8
with a total of 16 trunks which satisfy the criteria. If we relax the

Table lll—Steady-state quantities for offered loads a, = 3 and a, =
8, and unit mean holding time, with max(L,, L;) < 0.01 and
max(W,;, Wa) =1

FP 8 0 4 4 4 4
n, 4 4 4 3 2 1
ny 9 9 9 10 11 12
Q 7 8 6 8 10 11
q2 19 18 19 12 9 7
10°L, 0.7356 0.911 0.959 0.955 0.890 0.890
10°L, 0.9056 0.941 0.932 0.831 0.810 0.934
Wi 0.651 0.777 0.521 0.679 0.805 0.861
W2 0.748 0.727 0.748 0411 0.284 0.214
Q 0.293 0477 0.288 0.351 0.391 0.413
0.682 0.621 0.703 0.563 0.492 0.451
I, 0.080 0.004 0.056 0.142 0.258 0.400
R 0.878 1.430 0.743 0.716 0.545 0.291
Ry2 0 0 0.123 0.336 0.628 0.950
Ry 5.456 4,967 5.621 4.506 3.938 3.607
Oz 0.241 0.012 0.289 0.762 1.401 2.151
X, 2,737 2.960 2.682 2.209 1.572 0.823
X 8.169 7.937 8.215 8.695 9.336 10.076
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Table IV—Steady-state quantities for offered loads a, = 10 and
a, = 5, and unit mean holding time, with max(L,, L2) < 0.005
and max(W,;, W;) < 0.8

FP 8 8 4 4 4
n 10 9 10 9 8
n2 7 8 7 8 9
@ 20 22 19 20 21
q: 11 8 11 9 7
10°L, 0.481 0.473 0.473 0.480 0.445
10°L; 0.453 0.481 0.494 0.345 0.430
Wi 0.637 0.773 0.508 0.532 0.547
Wa 0.460 0.309 0.460 0.317 0.237
A 0.433 0.421 0.464 0.474 0.481
0.626 0.538 0.683 0.623 0.583
12 0.117 0.187 0.054 0.087 0.123
Ru 4.327 4.208 3.921 3.622 3.268
Rz 0 0 0.716 1.120 1.540
Rz 3.131 2.692 3.417 3.114 2916
Orz 1.169 1.875 1.257 1.987 2.774
X 8.783 8.078 8.696 7.965 7.182
X 6.147 6.851 6.232 6.970 7.752

criteria on the average delays to max(W;, W) < 1, then additional
solutions are obtained, as depicted in Table V. There is now one
solution for FPO with a total of 17 trunks, and two more solutions for
FP8. Two additional solutions are given for Fpr4, one with a total of
only 16 trunks (and 34 waiting spaces for the primary group). There
are no solutions for rp8 or FrP0 with a total of 16 trunks which satisfy
the relaxed criteria.

Finally, setting aside the problem of engineering the system, we
examined the effect on the blocking probabilities and the average

Table V—Steady-state quantities for offered loads a; = 10 and
a, = 5, and unit mean holding time, with max(L,, L,) < 0.005 and
0.8 < max(W,, Wo) =1

FP 8 8 0 4 4
m 11 8 11 11 10
na 6 9 6 6 6
@ 18 24 18 34
q2 18 7 17 19 19
10°L, 0.461 0.482 0.499 0.437 0.466
10°L. 0.495 0.354 0.456 0.428 0.471
W, 0.523 0.954 0.753 0.478 0.983
A 0.883 0.237 0.866 0.898 0.898
1 0.437 0.406 0.654 0.452 0.676
0.761 0.479 0.579 0.795 0.874
12 0.054 0.263 0.002 0.025 0.020
Ru 4.373 4.060 6.540 4.187 6.191
Rz 0 0 0 0.335 0.568
R 3.807 2.397 2.895 3.973 4.371
O 0.540 2.633 0.017 0.587 0.771
X 9.414 7.319 9.933 9.370 9,183
X: 5.515 7615 4.994 5.565 5.747
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Table VI—Blocking probabilities and average delays for

offered loads a; and a, = 0.9a,, unit mean holding time,

n, = 40 = n, trunks, g, = 10 = g, waiting spaces, and
different values of a;

FP a 10°L, 10°L, Wi W
0 42 5.366 3.654 0.1475 0.1259
0 40 2.906 2.022 0.1375 0.1162
0 38 1.291 0.954 0.1270 0.1065
0 36 0.449 0.378 0.1162 0.0970
8 42 3.796 4.774 0.1313 0.1259
8 40 1.758 2.845 0.1184 0.1162
8 38 0.639 1.436 0.10556 0.1065
8 36 0.177 0.596 0.0930 0.0970
4 42 3.588 5.020 0.1179 0.1269
4 40 1.642 2.996 0.1043 0.1162
4 38 0.590 1.510 0.0909 0.1065
4 36 0.161 0.623 0.0782 0.0970

delays of varying the loads offered to a prescribed system. We did this
since in a given situation the configuration of the system is fixed, but
one would expect that the loads would vary in the course of the day.
We chose a configuration with 40 trunks and 10 waiting spaces in both
the primary and the secondary groups, to show that our programs can
handle larger problems than those listed so far. The primary and
secondary loads were varied simultaneously with a; = 0.9a,, and the
results are given in Table VI. As expected, the blocking probabilities
and the average delays increase with increasing load, the more signifi-
cant effect being on the blocking probabilities.

For a given load, the blocking probability for calls from stream S, is
larger for FPO than for Fp8, and slightly larger for Fp8 than for Fp4. On
the contrary, the blocking probability for calls from stream S, is
smaller for rpP0 than for Fp8, and slightly smaller for Fp8 than for Fp4.
These orderings are not surprising in view of the fact that no overflow
is permitted from the primary queue for either FPO or FP8, and
moreover overflow is permitted for FPO only when the primary queue
is full. As before, the average delay in the primary queue is largest for
FP0, and larger for FP8 than for FP4. The average delay in the secondary
queue is, of course, the same for Fp0, FP4, and FP8.
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