Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 60, No. 5, May-June 1981
Printed in U.S.A.

B.S.T.J. BRIEF

Fast Decryption Algorithm for the Knapsack
Cryptographic System

By P. S. HENRY

(Manuscript received December 5, 1980)

. INTRODUCTION

Public-key cryptosystems offer a degree of flexibility not available
with conventional (private-key) systems."? In particular, the key re-
quired for decryption in a public-key system can be changed at will,
even in the middle of a message. This makes the task of the eaves-
dropper very difficult indeed. A frequently cited disadvantage of pub-
lic-key systems is their relative slowness (typically a few kilobit/s)
caused by the large amount of number-crunching they require.>* This
has led to the development of hybrid cryptosystems in which a key,
exchanged via a slow public-key system, is subsequently used in a fast
conventional system, such as the Data Encryption Standard (DES).” In
this paper we present a fast algorithm for executing the knapsack
cipher (a public-key cryptosystem).® When implemented with TTL
integrated circuitry, this algorithm should permit data rates in the
neighborhood of 10 Mbit/s. This speed is sufficient to provide security
for a wide range of voice, data, and narrowband video traffic without
the need for a hybrid cryptosystem.

Section II presents an elementary example of the knapsack cipher
to show how it operates. In Section III we describe the fast algorithm,
and in Section IV we discuss a more sophisticated knapsack cipher.

Il. AN EXAMPLE OF THE KNAPSACK CIPHER

A very simple (and insecure) knapsack cipher begins with an “easy”
knapsack vector generated by a party who wishes to receive encrypted
data [eq. (29) of Ref. 6],

767



= (1, 2, 4, 8, 17, 35, 68, 142). (1)

The eight components of E form a super-increasing sequence: Each
term is larger than the sum of all those preceding it. Let the data to be
encrypted be represented as a vector with eight binary components,

=(1,0,0,1,0,1,1,1). (2)
To encrypt D using E, form the dot product,
Se=E.D = 254, 3)

The number Sk is an encrypted form of D.

The super-increasing property of E guarantees that D can be re-
covered from Sg by subtracting successive components of E (beginning
with the largest) from Sg and keeping the residue. If a component of
E is less than or equal to the residue at any stage in the subtraction,
the corresponding component of D is 1. If a component of E is larger
than the residue, the corresponding D component is 0 and we try the
next (smaller) component of E. This process is illustrated below for
Sk = 254 [eq. (3)],

Beg'in
le—le1 9«9 1
-1 -2 —4 8 17&\35 142
0 X X 112
D=1 0 o0 1 0 1 1 1).

Of course, E cannot be used for secure encryption, because if E were
obtained by an eavesdropper he could use it to decrypt any transmitted
message. The knapsack cipher provides security by transforming E
into a “hard” knapsack vector H (the public key), which can be used
for encryption, but which is useless for decryption. To generate this
transformation, the receiver chooses two secret integers M and W such
that: (i) M is larger than the sum of all the components in E, and (ii)
W and M are relatively prime. (This condition means that W is
invertible modulo M: W~'. W = 1 mod M.) Following Ref. 6, we choose
M =291 and W = 176 (which implies W' = 167). H is generated from
E by

Hi=W.E;mod M, (4)
yielding
= (176, 61, 122, 244, 82, 49, 37, 257).

In the ideal case H looks like a random sequence; the super-increasing

768 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1981



structure of the original E is completely obliterated. H, the public key,
is sent to the transmitter and need not be kept secret.
To encrypt D using H, form the dot product as before,

Sy =H.D = 763. (5)

Sy is the encrypted data. If the number of components in H is large,
say 100 or more, then an eavesdropper, even though he has H and S,
cannot recover D in a reasonable time. The legitimate receiver, how-
ever, can recover D easily by using the inverse transformation,

SE = SH- VV_1 mod M. (6)

That is, by using his secret M and W\, the receiver can convert Sy
into the number Sk [eq. (3)], the same number that would have been
obtained if D had been encrypted with E instead of H. Once he has Sg,
the receiver simply subtracts off successive components of E to recover
D. ’

lil. A FAST DECRYPTION ALGORITHM

The most time-consuming step of the knapsack cipher is the modular
multiplication of eq. (6). In practice, the quantities Sy, W', and M
might be 100 to 200 bits long, making computation of Sg very slow.
The calculation can be expedited by considering the n-bit binary
expansion of Sy,

Spr=bp1-2" 4 oo + bo-2". (7)
Substituting eq. (7) into eq. (6), we have
Sg = [ba—1(2"'W ™ mod M) .
+ oer + bo(2°W™! mod M)]mod M. (8)

Each term in the square brackets is the product of a binary digit (0 or
1) and a fixed quantity (in parentheses), which can be computed ahead
of time and stored in a memory. Evaluation of Sg thus reduces to a
sequence of table lookups and accumulations, one lookup for each bit
in Sy. After all the bits in Sy have been processed, the final reduction
mod M is accomplished by an easy long division. [The division is
“easy” because each term in eq. (8) can be no bigger than M, so the
final sum can be no bigger than nM; division by M can therefore be
accomplished with only approximately logsn substract-and-shift oper-
ations in binary arithmetic.]

Table I shows the contents of the lookup table required for decryp-
tion of the example in Section II, along with the binary representation
of Sy = 763. The value of the sum within the square brackets of eq.
(8) is seen to be 1127, which is equivalent to 254 in mod 291 arithmetic,
as required.

FAST KNAPSACK DECRYPTION ALGORITHM 769



Table |—Lookup table
for decryption of the
example in Section Il

b 2%.167
mod 291

241
266
133
212
106

53
172

86

43
167

o~
>

ONWERTD~I0® O
- -

Figure 1 shows a block diagram of the decryption process. The basic
steps of lookup, accumulation, reduction mod M and successive sub-
traction are pipelined, and within each step most of the processing can
be performed on all bits in parallel. This architecture results in very
fast operation, the speed limitation being either the memory access
time or the accumulator add time, whichever is greater. With Schottky
TTL and carry-lookahead addition, these times are both in the neigh-
borhood of 50 ns, so a throughput rate of 10 Mbit/s is reasonable.

Implementation of the decryption algorithm using very large scale
integration appears attractive. Most of the circuitry is simply a large
lookup table, as shown at the top of Fig. 1. Its capacity is determined
primarily by the number of components in E and the allowed range
(number of possible values) for each component of E. We can achieve
reasonable security by using 100 and 2'®, respectively, for these two
parameters; this leads to a value for the modulus M in the neighbor-
hood of 2*°. Since each component of H is less than M, Sy [eq. (5)]
will be less than 2*. The lookup table must therefore contain 207
words, each 200 bits long, implying a memory size of approximately 41
kilobits. Additional memory (~15 kilobits) is required to store the
components of E. Thus, approximately 56 kilobits of memory and
some simple arithmetic logic to perform the steps of accumulation,
long division, and successive subtraction are adequate to implement
the decryption process. This level of complexity is within the range of
current vLsI technology.”®

Finally, we remark that a straightforward implementation of Fig. 1
may not be the best approach; several modifications of the basic
decryption algorithm must be investigated. For example, the lookup
table can be eliminated by calculating the numbers 2*- W™ mod M
one-by-one as they are needed for each incoming bit of Su. Starting
with W, successive numbers can be generated by a simple left shift
(and subtraction of M if necessary).

770 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1981



IV. ITERATED KNAPSACK TRANSFORMATIONS

The security of the knapsack cipher is enhanced if iterated (multiple)
knapsack transformations are employed.” For example, the “hard”
vector H [eq. (4)] can be kept secret and used to generate a “harder”
public vector H’,

H,= W' .H;jmod M'. (9)
Data can be encrypted with H’ in the usual fashion,
Sy =H'-D. (10)

If M’ is chosen to be greater than the sum of all the components of H,
then data encrypted using H' may be decrypted using two successive
inverse transformations having the form of eq. (6). The cost of this
double-iteration technique in terms of the bandwidth efficiency of the
cipher is modest. For a 100-component knapsack, the modulus M" will

27w~ modM
LOOKUP :

TABLE 2w~ modM
W' modM

:

ENCRYPTED
DATA INPUT e GATE
{n-BIT BLOCK)

4

ACCUMULATOR

4

REDUCTION mod M

T

COMPONENTS SUCCESSIVE
OF E SUBTRACTIONS

|

DECRYPTED DATA QUTPUT

Fig. 1—The fast knapsack decryption algorithm. (Wide arrows signify parallel data
transfer.) Pipeline architecture and parallel processing contribute to a high throughput
rate. Hardware implementation would require approximately 56 kilobits of memory and
a small amount of arithmetic logic.

FAST KNAPSACK DECRYPTION ALGORITHM 771



be roughly 100 times bigger than M; thus Sy will require only about
seven more bits than Sy would have required.

We illustrate the double-iteration technique by continuing with the
example of Section IL. Let M’ = 2001 and W’ = 1984, giving (W’')"! =
1177. From eq. (9) we have

H’ = (1010, 964, 1928, 1855, 607, 1168, 1372, 1634). (11)

Encrypting D [eq. (2)] with H’ yields S = 7039.
Decryption requires two inverse transformations,

Se =Sy W 'mod M
=[Sy - (W) " mod M’']- W ! mod M
= [7039-1177 mod 2001]- 167 mod 291
= 763-167 mod 291
= 254, (12)

The cascaded inverse transformations in eq. (12) can be executed in
tandem using the algorithm of Section III. Thus, the decryption
process will entail a longer total delay (compared with the single-
iteration case), but the net throughput rate will be essentially un-
changed.

We mentioned earlier that straightforward use of the multiple iter-
ation technique reduces the bandwidth efficiency of the cipher. It is
possible, however, that for a given level of security, multiple interations
may actually be more efficient than a single knapsack transformation.
This is because the enhanced security associated with repeated trans-
formations might permit a smaller range for the components of E, and
hence smaller values for the moduli M, M’, etc. The consequent
reduction in the encrypted block length could offset the seven-bit
increase normally associated with each iteration.

V. CONCLUSIONS

The existence of a fast algorithm for decryption of the knapsack
cipher means that the advantages of public-key cryptosystems can be
realized even in high-speed applications. Full integration of the de-
cryption process onto a single chip appears feasible with current vLsI
technology. The relationships among cipher security, bandwidth effi-
ciency, and number of iterations need further investigation.

VI. ACKNOWLEDGMENT

F. H. Myers has been generous with his time and insights; I am
grateful for his help.

772 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1981



REFERENCES

W N e

o o

0 o =

. M. E. Hellman, “An Overview of Public Key Cryptography,” IEEE Commun. Soc.
Mag., 16 (November 1978), pp. 24-32.
. W. Diffie and M. E. Hellman, “Privacy and Authentication: An Introduction to
Cryptography,” Proc. IEEE, 67 (March 1979), pp. 397-427.
. B. P. Schanning, “Data Encryption with Public Key Distribution,” EASCON Conf.
Rec., Washington, D.C., October 9-11, 1979, pp. 6563-60.
. G. J. Simmons, “Symmetric and Asymmetric Encryption,” Comput. Surv., 11
(December 1979), pp. 306-30.
F. H. Myers, “A Data Link Encryption System,” Conf. Rec. Nat. Telecommun.
Conf., Washington, D.C., November 27-29, 1979, Paper 43.5.
. R. C. Merkle and M. E. Hellman, “Hiding Information and Signatures in Trapdoor
Knapsacks,” IEEE Trans. Inf. Theor., IT-24 (September 1978), pp. 525-30.
. S. Matsue et al., “A 256K Dynamic RAM,” 1980 IEEE Int. Solid State Circuits Conf.
Dig. Tech. Papers, February 13-15, 1980, pp. 232-3.
. P. M. Russo, “VLSI Impact on Microprocessor Evolution, Usage, and System
Design,” IEEE J. Solid State Circuits, SC-15 (August 1980), pp. 397-405.
. A. Shamir and R. E. Zippel, “On the Security of the Merkle-Hellman Cryptographic
Scheme,” IEEE Trans. Inf. Theor., IT-26 (May 1980), pp. 339-40.

FAST KNAPSACK DECRYPTION ALGORITHM 773



fr ey " E; A




