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To aid the design of MOS circuits, a suite of programs residing on
the UNIX* operating system have been designed and written. These
programs allow the interactive editing, layout compaction, circuit
connectivity extraction, parasitic audit, and timing simulation of MOS
ICs within the symbolic domain. The programs make use of an
intermediate circuit description language (1cDL), which captures both
geometric placement and circuit connectivity. A convenient interface
is provided to enable the procedural definition of symbolic layouls in
the C programming language. All design may be carried out at a
single low-cost work station which incorporates a high-performance

_color display. In this paper we summarize the operation and use of
these programs. In particular, we describe a new compaction algo-
rithm.

I. INTRODUCTION

Symbolic layout methodologies are a means of abstracting the
detailed and often laborious task of mask design of integrated circuits.
They offer the advantages of hand-packed mask design with regard to
density of layout, while also having advantages over manual layout
with respect to time to design a circuit and reduction in the number of
manual errors introduced into a design. In essence, the use of symbol-
ogy reduces the complexity of the Ic design process, which in addition
to the advantages mentioned above, allows experienced designers to
undertake more complicated circuits than would otherwise be possible,
and, more importantly, allows novice designers to complete designs
with a high degree of confidence. This last point is regarded as

* UNIX is a trademark of Bell Laboratories.
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especially important as system designers move to use silicon as an
implementation medium, rather than more conventional techniques.

A particular 1c design may be described in three domains, namely,
the structural, physical and behavioral domains. Structurally, a design
may be thought of as a graph where components are represented by
nodes in the graph and their interconnection modeled by branches.
The graph nodes may in turn be represented by subgraphs. The
physical domain in an integrated circuit is typified by a collection of
geometric areas defined on masks used in the various process steps
used to fabricate the chip. Finally, the behavioral domain indicates
how the design functions from the level of electrical circuit perform-
ance to possibly higher levels of architectural simulation. Manual
layout, for instance, captures only the physical attributes of a design.
Standard cell layout may achieve consistent descriptions in all three
domains at the expense of fixing the physical layout to a set of
predefined cells.

This paper describes a symbolic layout system (given the name
MULGA) which attempts to achieve consistent descriptions in all
three domains in addition to providing a highly interactive environ-
ment. The cells designed with this system may be used with standard
cell layout systems such as LTX,' or combined using structured design
techniques as popularized by Mead and Conway” to form super-cells
with considerable functionality. In the limit, complete chip descriptions
may be completed using the tools that will be described in the body of
this paper. All programs are written in the C programming language
and run under the UNIX™ operating system. The system has been
designed to enhance man-machine interaction, providing a friendly
interface to designers with wide ranges of experience in the areas of
electrical engineering and computer science.

The paper is divided into four main sections. The first section relates
this work to previously published work by examining symbolic design
methodologies. We then describe the circuit description language
which forms a basis for this system. The design methodology used in
this system, the design aids and the hardware that support this
methodology are then described. The final section summarizes the
work and derives conclusions about the design system and methodol-

ogy.

Il. SYMBOLIC LAYOUT METHODOLOGIES

Symbolic layout methods attempt to abstract the detailed task of
designing 1c masks to clarify this operation. Normally this is achieved
by eliminating or reducing the complexity of the design rules for a
given process. These design rules include the minimum spacings and
widths of the mask layers used in the technology. They also include
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electrical rules for interconnecting layers and the formation of active
devices. These simplified rules ideally result in a quicker turn-around
of designs and a reduction in errors compared to manual layout. This
section illustrates various symbolic design methodologies and their
contributions to the 1c design process.

2.1 Coarse-grid layout

Coarse-grid layout systems divide the chip surface into a uniformly
spaced grid in both the x and y directions. The grid size represents the
minimum feature or placement tolerance that is desired in a given
process. For each combination of mask layers that exist at a grid
location, a symbol is defined. Given a particular design system, these
symbols are then placed on the grid to construct the desired circuic
much in the same way as one would tile a floor. Symbol sets may be
defined as characters or perhaps graphical symbols if a graphics display
is used for design.

American Microsystems International (AMI) and Rockwell Inter-
national have made use of character-based symbolic layout for some
time.** The symbolic interactive design system (sips)® uses a color
character terminal as a design station which provides a high degree of
user feedback. In addition to these character-based systems, Hewlett-
Packard has developed an interactive graphics system (1Gs),® which is
capable of accepting symbolic input on a fixed grid. 168 also uses
symbolic representations to reduce the time to display hand-designed
layouts.

The design process in these systems consists of laying symbols down
on the coarse grid. The use of fixed-size symbols simplifies geometric
design rules but does not totally alleviate them. sips therefore provides
on-line design rule checking for geometric design rule violations, and
a “trace” facility to trace circuit nets to visually check electrical
connectivity. Similarly, 1Gs provides “bumpers” which surround sym-
bols to aid designers in the placement of them.

2.2 Gate-matrix layout

Recently, a character-based symbolic layout system has been in use
at Bell Laboratories for the design of large cMos circuits.” This system
departs from fixed-grid systems principally because it adopts a design
style which involves structuring the way the active and interconnection
layers of the process are used. This style has been given the name
“gate matrix.”

In this layout system, polysilicon is allowed to run in vertical
columns of fixed width and pitch. Diffusion is allowed to run horizon-
tally or vertically in “nonpoly” columns. The intersection of a poly
column and a diffusion row forms a transistor. The metal layer is
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allowed to run in both vertical and horizontal directions to complete
connections. The design process involves identifying gate signals and
assigning a poly column per signal. Transistors are then placed and
interconnected using diffusion columns or Manhattan metal connec-
tions. If necessary, extra poly columns may be added to complete a
circuit.

This system achieves better density than a comparable fixed-grid
layout and moreover has demonstrated “hand-packed” densities on
large circuits. This seems to be due to the fact that the designer is
provided with a rigid but structured design technique which allows the
corresponding “grids” to be placed closer together than in coarse-grid
systems.

2.3 Sticks layout

The term “sticks” is a generic term given to symbolic design systems
that do not necessarily constrain the designer to a grid and generally
require the designer to enter a free-form topological description of a
layout via an interactive graphics system. Graphical symbols are
placed relative to each other rather than in an absolute manner.
Systems representing this form of layout have been reported by
Williams,® Dunlop,”'® and Hseuh et al."* Following the definition phase,
the symbolic descriptions are converted to valid mask descriptions
using a variety of compaction strategies designed to space symbols in
accordance with the process design rules. In this manner, a rough
topology is entered prior to an exact geometric description being
generated. This is as a result of the designer being totally freed from
geometric design rules. However, examples of 1cs designed using these
systems have not been reported to date.

2.4 Virtual-grid layout

The MULGA system uses a grid-based placement scheme as in
coarse-grid layout methods but allows the final geometric spacing
between grid lines to be determined by the density and interference of
elements on neighboring grid locations. This leads to the notion of a
“virtual grid.”"? This concept is best illustrated by a simple example as
shown in Fig. 1a. Three vertical wires are shown centered on a grid.
The result of using a fixed grid of 10 units per grid unit and a wire
width and separation of 10 units leads to the mask description shown
in Fig. 1b. By using a grid in which the spacing varies according to
topology, the mask description in Fig. Ic is constructed. Grid-based
placement allows rapid entry of geometric topology by “snapping”
elements to the grid. The use of a grid also aids the capture of the
circuit details and the subsequent processing needed prior to preparing
a valid set of masks.
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The notion of a “coordinode” as introduced by Buchanan" is used
as an aid to capturing circuit connectivity. A coordinode is defined as,
“a named object which has structural, physical, and behavioral signif-
icance in the 1c design process.”

As its name suggests, a coordinode has the properties of a coordinate,
namely some xy position that will eventually map onto the silicon
surface. In addition, it may possess the properties of a node in a circuit,
perhaps a voltage or a simulation state. Thus both physical and
behavioral models may be assigned to the coordinode. The structural
significance of a coordinode is that it defines nodes in the graph
description of the network that is used to extract the behavioral
aspects of the design.

In the MULGA system the nature of a coordinode is altered slightly
to suit the interactive symbolic environment in which a designer works.
Coordinodes may only exist at coordinates on the conceptual grid, a
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result of dealing at the symbolic level rather than the geometric level.
In addition, coordinodes need not be specifically named, a result of the
desire to have a free-flowing interactive dialog between designer and
computer.

2.5 Benefits of symbolic layout

Symbolic layout may aid the design process in two ways. First, the
simplification of geometric design rules relieves the designer of detail
that can cloud more global and important issues, such as achieving the
correct circuit or communication requirements. Transparent design
rules also make designs relatively process-independent. If a process
design rule changes, the mask descriptions for a circuit may be regen-
erated with a minimum effort. The second way that symbolic layout
may aid the designer is by capturing designer intent. This means that
apart from capturing the geometrical details of a design, the design
methodology supports capturing the circuit embodied by a design. In
other words, the physical and structural aspects of a design may be
caught early in the design cycle. An example of this is the case when
a designer places a metal path on top of a diffusion region and places
a contact at the center of the common area. Physically, a set of
rectangular areas on differing mask layers have been specified in size
and placed somewhere in the xy plane representing the complete
design. Structurally, the net represented by the metal wire on some
circuit diagram has now been extended to include the diffusion region,
which could, for instance, be the source or drain of a transistor.

The first computer-aided symbolic-layout systems, as represented
by coarse-grid layout systems, made only partial use of the full advan-
tages of symbolic layout. In particular, very few if any structural
details were captured as the designer was forced to think in terms of
tiles of various process layers rather than circuit elements. In addition,
circuit verification had to take place on the basis of a program
recognizing these tiles in particular configurations that constitute
circuits. As noted previously, geometric design rules were only simpli-
fied, not totally alleviated.

The more recent sticks systems have, in addition to the perceived
benefits of a design rule free environment, the basis for capturing
circuit connectivity, although none have treated this benefit in detail.
This is due to the fact that specific problems have been addressed, in
particular compaction, rather than the complete design cycle and the
relevant tools required.

The system described in this paper takes full advantage of the
above-cited benefits of symbolic layout in a consistent and logical
fashion. Section III describes a convenient language interface.
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ll. INTERMEDIATE CIRCUIT DESCRIPTION LANGUAGE (ICDL)

As previously discussed, one wishes to capture physical, structural,
and behavioral attributes of a design during the specification phase. In
addition, in this system a prime requirement was for a highly interac-
tive environment to support “on-line” design. In contrast to the inte-
grated circuit system (1csys)'? which is implemented in terms of an
object-based language, the MULGA system has been implemented in
terms of two languages. The first is a primitive but effective interme-
diate circuit description language (1cpL) that contains physical, struc-
tural, and derivable behavioral characteristics. The second level of
design supports procedural design in the C language, which enables a
designer to write a program that can generate 1cpL. All of the software
described in this paper uses the 1cDL text descriptions of cells as a
central data base.

The basic element of the language is a cell, which is composed of
elements that may be devices, wires, contacts, pins, or cell instances.
This is similar to the set of elements used in Ref. 11. However, rather
than being specified in mask coordinates, these elements exist on a
virtual grid. As will be seen, this grid serves only as a relative placement
framework during the design process and has attributable mask-geo-
metric properties only after further processing.

3.1 Devices

Devices may be a variety of types and are specified by the keyword
device for a driver type transistor, or load for a resistive transistor
followed by the device type which may be:

P Dp-type device,
n n-type device.

Devices have attributes of position on the coarse grid, and optional
orientation, width, and length parameters. A device is specified as
follows:

device type xpos ypos <w = width> <1 = length>
< or = orientation >

The type parameter may define different subclasses of devices, e.g.,
different implant transistors. Dependent on the position, orientation,
width, and length of the device, the position of the source, drain, and
gate connections are defined. In this implementation, the position also
depends on whether a transistor is a load device or a driver device.
The position may be symbolic grid point, line or area, dependent on
the connection restrictions that are desired on a device.

For instance, in this implementation a standard driver type device
has terminals as shown in Fig. 2. The connection points, lines, or areas,
and the basic definitions of the devices are somewhat process depend-
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Fig. 2—Driver transistor connections with varying orientations.

ent and must be selected in such a way as to yield a meaningful
symbolic representation of the actual layout—both physically and
structurally.

The width and length parameters in this implementation are refer-
enced to default minimum width and length devices. Usually the final
size of the device gate region is directly scaled using the width and
length values. This significance may be changed to suit the process or
flexibility required. For instance, increasing the width by a factor of
one may increase the actual device size by, say, 2 pm.

It may be seen that transistors dependent on type and parameters
have a certain physical realization. The definition of predefined contact
points ensures that the structural requirements of a circuit may be
met in a logical fashion at the time of capture of the circuit. The
behavioral characteristics of a transistor are subsequently found by
simulation, based on the physical and structural attributes.

3.2 Wires

Wires can exist on any of the valid interconnection layers of a given
process. They are specified by the following statement:

wire layer <w = width> x1yl,...,xnyn,

where x1 y1, ..., xn yn are a list of Manhattan vertices. Structurally,
wires serve to connect devices and cells together. Crossing two wires
on the same interconnection layer provides electrical connection while
certain crossings such as poly over diffusion are illegal and result in an
error message being generated in a subsequent process. This is as a
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result of allowing explicit devices, as defined by the device construct.
Wires on different layers that intersect at a grid point are only
connected if a valid contact is also found at that grid point. Thus wires
serve to interconnect coordinodes. Physically, a wire is defined by its
width w. If no width is given, the default minimum for the intercon-
nection layer is used. Symbolic wires have no absolute length. Their
final physical length depends on the compaction process (see Section
VI).

3.3 Contacts

A contact joins two or more layers at a grid coordinate. For example,
a device may be connected to a wire via the appropriate contact.
Specification is as follows:

contact type xpos ypos

The range of contacts available depends on the particular process. In
cmos, contacts are of four types: md, mp, vdd, or vss which are
respectively metal-diffusion, metal-polysilicon, and two substrate con-
tacts. In NMos depletion load the contacts may be md, mp, pd, or
pmd for metal-diffusion, metal-polysilicon, poly-diffusion, or poly-
metal-diffusion.

3.4 Pins

A pin may be on any interconnection layer and serves to name
interconnection points and name specific nets within a circuit. A pin
is specified by

pin type xpos ypos name,
where type may be,

a aluminum,

p polysilicon,
N N-diffusion,
P P-diffusion.

xpos ypos are the symbolic grid coordinates and name is the pin name.
Although pins have no final geometric significance when it comes to
generating mask data, they are of central importance in specifying the
circuit corresponding to the physical description. They in essence
merge the physical, structural, and behavioral characteristics of a
circuit.

3.5 Cell instances

With the above-mentioned four types of element, an M0Ss circuit
may be specified. Hierarchy is added by the cell instance element.
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Other cells may be included in a cell by using the following statement:
instance cellname xpos ypos <n = rep><dx = xx>
<dy = yy> <“instname’’>

where,

cellname is the name of the cell instanced,

xpos ypos is the symbolic grid location of the origin of the instanced
cell,

rep is an optional number of repetitions (default = 1),

xx is the optional x grid displacement/repetition,

yy is the optional y grid displacement/repetition,

instname is the particular name denoting a particular instance of a
cell.

3.6 Graphical representations

As well as the textual descriptions of 1cDL, graphical descriptions
exist for interactive editing and documentation. Figure 3 gives an
example of the symbols used for interactive editing and the associated
IcDL text. Note that these symbols mirror the width of wires and the
size of different devices, although not necessarily to scale. The object
of the representation is to give the designer some idea of relative
thickness or size to aid in placement of circuit elements. This “thick
sticks” or “logs” notation has been found to be more suitable for the
symbolic design of ics than some of the more conventional sticks
notations. If one designs a topology using only stick figures, then when
the geometrical aspects are taken into account, these neat topologies
are often blown apart. The aim in this system is to provide as much
support as possible for the designer to structure his design from the
start, by taking into account in a symbolic manner the relative geom-
etries of elements.

Symbols used for hardcopy documentation are illustrated in Fig. 4.
In addition, a set of characters have been designated so that character
terminals may plot layouts in the same manner as coarse-grid symbolic
layout systems.

IV. DESIGN METHODOLOGY
4.1 Chip design

The chip design methodology that has been used with this system
to date may be described as a top-down plan followed by a bottom-up
implementation. The designer starts with the function or functions
necessary and completes a chip “floor plan” as illustrated in Fig. 5.
This combines a partitioning of the functionality along with some
global wiring strategy. In this example of a data path, data runs
horizontally in aluminum and control runs vertically in polysilicon.
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Fig. 4—1cDL output produced on plotter.

Once the overall wiring strategy is defined, the circuit blocks of the
“floor plan” are decomposed until manageable cells have been defined.
For instance, the Register ALU (RALU) block may be divided into a
REGISTER section, CONTROL blocks, and an ALU section. The ALU may
be further divided into an XOR, ZERO, ADDER, and SHIFTER section. At
this point the ADDER is defined as a 2-bit section taking into account
the original data and control directions and interconnection layers.
This functional reduction is outlined in Fig. 5 and the resulting ADDER
is shown in Fig. 6.

Cells are designed in this manner until the complete circuit block
has been defined (RALU). The cell design is then iterated as explained

below.

4.2 Cell design
The method of cell design used in this system is as follows:
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(i) Cells are first entered into the system. This may be achieved by
drawing a rough draft of a cell on squared paper and manually entering
an 1cDL description via a standard text editor. Alternatively, an inter-
active graphics editor may be used to edit 1cDL files in an on-line

CONTROL
REGISTER ALU
8-15 8-15 CONTROL (POLYSILICON)
RALU CONTROL DATA (ALUMINUM)
REGISTER ALU
0-7 0-7
CONTROL
2-BIT ALU
2-BIT ALU
ALUO-7
2-BIT ALU
2-BIT ALU
CARRY  SHIFT SHIFT
2-BIT ALU ouT DATA CONTROL
DATA BUS <=—e=
POWER, GROUND -+—= ZERO XOR ADDER SHIFTER
DATA BUS --—e=
ZERO XOR CARRY  SHIFT SHIFT
CONTROL CONTROL IN DATA CONTROL
cout
ADDER T
V5§ p—p- VSS
a1 ——— —s1
2] -—l f—z1
b1 ——
vdd --— ADDER fa—a vdd
b0 ———f
20 -— fe——2z0
a0 ——— —
VS et f——a VSS

Fig. 5—Chip floor plan showing sample reduction technique to obtain a simple gate.
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Fig. 6—A 2-bit cmMos adder shown on the color-graphics display.

fashion. Another method of input involves writing programs in the C
language to procedurally define 1cpDL files.

(if) The structural details of a cell may then be verified via a
connectivity extraction program. Cells are re-edited at the symbolic
level until the circuit is correct.

(i) Cells so designed may then be compacted. This relates the grid
positions used in the 1cDL language to the actual coordinates allowed
in the final mask set. Feedback is provided to the designer to enable
him to optimize his design at the symbolic level with regard to packing
density. )

(iv) Behavioral aspects of a cell or group of cells may then be found
by using this structural description with an in-built timing simulator.
The connectivity extractor now uses the actual physical mask values
to calculate parasitic capacitances and transistor sizes which are used
by the simulator.

(v) Finally, various methods of expansion to the mask level are used
to produce a final physical description of the circuit. If necessary, the
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cell may be re-edited at the symbolic level to improve packing or to
interface with neighboring cells. Cells are incorporated into larger cells
by a combination of repetition, butting, and simple routing.

The following sections describe the design aids needed to support
this design style.

V. INTERACTIVE TEXT AND GRAPHICS EDITOR

Because the basis for the system is the 1cDL language, we would like
to be able to edit this language and see the effects of the edit operation
on the layout. This requires a simultaneous text and graphics editor,
which is relatively easy to implement with 1cDL by a simple interpreter
that works on a common data base."

A design session begins by reading a cell into the editor. If a cell
calls other cells, then they are read in order into the data base. If the
design is such that all the cells cannot be read into memory, then cells
are thrown out according to a least-recently used algorithm. As cells
are read in, their bounding box dimensions are calculated and this
information along with the cell name is kept in a global data structure
which is maintained for the duration of the edit session.

The cell may then be viewed on a high-performance color graphic
display.'® All details may be plotted or just the bounding boxes of cells
shown. The textual output corresponding to the layout displayed on
the color display is presented on a standard text terminal. The designer
may manipulate the cell description much in the same way that he
would use a text editor, except that the actions are mirrored on the
graphic display. For instance, if a particular line of text is displayed,
then the element it represents is highlighted on the color screen. If the
“delete element” command is given, then the element disappears from
the screen and is deleted from the 1¢DL data structure. In addition to
being able to perform operations via the terminal keyboard, a designer
may use a data tablet for input and receive graphical feedback via the
color display. For instance, an element may be identified by placing a
tracking cross over the object and invoking the appropriate command.
The editor then prints the line of text associated with the object. In
the case of multiple objects occurring at the same grid point, each
individual element is returned in sequence.

Representative commands are as follows:

view (v)
plots the cell at current scale and x,y origin in current mode;
scale (8)
changes the plotting scale;
append (a)
places the editor into the append mode in which ICDL may be
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entered at the keyboard or via a data tablet. Input via the data
tablet is directed by a set of menus on the graphics display;
print (p)
prints the current line and highlights the element on the screen;
delete (d)
deletes the current line (which is highlighted on the screen). The
element is removed from the screen;
deletearea (D)
deletes all elements in an area defined by keyboard or tablet;

prints the value of the current line;
0
prints the position of the cursor;
move (m)
moves a rectangular section of 1cDL by an arbitrary x and y displace-
ment as specified by the tablet or keyboard;
copy (c)
makes a copy of a cell with specified translation, reflection and
rotation;
box (b)
flips the editor between the “draw bounding box” and “draw detail”
mode;
text (t)
toggles the text flag which enables pin names to be displayed;
identify (i)
identifies a particular element indicated by coordinates typed at the
keyboard or by the tracking cursor and data tablet. If so desired, an
identified element may be deleted;
Pan (P)
allows the designer to enter a mode which enables him to pan across
a layout in real time in any direction. This is done with minimum
change to the screen so that the designer does not lose visual
perspective of the layout;
grid (g)
turns the grid flag on (or off ). This causes a grid to be drawn when
view is invoked with a grid spacing equal to current scale value;
write (w)
writes the cell to disk;
quit (q)
quits the editor.

Figures 7a and 7b show the RALU mentioned in Section 4.1 in
symbolic format. Figure 7¢c shows the ADDER in XxYMASK format. Figure
8 shows a section of the RALU at a reduced scale factor.
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Vi. COMPACTION
6.1 Introduction

Once a symbolic layout has been entered and checked as structurally
correct, it is desirable to convert this symbolic description into a set of
mask data. This is achieved by what is termed a compaction strategy.
In general the symbolic description is examined in, say, the x direction
and the minimum geometric spacing between elements or symbols is
found. This is then repeated in the y direction. Akers developed a
compaction algorithm based on a fixed-grid system.'® In this algorithm
blank grid sites are sought, say, in the y direction. Figure 9 illustrates
a simple example. The path of blank cells may be disjoint along so-
called shear lines as shown in Fig. 10. When a path is found across the
layout, that space is taken out. Dunlop reported a system in which the
symbolic input did not have to be placed on a coarse grid but instead
used a node-and-line form of relative placement.'’ A similar approach
is treated in Ref. 11. The reader is referred to these papers for an in-
depth discussion of these techniques.

Fig. 7Ta—Part of the RALU in symbolic format scale = 2.
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Fig. Tb—RALU in symbolic format scale = 4.

The compaction algorithm used in this system is conceptually very
simple and is similar to all those mentioned. Primarily, the object of
the algorithm was to be fast while producing adequate compaction.
Very little optimization such as jog generation or automatic routing
has been included. Rather, copious feedback is provided to the designer
to enable optimization of a design interactively at the symbolic level.
It is also reasoned that by providing the designer with informative and
lucid descriptions (the color display), and a knowledge of compacter
performance, a better symbolic design will be entered from the start.
Practice has shown this to be a valid design method over the many
cells that have been designed on the system.

6.2 Virtual-grid compaction

Recall that the data base consists of elements or objects such as
transistors and wires that exist on a virtual grid. These two facts are
used to form the basis of the compacter. Virtual-grid compaction takes
adjacent grid lines and assigns mask coordinates to these grid lines
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Fig. Tc—2-bit full ADDER in XYMASK format.

according to the relative placement of elements on the grid lines. Thus
although elements exist on a grid from the input phase, the spacing of
the grid is a function of the particular topology of the circuit being
designed, and in fact its environment in the form of neighboring cells.

Elements are initially plotted into a matrix representing the area to
be compacted. For instance, wires are plotted as a single line for wire
segments parallel to the direction of compaction, and as endpoints
otherwise. Transistors are normally plotted as three elements, one
each for drain, source, and gate. Pins are not plotted and contacts are
plotted as one element. The data structure at each element in the
matrix is shown in Fig. 11. Thus in this implementation, at most one
device, two wires, and one contact may be recorded at one element. In
the case of a conflict the largest of any conflicting element is recorded.
From the pointers to the 1cDL data structure available at each element,
it is relatively easy to calculate not only physical dimensions but also
to deduce connectivity. Note that while the data exists on a grid, the
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Fig. 8—RALU in symbolic format scale = 8.

grid has no specific geometric relationship to other grid locations until
the compaction is concluded.

Having plotted the matrix, it is scanned columnwise, comparing
adjacent elements. The worst-case element spacing for a given column
is recorded. The mask coordinate corresponding to the current sym-
bolic grid location is this value plus the previous mask grid coordinate.
In addition to comparing adjacent columns, the x compaction back-
tracks to previous columns until the distance between the current
column and prior column exceeds some worst-case value. In this way
spacings that exert their influence over a number of symbolic grid
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locations are discovered. As the array is scanned, the position of the
dominating interference element is monitored and stored for future
reference.

When the x compaction is completed, the process is repeated for the
y direction. However, in addition to backtracking, an arc is swept out
from the leading element edge to account for oblique design rule
violations. This effect is shown in Fig. 12.

On completion of x and y compaction, the correspondence between
the symbolic grid location and the minimum mask coordinate allowed
are stored in a “design grid” file. As will be demonstrated this is
subsequently used with the original 1cDL description to create a valid
mask description.

6.3 Performance

The performance of the algorithm is plotted in Fig. 13. Note that
the algorithm has essentially a linear execution time with respect to

PR U U DU SNPI Rpu—" SEp— R -

1
COMPACTION LINE

7 COMPACTED
GRID LAYOUT

Fig. 9—Simple example of compaction on a coarse grid.
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Fig. 10—Shear lines on compacted coarse grid.

the area (in grid units) of a cell. Providing that the density of cells is
comparable this is equivalent to a linear dependence with respect to
the number of elements. In contrast, both approaches in Refs. 10 and
11 indicate complexity of N'*. Hence, this approach remains tractable
for large cells.

Vil. MASK CONVERSION

As mentioned, the result of the compaction process is a design grid
file, which indicates the relationship between symbolic x or y coordi-
nates and final mask coordinates. Note that the design grid file
designates the minimum spacing of mask grid points.

By segmenting the tasks as described above however, more useful
methods of cell expansion than direct expansion may be employed. For
example, Fig. 14 shows an example of a cell composed of subcells A, B,
C, and D. “Pseudocells” AB, CD, AC, and BD are constructed. The
compaction process is then carried out on each of the pseudocells. Cell
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A is then expanded using the y design grid file of pseudocell AB and
the x design grid file of cell AC. Cell A has now been pitch matched by
virtue of the compaction process to cells B and C which it abuts. Any
interconnection point matching in the symbolic description automati-
cally matches in the geometric domain. The other cells are expanded
in a similar fashion. This symbolic pitch matching may be attained in
this system either procedurally or by visual inspection. The speed of
the compacter is important here, as quite often large bit slices have to
be compacted.

The second technique was evolved to deal with NMos circuits, which
tend to be less regular than cmos circuits. Each cell is first compacted
individually. Following this, the connection points and direction of
connection of adjacent cells are specified in a file. A program adjusts
the individual design grid files of common cells to match at the
connection points. In the NMos circuit examples, this saved from 10
percent to 20 percent in area, and will form the basis for future work.
Another refinement may include allowing connection points to wander
along a connection boundary.

Cells that are only defined at the mask level may also be merged
using this technique. Such cells have fixed design grid files and have

VIRTUAL-GRID MATRIX

—
DEVICE PNTR
ELEMENT
WIRE 1 PNTR DATA
STRUCTURE
WIRE 2 PNTR
CONTACT PNTR
- ] f——
—_— -—— —— s fet—o| —f P ——
DEVICE WIRE WIRE CONTACT

CELL DATA STRUCTURE

Fig. 11—Virtual-grid data structure.
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Fig. 12—Oblique viclation checking. Arrows show grid points that may be checked
during y compaction.

corresponding 1cDL files which contain only pin information for inter-
connection purposes. 1ICDL cells may be pitch matched to these fixed
cells or if necessary a routing channel may be inserted to interconnect
them. An example of such a cell is an 1/0 pad from a standard cell
library.

On completion of mask conversion, the output may be viewed in a
mask level version of the interactive graphics editor. The same panning
abilities are provided. In addition, feedback is provided at the symbolic
level showing the critical compaction points in the design. The designer
may use this graphical feedback to guide a redesign of the cell at the
symbolic level. One advantage of the compacter is its predictable
actions which may be used to advantage by the designer to obtain
more compact mask layouts.

Vill. PROCEDURAL DESIGN

Situations arise during the course of a design in which it is desirable
to procedurally define a design. This may include the parameterization

250

cyck

g
T

@
S
[

g
T

dBm

EXECUTION TIME IN SECONDS

Odlatch
Odit

o
=]
|

inverter |
0 250 500 750 1000 1250 1500 1750
AREA IN GRID UNITS

Fig. 13—Compaction algorithm performance.
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COMPLETE CELL

c D
CELL ABCD

PSEUDOCELLS

A B c D

CELLCD

CELL AB

A B

c D
CELL AC CELLBD

Fig. 14—Mask conversion for butting cells. Subcell A can be expanded using x design
grid file of cell AC and y design grid file of cell AB.

of a cell, or the algorithmic specification of cells using looping and
conditionals. A higher level language is also useful when it becomes
necessary to put large pieces of circuitry together. To obtain this
power, a set of C programs were written which generate an 1cpL data
structure, and may be used to procedurally define 1cs.

In brief, subroutines are available to initialize the data structure, to
insert devices, wires, contacts, and pins, and to interconnect cells. The
subroutines allow the naming of transistor terminals and the subse-
quent interconnection to these named terminals. As an alternative to
this method of procedural design, a user may just use parameterized
print statements to generate ICDL files. Of course this method may be
programmed in any higher-level language.

IX. CIRCUIT EXTRACTION

One of the benefits of using 1cDL is that it carries an implicit circuit-
connectivity description of a layout that has been entered either
interactively or procedurally. As explained in Section III, devices have
designated connection points which are related by simple geometric
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rules to the center of a device. Wires serve to connect devices and
external connections via interlayer contacts. The pin construct aids
the designer in naming specific nodes and connection points. In con-
trast to circuit extraction programs which work at the mask level, the
inherent connectivity in the 1cDL description is used to arrive at a
transistor node table which does not have to infer the existence of
transistors. In addition, values for parasitic capacitance are computed.

The algorithm used is quite simple and is illustrated to indicate the
ease with which this may be achieved at the symbolic level by using a
representation such as 1cDL.

Following input of the 1cDL, each pin is given a different node
number. Each contact is also given a node number and then each
transistor connection not covered by a pin or contact grid position is
given a node number. In effect then, each virtual grid position that is
occupied by a contact, pin, or transistor has a different node number.
These form the coordinodes of the circuit.

Each wire is then taken in sequence and tested for intersection with
wires of similar type. At the same time wires on different layers are
tested for intersection via interlayer contacts. As each wire is tested a
list of nodes that it crosses is maintained. At the end of this step each
wire has a record of all wires that connect to it either directly or via
valid contacts and a list of coodinodes that it effectively intersects.

A recursive technique is then used to reduce the node numbers
common to a particular wire, to one value. All pin, contact, wire, and
device node values are adjusted accordingly. For each device the node
table is then printed out, with the appropriate pin names used where
possible. Unnamed nodes are given an internally generated name.

Wire capacitance values for each named node are then summarized.
Mapping from symbolic to mask coordinates may take place by either
previously compacting the 1cDL description and using values from the
design grid file or using a statistically averaged grid spacing value.

The output of the circuit extractor may be piped through various
filters to suit a range of circuit analysis and simulation programs. An
example of a form suitable for input into a circuit analysis program is
shown in Fig. 15.

9.1 Simulation

Once the physical and structural attributes of a cell have been
defined, it is necessary to obtain some idea of the behavioral charac-
teristics. T'o achieve this, a transistor and gate level simulator was
written and installed on the MULGA system. It is modeled on a Mos
timing simulator (MoTIS) and enables quick turnaround simulation of
cells via the circuit extractor.”” Simulation may take place at the
transistor level or transistors may be merged into gate descriptions in
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«SUBCKT fad ( vss wdd a b _sum ci _co )
MN1 10 a wss ss N7A
MN2Z _co b 10 wvss N7A
MN3 11 ci _co wvss N7A
MN4 11 a wvss wss N7A
MNE _co b wvss wss N7A
MN6 12 _co _sum vss N7A
MN7 12 ci wvss vss N7A
MNB 12 a wvss wss N7A
MN9 12 b wss wss N7A
MN10 I3 ci wvss vss N7A
MN11 14 a 13 wss N7A
MP1 _co a vdd wvdd Pl4A
MP2 _co b vdd vdd P14A
MP3 _co «ci vdd vdd P14A
MP4 15 a wvdd wvdd P14A
MP5 _co b I5 vdd P14A
MP6 _sum _co 6 wvdd P14A
MP7 17 ¢ _sum vdd P14A
MP8 1B a 17 vdd P14A
MP9 16 b I8 wvdd P14A
MP10 16 ci vdd vdd P14A
MP11 16 a wvdd wvdd P14A
MN12 _sum b 14 wvss N7A
MP12 16 b vdd vdd P14A
CMwvss vss 0 CMTOSH 324
CNTvss vss 0 CN+H 48

CMvdd vdd 0 CMTOSH 324
CPTvdd vdd 0O CP+H 48

CPa a 0 CPTOSH 168

CMa a 0 CMTOSH 162

CPb b 0 CPTOSH 168

CMb b 0 CMTOSH 162

CP_sum _sum O CPTOSH 30
CM_sum _sum 0 CMTOSH 168
CPT_sum _sum 0 CP+H 12

CPci ci O CPTOSH 150

CMei ci O CMTOSH 90

CP_co _co 0O CPTOSH 54
CM_co _co 0 CMTOSH 138
CMI2 12 0 CMTOSH 24

CNTI2 12 0 CN+H 12

CMI6 16 0 CMTOSH 72

«FINIS

Fig. 16—Circuit extractor output for circuit-analysis program.

the manner that MOTIS operates. A bonafide transmission gate may be
modeled and buses are handled inherently by the data structures used.
This simulator is called EmMU for emulation of MoOs circuits on the
UNIX system."®

A filter on the circuit extractor output allows the cell’s logic descrip-
tion to be specified in terms of a C subroutine. These subroutines may
be then combined hierarchically to suit the high-level functions that
the cells constitute. This description may then be compiled to provide
an intermediate simulator code which is input to the simulator. A full
discussion of the simulator may be found in Ref. 18.

Output from the simulator may be viewed on the color CRT or
plotted on a four-color plotter for hard-copy purposes. Typical output
is shown in Fig. 16.

The integration of the simulator into the design station is regarded
as very important as it allows a designer the same fast feedback
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Fig. 16—Typical simulator output.

regarding behavioral aspects of a design, as are available physically
and structurally.

X. HARDWARE
10.1 General

Aspects of the hardware have been alluded to during the course of
this paper. Figure 17 is a sketch of the hardware used in the design

station.
The general purpose host is a DEC Ls1 11/23,* with 256 K bytes of

* DEC is a trademark of Digital Equipment Corporation.
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Fig. 17—Hardware used in the design station.

semiconductor RAM. A CDC “Hawk” disc provides 10 M bytes of
secondary storage.* Serial ports support a printer, glass TTY, dial-up
lines and a four-color plotter. A serial link is also provided to a DEC
vAX 11/780 for backup storage and large numeric processing tasks.
The UNIX multiuser operating system controls all devices.

On the interactive side, an 11-inch data tablet is used in conjunction
with a high performance color display. The color display contains a
512 pixel/line by 512 line (480 viewable) frame buffer with 8 bits per
pixel. A color map provides 256 colors from a palette of 2*. A 16-bit
microprogrammed graphics processor (GUMBI) is responsible for raster
conversion into the frame memory." The total cost of the hardware is
in the vicinity of 50 thousand dollars, but near term reductions in cost
would lead to a total cost in the range 20 to 30 thousand dollars.

10.2 Display attributes

Many of the human-engineered features of the editor rely heavily
on the display terminal used, and it is worthwhile to review some of
the requirements that have been necessary to obtain rapid response
times.

10.2.1 Speed of display

This attribute is important in an interactive situation to reduce
operator fatigue and boredom and provide a fluid man-machine dialog.
Speed is achieved in two ways:

(i) A high-speed interpretive graphics processor.

* CDC is a trademark of Control Data Corporation.
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(it) Information bandwidth matching between host and graphics
processor.

The first mentioned item is satisfied by a high-speed micropro-
grammed graphics processor called GUMBI.'> GUMBI takes commands
such as draw box from a host processor and is responsible for plotting
the required bit patterns into a frame-store memory. This offloading
of menial processing means that the host processor may concentrate
on data-manipulation operations rather than time consuming bit-ma-
nipulation tasks.

Information bandwidth matching is achieved by:

(i) Efficient prefiltering of data to be plotted.
(ii) Direct interpretation of the icpL data structure.

(iii) Optimization of the UNIX operating system DMA driver.

It is aided by resolving all plotting operations into two steps. First,
a symbolic coordinate window of interest is maintained. This is the
coordinate representation of the data base and only simple translations
need be made to detefmine actual positions of elements in symbolic
coordinates. Second, a screen coordinate window is kept to determine
clipped shapes that must be passed to the display processor. As the
hierarchical data base is transversed, the bounding box of a cell is first
tested against the symbolic window. If it is outside the window, the
next cell is considered. Alternatively, the elements within a successful
cell are tested against the symbolic window. The successful candidates
of this check are transformed into screen coordinates and then clipped
against the screen window. Rectangles are then passed to a buffer
which is transferred via a pMA interface to the graphics processor.
Note that the “display list” for this process is in fact the 1cpL data
structure, alleviating the need for maintaining intermediate graphic
data structures. The normal pMA driver for the UNIX operating
system was modified to allow direct transfer of data from “user” space
to the pMA port. In addition, once a DMA transfer has been initiated
the “kernel” process returns rather than waiting for the termination of
the pMA transfer as is normal. This change alone improved the speed
of data transfer by 10:1.

10.2.2 Selective update

Because a refresh raster scan display is being used as the display
medium, alterations to the screen do not necessitate the screen being
erased and replotted as is the case for a storage display. Thus in a
“delete” operation only the element deleted is removed without dis-
turbing the rest of the screen. In actual fact, the operation first deletes
the element in question and then replots the cell for the symbolic
window defined by the deleted element. This alleviates any problem
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of partial erasure of remaining elements which can occur if the removed
element shares screen area with another element of the same color.
The “pan” operation uses this attribute and the ability to scroll the
complete screen to give the designer the ability to move across an
entire layout as if flying over the final chip in an airplane at low
altitude. This operation is summarized in Fig. 18 for moving the display
to the left, although any direction movement is possible. First, the
display frame memories are scrolled to the left by 16 pixels and a 16-
pixel strip is erased at the right vertical border. The symbolic window
is adjusted to include elements that will fall within this right border
and the data base is searched. Valid elements are then passed to the
screen transformation, clipper, and then to the graphics processor.
Results have shown that even complete chip layouts may be scrolled
in periods commensurate with human response times (100 mS to 1 S).

10.2.3 Color display

The dimension of color is invaluable to the designer. First, all the
interconnection layers are shown in different colors and the appropri-
ate cross-overs are colored to indicate transparency or any other
subjective effect which enhances designer feedback. Different contacts

OPERATION SCREEN VIEW

SCROLL
FRAME
MEMORY LEFT

I'"".

Eipn

———

ERASE
16 PIXEL
STRIP AT RIGHT

ERASE
PLOT INTO
SYMBOLIC
WINDOW /4

PLOT

Fig. 18—Flow diagram of the panning operation.

MULGA 853



are also coded by their color. Illegal overlaps are designated by eye-
catching colors not used in other parts of the layout. In general, a
designer may choose the color that he associates with a given layer.
This tends to reinforce any recognition tasks that occur. The use of
color is also an immense learning aid for novice designers. By giving
designers a few rules such as “don’t cross green over blue,” experience
has shown that it takes only a brief familiarization time for candidates
to produce useful circuits. Of course, highlighting particular areas of
the circuit is trivially accomplished. Even at large-scale factors, when
plotting a complete chip the color display yields more information
regarding relative wiring densities and placement than storage displays
with nominally higher-spatial resolutions. The main reason for this is,
despite a lower-spatial resolution (512*480 vs 4096*3000) the higher-
color resolution (256 colors) more than compensates. A simple test to
show this consists of plotting a monochrome and color layout side by
side and reducing the scale until the circuit in each respective case is
an unintelligible “blob.” Results indicate a factor of four improvement
for the color layout.

The use of solid boxes to represent elements alleviates any confusion
as to the interior of a box in congested areas. Thus, in conjunction
with the “pan” command, a wire may be followed across an entire
layout without the designer losing visual perspective, as is the case in
more conventional displays.

Xl. RESULTS

After using the system, a number of trends in design may be
identified. Prior to having the data tablet working, input was primarily
via keyboard. At this stage C procedures were used frequently to
define circuits. Subsequently, when the data tablet was operational,
all cell design was completed at the color terminal with higher-level
chip building functions handled by C procedures and UNIX operating
system shell scripts. In fact, many cells were entered from scratch at
the screen, rather than planning a version on paper first. The author
has tried interactive input when designing at the mask level and found
it to be unsatisfactory without prior planning. However, it would seem
that the reduction in complexity afforded by the symbolic notation,
and the smooth man-machine interface provided by the editor and
color graphics display, yield a truly interactive environment. This leads
one to try a number of variations of cells for a particular situation
exploring performance and global interface requirements.

The data path of a special purpose 16-bit cM0s processor is shown
in Fig. 19. This chip was designed on the MULGA system in 8 man-
weeks (without tablet). It contains 5000 transistors in a highly stylized
layout modeled on the gate-matrix style.
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Fig. 19—Five-thousand-transistor cMos circuit designed with the MULGA system.

In addition to the cmos chip, two smaller NMos chips have been
designed, each comprising approximately 1000 transistors. These chips
were designed in 3 man-weeks.

XIl. CONCLUSIONS

We have presented a practical self-contained system to design inte-
grated circuits in the symbolic domain. It is based on a hierarchical
circuit description language (1cpL), which describes IC subcircuits in
both geometric (physical) and circuit (structural) domains.

The following software supports design at the symbolic level:

(i) an interactive text and graphics editor based on a high-perform-
ance color display,

(i) a fast compaction procedure based on the virtual-grid technique,

(iii) a circuit extraction and parasitic audit program,
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(iv) an inbuilt timing stimulator which works at both transistor and
gate level,

(v) procedural design in the C programming language.

The efficacy of this system has been demonstrated during the design
of chips in both cMos and NMoOs technologies. A predominant reason
for the success of the system is the friendly interactive nature that the
system provides to designers with a wide range of experience and
expertise.
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