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This paper reviews some sampling issues that are common to many
Bell System surveys. We discuss various aspects of two-stage sam-
pling designs, and emphasize sampling from populations with mul-
tiple characteristics. The hierarchical structure of the population in
many surveys makes the use of multistage sampling techniques at-
tractive. In populations with multiple characteristics, often not every
characteristic is common to every unit. We consider some special
designs for sampling from such populations. Finally, we discuss some
issues in network sampling. Two recent Bell System surveys are used
to illustrate most of the ideas discussed. One of the surveys deals with
the estimation of traffic characteristics for various classes of service,
while the other one is a survey of baseband transmission impairments.

I. INTRODUCTION

Sample surveys have played an increasingly important role in the
Bell System in recent years as a means of providing an objective basis
for decision making. To an extent, this has been due to the growing
awareness among users of the survey results that, in most surveys,
sampling is not the only source of error and often not the primary
source. Even if a presumably complete census were taken instead of a
sample, serious errors might exist in the results arising from various
causes such as measurement or response errors.
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The growth in numbers, in recent years, has also been accompanied
by a widening of the range (both in type and complexity) of the
surveys. For many of these surveys, a simple and readily available
sampling design can easily be adapted to the needs of the prevailing
situation. More often, however, the problem at hand is sufficiently
complex and nonstandard so that various parts of existing sampling
theory have to be modified and pieced together to arrive at a reason-
able solution.

Nevertheless, some sampling issues are common to a number of Bell
System surveys. Most of these surveys involve sampling from popula-
tions that are highly structured, and any cost-efficient sampling design
must take this structure into account. In this paper, we review some
sampling issues that arose in two surveys currently under implemen-
tation. Both surveys possess some common features as well as features
unique to themselves. Since these features are common to a large
number of other surveys, an exposition of both the theoretical and
practical considerations involved may prove beneficial to other survey
practitioners. Let us first consider the two examples.

Example 1. Cost of service traffic usage studies (COSTUS)

The various Bell operating telephone companies (0Tcs) carry out
these surveys periodically to obtain an objective basis for distributing
the traffic-sensitive costs for a jurisdiction, typically a state within an
OTC, among its various classes of telephone service. Measurements of
three traffic characteristics (busy-hour ccs, busy-hour peg count and
14-day peg count) from the sampled telephone lines are used to
calculate the relative magnitudes of the traffic characteristics for each
class of service. [ccs is a traditional unit for measuring the usage of
channels (it stands for hundred call seconds per hour). Peg count is
the number of calls actually handled.] These values are then used as
inputs to the “embedded direct costs” analysis, which allocates most
traffic-sensitive investments and expenses among the various classes
of service.

The elementary units in this study are telephone lines corresponding
to the various classes of service. These units, however, are clustered
into central offices. In fact, each central office has a number of clusters
associated with it, one cluster for each class of service. A reasonably
cost-efficient design should take this hierarchical clustering into ac-
count, since the major portion of the costs in observing a line arises
from visiting the central office and setting up the measuring equip-
ment. Thus, a two-stage sampling design with central offices serving
as primary sampling units (psus) and telephone lines serving as sec-
ondary sampling units (Ssus) seems attractive. This is even more so
gince the central offices provide service in a number of classes of
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service so that from each sampled central office, we can further
subsample telephone lines from all the available classes of service.
Hence, cosTus are examples of the use of a two-stage sampling
design for a population with multiple characteristics. The different
characteristics here correspond to the different classes of service. The
parameters of the sampling design in cosTUS are determined so that
the busy-hour ccs parameter for each class is estimated with a pre-
scribed accuracy. One additional complication in these studies is the
fact that not all central offices provide service in every available class.
In some jurisdictions, there are some classes of service (such as coin)
that are provided in only a few offices. The sampling literature refers
to this as the problem of “partial variate pattern” (PvP). The presence
of PVP causes difficulties in selecting an appropriate sample of central
offices for the estimation of the parameters of all the classes of service.

Example 2. Survey of baseband transmission impairments

The aim of this survey, currently under development at Bell Labo-
ratories, is to measure baseband transmission impairments for various
trunk facility types. From each sampled trunk, estimates of various
impairment characteristics, such as signal to C-notched noise ratio (s/
n) and second- and third-order harmonic distortion (R2 and R3) are to
be obtained. Although the near (transmitting) and far (receiving) end-
drop equipment, in addition to the carrier system, determines the
trunk type, it is known from past experience that the contribution
from the carrier system is the dominant factor. Thus, we do not
consider the influence of the end-drop equipment in this study. Six
different measurement characteristics are to be measured from each
sampled trunk and the parameters of seven different trunk types are
to be estimated.

The elementary unit in this survey is the trunk. While the trunks
are again clustered into central offices, this clustering is not unique
since one trunk is common to a pair (transmitting and receiving) of
central offices. In fact, the structure of the population here resembles
a graph (network) with the central offices as nodes and trunks as edges
(arcs). This survey is an example of network (graph) sampling (see
Ref. 1, for example). In this survey, if we sample a particular trunk, we
have to visit the pair of end offices connected to the trunk to set up
the measuring equipment. This implies that it is cheaper to sample
additional trunks connected to those two end offices. Hence, taking
the structure of the population into account results in considerable
cost savings.

One possible approach to this problem is to use multistage sampling
to select pairs of offices and trunks connected to those offices. Since
we are interested in different trunk types, this study also involves
multiple characteristics.
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Both the above examples involve using multistage sampling to study
populations with multiple characteristics. Multistage sampling is not
an uncommon phenomenon in Bell System surveys where the natural
administrative and geographic clustering of units makes it very cost
efficient. In Sections II and III we review various issues that confront
a survey statistician in developing a two-stage sampling design for
studying multiple characteristics. Some of the issues discussed in
Section II are also common to other sampling designs. Section III
deals primarily with determining the parameters of the sample design.
In Section IV, we consider some sampling designs for populations with
pvP. Section V is a brief review of issues in network sampling. We
conclude the paper with a summary in Section VI. Throughout the
paper we try to balance theoretical considerations with practical
guidelines gained from our own experience. One of the two examples
is used, wherever possible, to illustrate the ideas discussed.

Il. TWO-STAGE SAMPLING: SOME PRELIMINARIES

This section deals with some preliminary considerations in devel-
oping a two-stage sampling design. Some of the discussion deals with
issues that are common to sample surveys in general. We begin with
a discussion of the rationale for using two-stage or multistage sampling
designs. After an introduction to some notation, we examine how
prescribed accuracy requirements are implemented in a sample survey
and discuss the use of prior information. Section 2.6 examines the use
of varying probability sampling schemes. Section 2.7 discusses ratio
estimators with specific emphasis on two-stage sampling situations.

2.1 Why two-stage sampling?

The individuals whose characteristics are to be measured in a study
are called elementary units. Observational access to the elementary
units, in many cases, is provided by multistage sampling. Let the
elementary units be grouped into a number of suitable clusters. In two-
stage sampling, the clusters are used as Psus and a sample of PSUs is
selected in the first stage. The PsUs selected are divided into a number
of ssus and a sample of ssUs is selected from each PsU selected in the
first stage. (The elementary units themselves can serve as ssus.) All
elementary units in the selected ssus are observed with respect to the
variables of interest.

There are various reasons why multistage sampling is attractive. For
instance, in many studies, a complete list (“frame”) of elementary
units is not available and it may be prohibitively expensive to create
such a list. If it is relatively cheap to construct a list of clusters, the
clusters can be used as PsuUs in a two-stage sampling scheme. Then,
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only a list of the elementary units in the sampled clusters needs to be
constructed. This results in considerable cost savings.

Often, the population of elementary units in a survey is dispersed
over a large geographical area. If we have to visit each sampled unit to
collect measurements, sampling from the list of elementary units can
lead to high costs per elementary unit. A more cost-efficient scheme
may be obtained by grouping the elementary units into geographically
compact clusters and using multistage sampling with the clusters as
PSUS.

Typically, the cost reduction in multistage sampling is accompanied
by an increase in the variance of the estimate over the variance of an
estimate from a simple random sampling (SRs) of the same number of
elementary units. However, the “accuracy” per unit cost may be
higher. If we have some control over the formation of the clusters, we
can actually reduce the variance (relative to sRs) by grouping the units
so that there is more variation within clusters than between clusters.
In most Bell System surveys, however, the clusters are predetermined.

2.2 Notation

We use the following notation throughout the remainder of this
paper:

M number of PsuUs in the universe,

m = number of PsSUs sampled,

N; number of ssUsinpPsUi, i=1, ..., M,

n; number of ssus selected from the ith sampled psu,
i=1..-,m,

II; = probability of selecting the ith psu in a sample of size
m, Eﬂ] Il; =m,

Y, = characteristic to be measured, j=1,--- ,N;, i=1, ...,
M,

yi = value corresponding to a sample unit, j=1,---,n;
= ]_, see ., m,
N M -

Yi =YY, Y=Y%Y, Y, =Y/N,

= =1

= M 1 N; -

Y/N, N=3%YN, & =5 2 Yy =Y’

i=1 ij=1

1]
I

Yi = _21)’:}'; y= ‘Elyi, J=’i=yi/nis
J= b=

y =y/n n=3%n

i=1
We consider only equal probability sampling schemes in stage
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two in this paper. The parameter of interest is the overall total ¥ =
¥, N;¥.. ¥ denotes an arbitrary estimator of Y. The same consider-
ations can be used for estlmatmg the average Y if we rewrite

Y= 2 WY, W.: = N./N.

2.3 Accuracy requirements

The sampling design in a carefully planned survey is determined so
that either (i) the total cost of the survey is minimized subject to a
prescribed requirement on the accuracy of the estimators or (ii) the
accuracy of the estimators is maximized subject to a constraint on the
cost. Since both approaches involve essentially the same considerations
(see Section III), let us consider in some detail just the problem of
minimizing cost subject to accuracy requirements.

A sampling design, where the units are randomly selected according
to given probabilities of selection, permits us to make quantitative
statements about the error involved in the estimators. This in turn
allows us to determine the sample sizes so that the prescribed accuracy
requirements are met. These requirements are typically stated in terms
of the error e = ¥ — Y or some function of the error, f(e), such as
relative error, and can be expressed as

Pr{|fle)|<8)}=1—a (1)

for some constants a« and 8. In cosTus, for instance, the sample sizes
are determined so that the absolute values of the relative error is less
than or equal to 0.1 with probability at least 0.9, i.e.,, « = § = 0.1. To
implement the accuracy condition (1), large-sample theory is usually
used to claim that Y is approximately normally distributed. (It is
beyond the scope of this paper to discuss the adequacy of this normal
approxmlation The interested reader is referred to Refs. 2 to 5.)
Equation (1) is equivalent to an expression of an upper k bound on the
variance [or mean-square error (mse) if Y is biased] of Y.

When estimating several parameters, as in populations with multiple
characteristics, we may require that several accuracy criteria be sat-
isfied simultaneously. By using normal approximations, we can state
this problem, in general, as minimizing the total cost of the survey
subject to a constraint on the variances (or mse’s) of the form

Av =1y, (2)

where v = (v, -+-, v,)T is the vector of variances (mse’s) of the p
estimators, A is a 2 X p matrix that specifies the £ specific linear
combinations of the variances that have to meet the accuracy condi-
tions, and y = (y1, +++ , y2)” represents the bounds on the accuracies.
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For example, if 2 = p and A is the identity matrix, then all the p
parameters need to be estimated with prescribed accuracy. If & = 1,
then only one particular linear combination of the variances is needed
to satisfy an accuracy criterion.

2.4 Variance components

Since the accuracy specifications can be stated in terms of the
variances of the individual estimators, we need to examine the com-
ponents of the variance of the estimator in a two-stage sampling
scheme. This will aid us later (Section III) in determining the relative
contributions to the variance from stages one and two and the tradeoffs
in increasing the sample size in stage one versus that in stage two. If
we restrict our attention to linear estimators of the form ¥, = ¥ a:7;
for estimating Y, we see that a; must egual Ni/I1; for the estimator to
be unbiased. With this choice of a, Y, is the well-known Horvitz-
Thompson (H-T) estimator.® A discussion of some of the properties of
this estimator can be found in Ref. 7. Let us restrict our attention to
the H-T estimator and examine its variance.

If we select m PSUs with replacement (WR) in stage one with inclusion
probabilities IT;, we have a multinomial sample of size m with success
probabilities Z; = I1;/m. If the second-stage units are chosen without
replacement, the variance of

1 ™N;_
T-niz?
can be written as the sum of two components:”®
(i) the within-Psu variation W is
1 M N?S?
W= m igl Zi n (1 fﬂz), (3)
and
(i) the between-psU variation B is

1M 2
B = ~ 21 Z(Yi/Z;— Y)-.
Here,
S &
Si=— Y- Y z’
7 ,Z:l (Yy—Y)

the within cluster variance and 1 — fo; = (N; — n)/N,, the finite
population correction.

If the sampling is done without replacement (WOR) in stage one with

varying selection probabilities, the within-psu variation remains the
same. The between-psuU variation, however, depends on second-order
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inclusion probabilities which are extremely hard to calculate.”® Har-
tley and Rao provide some approximations.'” One possible approxi-
mation is, of course, the use of eq. (3), valid for the wr scheme, in the
WOR situation. If the sampling fraction m/M is large (say >0.25), this
approximation may be unreasonable. When the sampling is done wWoR
with equal selection probabilities in stage one, i.e., SRSWOR, the B
component is given by

_Ma-pE o o
—m(M— 1) ,'§1 (Yt Y) ]

where ¥ = % Y¥, Y:and f=m/M.

For a discussion of variance estimation in two-stage sampling, see
Refs. 7, 8, or 9, for example. Some approximate but “quick and easy”
methods of variance estimation are discussed in Refs. 11 and 12. If the
variance estimator is intended only to provide a rough guide as to the
accuracy of the estimator, an approximate, but quick and easy, method
is adequate. If the accuracy of the estimator is of great importance
and must be demonstrated through the variance estimator, we have to
use a “good” variance estimator, such as one with small mse.

2.5 Prior information

We need prior information on the variance of the various estimators
and on the sampling costs to determine the sample sizes in a survey.
It is rare that we have very good prior information, particularly
concerning the variance of the estimators. Preliminary estimates can
be obtained from prior surveys or pilot studies. One practice commonly
found in the Bell System is the use of data from the entire Bell System
to develop preliminary estimates for specific jurisdictions.

To implement the accuracy conditions exactly in a two-stage sam-
pling scheme, we need to know each one of the components of W and
B in eq. (3) exactly. Since this is rather unlikely, we usually just use
two numbers, one for W and one for B, instead of the individual values
for each psu. These numbers can be interpreted as either the average
or the maximum over all psus.

When the quality of the prior information is poor (as a consequence
of one or more of the above reasons), little can be gained in developing
a complex design that may (or may not) be “optimum” for the problem
at hand. A simpler design which is less sensitive to the preliminary
estimates of the design parameters is more desirable. Also, when the
preliminary variance estimators are unreliable, an estimate of the
accuracy achieved should always be calculated after the fact from the
sample to compare with the prescribed accuracy.
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2.6 Varying probability sampling

The sample selection schemes in stages one and two can be based
on equal or varying probability sampling techniques. For simplicity,
we consider varying probability sampling only in stage one. The
considerations here also carry over to other stages. Let us examine
how the selection probabilities {I;} should be determined so that the
variance of the H-T estimator Y7, (N;/I1,)y;, for estimating Y =
Y¥, Y, is minimized.

In the simpler situation of one-stage cluster sampling, i.e., n; = N;
if we take I1; proportional to Y;, the variance of the H-T estimator is
zero.” Hence, if there exists an auxiliary variable X; which is approxi-
mately proportional to Y;, we can use this auxiliary information to
select the Il’s. In some two-stage sampling situations, we can use the
measures of size of the psu, {N;}, to obtain “optimal” selection prob-
abilities. To see this, note that the parameter Y can be written as
Y™, N;Y, where Y, is the PSU mean, and often the Y/s are roughly of
the same order of magnitude. In this case, the Y =N;Y; will be roughly
proportional to the N; so that we can take the II; proportional to the
N.:. This is known as probability proportional to size (PPs) sampling.
(In costus, for example, a priori, we expect the average busy-hour ccs
per main station to be about the same across central offices.) When
sampling from populations with multiple characteristics, there are
multiple measures of size, one associated with each characteristic. The
optimal selection probabilities are some function of these size mea-
sures, depending on the particular accuracy criteria of interest. In
addition, there are also cases in which the exact size measures are
unknown and we have to use estimated measures.

To develop a cost-efficient design, we need to minimize variance per
unit cost rather than the actual variance. The optimal selection prob-
abilities must therefore take the cost structure into account. In cosTus,
where the Psus are central offices, the sampling costs depend on the
type of switching equipment in the office. For example, it is consider-
ably more expensive to visit and set up the measuring equipment in an
electronic switching system (Ess) office than in a non-Ess office. If we
use formal optimality calculations, we find that with other factors held
constant, the optimal selection probability for each PsU is inversely
proportional to the square root of the cost of sampling that psu.’

One or more of the above considerations may indicate that even if
the Psus vary greatly in size, the optimal selection probabilities are
not too unequal. In such a case, we may be better off using srs, i.e.,
equal selection probabilities, since (i) the selection scheme is simpler
and (ii) exact variance formulas are available if, in addition, we are
sampling woR. In some situations, we can actually calculate the gain
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from using varying selection probability schemes.” If the gain is not
substantial in these situations, the use of SRS seems preferable.

Also, even if we use SRS when the Psus vary greatly in size, we can
use ratio estimators, which take into account this variation, to estimate
the parameters. This is discussed in Section 2.7.

Finally, we briefly discuss a simple scheme for selecting Psus with
unequal probabilities. Many schemes for unequal probability selection
exist,>”'* and, in fact, several procedures may lead to the same inclusion
probabilities {I1;}. The scheme we consider here is for sampling wWoRr
and is known as pps systematic sampling. Let {7} denote the cumu-
lative totals of the desired selection probabilities {II},

M i

El'[,-=m, T,-=21'Ij.

i=1 J=1
To select m Psus, first select a random number u € [0, 1] and then
select the m psus for which

Tian<u+j=T, Jj=01 ..., m—1.

Hartley and Rao consider this procedure with a random arrangement
of the psus and develop approximate variance expressions for the
estimator.'

2.7 Use of ratio estimation

So far we have considered only unbiased estimators of the total Y.
In some situations we can exploit information available for some
auxiliary variable and use a biased estimator, such as the ratio esti-
mator, which has smaller mse than the unbiased estimators. To see
this, let {X;} be the known auxiliary variable and let X denote the total
corresponding to this variable and X denote the estimator of X based
on the sample. Since we know the error X — X, we know how this
sample performs in estimating X. Hence, if {X;} and {Y;} are highly
correlated, it is intuitively clear that we can improve our original
estimator ¥ by exploiting our knowledge of how well the sample
estimates X.

The ratio estimator itself is a special case of the general difference
estimator ¥, = ¥ + a(£ — X) and is obtained by taking a = —¥/X.
This results in the estimator ¥ = (¥/X )X. There are other ways of
exploiting the information about X — X. For instance, a can be a
prespecified constant. (If @ = 0, we get the original estimator ¥ based
on the Y measurements alone.) We can also take a to be the regression
coefficient 3 obtained by regressing the Y.’s on the X/’s.

For the ratio estimator ¥, the mse of Y can be approximated up to
a first-order term by
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V(¥) - 2R Cov(?, X) + R*V(X),

where R = Y/X and Y and X are unbiased estimators of Y a.ndAX.9
Thus, ¥ will be more efficient than the unbiased estimator Y if
2R Cov(¥, X) > R?*V(X). This is likely to be true in practice if the X/s
are appropriately chosen.

In Section 2.6, we saw that in some two-stage sampling situations,
the Y/’s are likely to be correlated with the size measures {N;}. If PPs
sampling is not used (for one or more of the reasons we considered
earlier), we can take the N/'s to be the auxiliary variables and use the
resulting ratio estimator ¥ = RN, where

R-355/33
i=1 :=1
(If we use pps sampling, the ratio estimator with the size measure as
the auxiliary variable is the same as the unbiased estimator.) Our
experience with data from several jurisdictions for cosTus showed a
considerable gain from the use of this ratio estimator.

lll. DETERMINING THE DESIGN PARAMETERS
3.1 Cost considerations

The ultimate objective in designing an efficient survey design is the
maximization of accuracy per unit cost. To accomplish this, we need
to know the cost structure of the survey. We can identify three types
of costs in two-stage sampling: (i) overhead costs; (i) costs that depend
primarily on the number of Psus in the sample; and (ifi) costs that
depend on the number of ssus in the sample. Since the overhead costs
are fixed, they can be ignored in determining the sample sizes. The
costs of sampling PSUs may consist of the costs of selecting, traveling
to, locating each sampled psu, and setting up the measuring equip-
ment. A simple cost function may be of the form

mCl + mﬁCm (4)

where C,; and C; are the costs of sampling a PSU and ssu, respectively,
and mn is the total number of ssus sampled. Typically, however, the
cost functions are more complex. In cosTUS, as we mentioned earlier,
the cost of sampling a PsU varies from one PsU to another and depends
primarily on the switching equipment in the central office. Further,
the cost of sampling a telephone line (ssu) also depends on the
switching equipment and so varies from one office to another. There
is also a special cost structure in the transmission impairments survey
in Example 2. Here, if trunks (edges) are selected by using two-stage
sampling to determine the pair of end offices connected to the trunk,
it is cost-efficient to select offices with many trunks rather than those
with fewer trunks.
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3.2 Determining the parameters in a simple situation

Let us consider a simple situation to illustrate the concepts involved
in determining the parameters of the optimum design. Suppose the
number of 8sUs in each psu is the same and equals N, the cost function
is given by eq. (4) and we use SRSWOR to select the units in both stages.
We need to determine only m, the number of psus to be sampled, and
i, the number of ssus to be sampled from each selected psu. The
variance of the H-T estimator can now be written (see Section 2.4) as

V(f’)=(1—f1)fl-+(l—fz)zz_ (5)
. m mn

for some V; and V,. Here fi = m/M and f> = ii/N. A comparison of eq.
(5) with the cost function C = mC: + mnC: reveals that increases in m
and 72 have opposite effects on the variance and costs. Also, it is clear
that an increase in m results in greater reduction in the variance than
a corresponding increase in 7. Since C; is typically much larger than
C,, it is more costly to increase the size of the first stage sample than
the size of the second stage sample. All of these factors must be taken
into consideration in determining the optimum combination of m and
.

As mentioned earlier, optimum levels of m and 72 can be determined
by minimizing either (i) the variance subject to a cost constraint or
(if) the cost subject to some accuracy requirements. Both approaches
yield essentially the same results. The problem can be formulated
mathematically as minimizing a given function subject to a constraint.
Standard numerical or analytical techniques (LaGrangian multipliers,
Cauchy’s inequality) can be used to determine the optimum values of
m and 7. In this particular simple situation, explicit expressions for m
and 77 can be easily obtained. Suppose we want to minimize the cost
subject to the condition that the variance eq. (5) does not exceed some
value b. If we can ignore the finite population corrections in eq. (5),
the optimum values of 7 and m can be obtained as

Ropt = —VE-/'KI“
VC:/C
and
where

A =b/(C)/Vi+ C/ VY
The total cost of the survey with these values of m and n is given by
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Copt = b/A>.

In practice, one should not be satisfied with just determining the
optimum values of m and n without examining the behavior of the
variance and cost functions near the optimum. Since preliminary
estimates of costs and variances may only be approximate, the behav-
ior of these functions in a neighborhood around the optimum should
be examined. Relatively flat variance and cost functions near the
optimum value indicate robustness against possible moderate errors in
the input parameters.

3.3 More general situations and the COSTUS example

In most surveys, the situation is more complex than the one we have
just discussed. For example, the psus will not necessarily be the same
size and the cost function may be more complicated. Even in a general
situation, the problem can be formulated in such a way that we can
determine, either analytically or numerically, the optimum values of:
m, the number of Psus to be selected; {II;}, the inclusion probabilities;
and {n,}, the number of ssus to be sampled from each selected psu.
Some of these results for some special cost functions can be found in
the literature.”

We want to emphasize here the importance of simplifying the
problem, whenever possible, by using reasonable approximations. In a
complex situation where there are too many design parameters to be
determined, it is difficult to appreciate the impact of unreliable input
values. Reducing the number of parameters through the use of some
practical guidelines usually provides us with a better understanding of
the problem. We illustrate some of these ideas through the costuUs
example.

The Psus in cosTUS are central offices and, as mentioned earlier, the
cost of sampling the office and telephone lines (ssus) in the office
depends on the type of switching equipment in the office. Since each
office provides service in several classes, we have to sample lines from
all the available classes in the selected offices. However, not every
office provides service in every available class. Since we want to study
the parameters of all the classes, we take the first-stage costs of
sampling an office with service in only one class to be twice that of an
office with service in two classes. Hence, the total costs of the survey
can be written as

m S

TC =Y {51.-+ hX D2inCi}:
i=1 C=1

where Dy; = Dy;/Zi, Dy = the costs of sampling the ith office, =; =

number of classes in the ith office, Dy; = costs of sampling a line from
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the ith office, and nc; = number of lines to be selected from the ith
office for class C (equals zero if office { does not have service in class
C). Since the total cost of this survey is a random quantity, we
minimize the expected total cost

[ El Z; (Dh + Da; 2 nc.)] (6)
where mZ; = I1,, the inclusion probabilities.

We need to minimize eq. (6) subject to some accuracy constraints.
In this study, the quantity to be estimated is the mean load (in ccs)
during the busy hour, Y.. We require a relative error no larger than
0.1 with probability 0.90 for each of the S classes, C=1, .-, S. From
Section 2.3, we note that this accuracy can be stated in terms of an
upper bound on the mse of the estimator. We use the following
approximate expression for the relative mse (rmse) to determine the
design parameters:

rmse(¥c) = [2 We: (§£ + (Fo— Yc)"*)]. 0

i=1 i

The notation here is the same as in Section 2.2. The additional
subscript indicates the class of service. This expression (which in fact
equals the relative variance of the unbiased estimator) is the zeroth-
order term in the Taylor series expansion for the rmse of the ratio
estimator. By not taking into account the higher-order terms which
include the correlation between the numerator and denominator of the
ratio estimator, this expression, in general, overestimates the variabil-
ity. However, it is simpler to use and the overestimation may be
desirable in view of the unrealiability in preliminary estimates.

Before determining the design parameters, we make two addi-
tional simplifications: (i) replace S%;/Y#% in the first component of eq.
(7) by Vi, a quantity that does not depend on the office i; and (it)
replace (Yo — Y¢)?/Y% in the second component by V¢, also a
quantity independent of the office. This is reasonable since a priori we
do not expect much variation between these values and, in any event,
we do not know each one of the individual values. (See also the
discussion on prior information in Section 2.5.)

Thus, we want to determine the design parameters which minimize

eq. (6) subject to
¥ wh Ve
1';1 - (Vm + —E) = bc
for some b, C =1, ---, S. Instead of determining m, {Z;} and {n.}

from the optimality calculations, we only determine m and n¢, the
average number of ssUs to be sampled from a selected Psu for each
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class of service. Once m and 7ic are determined, we can allocate mrnc,
the total number of lines for class C, to each sampled office inversely
in proportion to (Dx)"%. We also select {Z;} in advance by taking them
proportional to

{N../Dwi'%},
where
N.. = ¥2-1 Ne

Once we substitute these values for {nc;} and {Z;} in the variance and
cost functions, it is a relatively easy problem to find the values of m
and fic that minimize the total expected cost subject to the accuracy
constraints. Since there are only S + 1 design parameters involved, it
is also easy to examine the behavior of the cost and variance functions
near the optimum and investigate the sensitivity to errors in input
values.

When cosTUS was implemented in a few jurisdictions, we also
examined the advantage gained by using unequal probability selection
schemes. Since we were using the conservative WR variance formulas
for the unequal probability selection scheme, we found that the loss in
“efficiency” from using SRSWOR of offices (with exact variance formu-
las) was not substantial. This also simplified the computations consid-
erably.

IV. SAMPLING DESIGNS FOR POPULATIONS WITH PARTIAL VARIATE
PATTERNS

4.1 The problem of partial variate pattern (PVP)

A multivariate population (for example, one with multiple charac-
teristics) is said to exhibit a pvP if not all the variates can be observed
from every unit in the population. In cosTus, as we noted, not all the
central offices provide service in every available class. In the survey of
baseband transmission impairments in Example 2, not all carrier
systems appear between each pair of central offices. It is easy to
visualize many other studies, both within and outside the Bell System,
where the populations exhibit Pvp. The problem of PVP can be serious
if there is great variation in the size of the universe corresponding to
each variate. The usual sampling designs may not provide reasonable
assurance that we can select a sample that will allow us to estimate
the parameters corresponding to each variate with prescribed accu-
racy.

Let us consider some schemes for sampling in the presence of PvP
(also see Ref. 13). Since the problem of PVP is present in one stage of
the selection process only, we restrict our attention to sample selection
in the first stage. Thus, suppose there are M units in the population,
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of which M¢ units have characteristic C,C =1, ..., S. Let the sample
size, determined by accuracy requirements, for characteristic C be mc.
These sample sizes of course also depend on the particular sampling
scheme used.

4.2 Some sampling designs
4.2.1 Modified simple multivariate sampling

Let m = maxcmc and suppose we select a sample of m < M units,
possibly using different selection probabilities for different units. This
is the simple multivariate sampling scheme, intended for populations
with no pvp. If rfic denotes the number of sampled units with charac-
teristic C, riic may be much smaller than m¢ and in some cases may
even be zero. We can modify this scheme in a number of ways. Instead
of selecting m = maxcmc units, we can select m* units, according to
selection probabilities {Il;}, where m* is determined so that the
expected number of units in the sample is at least m¢, C=1, ..., S.
This can be achieved by taking m* = maxcme/pe, where pe is the total
of the probabilities Z; = I1;/m for units with characteristic C. This can
be justified if we view the selection of a unit with chracteristic C
approximately as a binomial experiment with probability of success
pc. This formulation can alternatively be used to determine m* such
that, say 90 percent of the time, itc = me, C=1, ---, S.

4.2.2 Combined multivariate sampling

Here, we consider S universes, each universe corresponding to the
units with characteristic C, C =1, ..., S. We select an independent
sample of size m¢ from each one of the S universes. We then observe
every available characteristic from the units selected in all of the S
samples. The total number of units selected in these S samples can
vary between maxcmc and Y.¢-; mc. The main disadvantage of this
scheme is that this number may be too large. However, we can exercise
some control over this number. One possibility is to give higher
selection probabilities to units with more characteristics than those
with fewer characteristics (see Section 3.3). Alternatively, instead of
selecting mc units from the universe corresponding to characteristic C,
we can select a smaller number, mé, of units. This is because we expect
to select some units, in addition to these m¢ units, with characteristic
C from the remaining S — 1 samples. So, the number m# can be
determined such that either on the average or with prescribed proba-
bility, the total number of units with characteristic C exceeds mc,
C=1, ..., 8. The binomial approximations discussed earlier can be
used to determine the {mé¢)}.
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4.2.3 Siratified sampling

We can also try to deal with pvp by stratifying the units so that,
within each stratum, the units are internally homogeneous in some
sense in terms of the PvP. We consider two stratification techniques
here.

In the first scheme, called variate stratification, the strata are
determined in terms of the variates (characteristics). Suppose the
variates are ordered so that the number of units with variate one is
smallest, the number with variate two is next smallest, etc. Then,
stratum one consists of all the units with variate one, stratum two
consists of all units with variate two and not in stratum one, etc. If we
now allocate the total sample size among the strata, we can estimate
" the parameters corresponding to all the variates, especially the “small”
ones. However, this scheme is not foolproof in the sense that it is
possible to construct examples where the selected sample does not
contain any units with one of the variates.

The second method, pattern stratification, is based on the variate
pattern. Here, units with identical variate pattern, i.e., having the same
set of characteristics, are grouped into a stratum. Unlike the variate
stratification scheme, we can guarantee the required sample size for
each variate in this scheme. However, this scheme suffers from the
serious drawback that the total sample size may be too large, since the
number of different strata (which is smaller than the sample size) can
be as large as min(M, 25 — 1).

In both these schemes, standard nonlinear programming techniques
can be used to determine the sample size for each stratum to minimize
cost subject to the variance constraints.

4.2.4 Other methods

It is possible to use sequential sampling schemes to ensure that we
select a sample with a given number of units for each characteristic.'”
However, it is extremely difficult to determine analytically the selec-
tion probabilities for most of these schemes. One simple sequential
method that can be implemented is a two-stage simple multivariate
sampling scheme in which a simple multivariate sample is supple-
mented by a second-stage sample from the remaining units. Although
the variance calculations become more involved, they are still tracta-
ble.

It also is plausible that ideas from the controlled selection method-
ology can be applied to the selection of samples from populations with
pvp."*51% However, it is not clear how to characterize explicitly the set
of all feasible samples here. Variance calculations also remain a difficult
problem with controlled selection.
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4.3 The design used in COSTUS

The sampling design used in costus for handling pvp will be
described here. As the problem of PvP exists only in the first stage, we
consider the selection of units in stage one only.

While examining data from several jurisdictions for the different
pvps, we found that, in most cases, a class of service can be classified
as either small or large in terms of the proportion of offices with service
in that class. There were very few jurisdictions with medium-sized
classes of service.

Since the main concern in the presence of pvp is the ability to
estimate parameters corresponding to the small classes of service, we
decided to group all offices with services in these classes in stratum 1.
A combined multivariate sampling scheme, which guarantees the
required sample size from each class, is used to select offices from this
stratum. Since the total number of offices sampled under this scheme
may be large, we restrict the size of this stratum to be no larger than
25 percent of the universe.

We can use a simple multivariate sampling scheme to select a sample
from the remaining offices. However, we first identify those classes
with service in less than 50 percent of the remaining offices. The offices
with service in these classes (and not in stratum 1) are grouped into
stratum 2. The remaining offices are grouped into stratum 3. Simple
multivariate sampling schemes are then used to select units in strata
2 and 3. By doing this, we have reasonable assurance that the sample
sizes for the classes that characterize stratum 2 are not too small
compared to the required sizes.

Hence, we see that the sampling design for cosTUs is in fact a three-
stage sampling design. In the first stage, the offices are grouped into
three strata. Different sampling schemes are used in the different
strata to select offices in the second stage. From each office selected in
the second stage, telephone lines corresponding to each available class
are selected in the third stage.

The design we have used here for handling PvP incorporates specific
features of some of the schemes discussed in Section 4.2. The stratifi-
cation is based on considerations similar to those in the variate
stratification scheme. It is, however, adaptive in the sense that it
depends on the variate pattern in each universe. In our applications,
we found that in many jurisdictions stratum 2 was empty and in some
situations, where the problem of PVP is not serious, stratum 1 was
empty.

We arrived at the final design used in cosTUs by examining data
from various jurisdictions for the different types of PvP to expect. This
design, while not foolproof, provides a reasonable, practical solution to
the problem at hand.
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V. SAMPLING FROM NETWORKS

In most surveys, we can treat the population under study merely as
a collection of elementary units with no importance attributed to the
interrelationships that exist among the units. In some situations,
however, these relationships cannot be ignored and the selection of
the sample is necessarily affected by the network of relationships that
exist in the population. In this section, we briefly review some aspects
of network sampling and discuss the sampling design used in Example
2.

5.1 Networks

There are a wide range of surveys in the Bell System that deal with
sampling from a network. Besides communication networks, network
sampling also occurs in studies of other types of traffic flow and
transportation facilities. A contact network or sociogram may repre-
sent the interrelationships among a group of individuals, households,
customers, etc. Other examples include similarity or dissimilarity struc-
tures in cluster analysis and multidimensional scaling, where we want
to compare a set of objects and group them into classes of similar
objects.

A network can be described in abstract terms with the aid of graph
theory. An undirected graph (network) consists of a nonempty set V
of elements called vertices (nodes) and a set of E of elements called
edges. Each edge e of E is associated with a pair of vertices (i, j). The
edges may have several attributes associated with them. A network
can also be represented by a matrix with the columns and rows
representing the vertices. A one in the (i, j)th cell of the matrix
indicates that the vertices i and j are connected. In the survey of
baseband transmission impairments discussed in Example 2, the ver-
tices are central offices and the edges are trunks. In this case, there are
many trunks and also different types of trunks between a pair of
central offices. Several attributes, corresponding to the impairment
characteristics, are associated with each trunk.

5.2 Some sampling schemes

The manner in which we have observational access to the elemen-
tary units is the key to developing a reasonable sampling design. If we
have a “frame” of all the edges in the graph from which we can select
a sample of units, the problem is essentially one in traditional sampling
theory. If no such frame is available and the structure of the relation-
ship between the nodes must be discovered and explored during the
course of data collection, the sampling design problem is quite differ-
ent. Even in cases in which a complete listing of the edges is available,
as in Example 2, cost considerations may dictate that a sample of
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edges be selected by first sampling the nodes. Also, unlike traditional
sampling where information about a unit can be obtained only by
sampling and observing it, information about the relationship between
several nodes may be obtained at any one of the nodes in network
sampling.

The field of sampling from networks has been considered by only a
few authors so far."'”"* Most of the attention has been focused on
surveys for which the structure of interrelationships is unknown and
must be discovered. The references above deal mainly with estimating
parameters that measure various aspects of these relationships.

Goodman proposed the “snowball” sampling scheme for selecting
edges (or pairs of connected nodes).” In this procedure, the survey
proceeds from an initial sample of nodes by obtaining information
about other nodes to which they are connected. The next step is to
add to the sample some or all of these connected nodes, obtaining data
from them as well as information about still other nodes to which they
are connected. In an s-stage k-name snowball sample, this process is
repeated for s stages and at each stage, 2 other nodes connected to a
node already in the sample are selected. Goodman studies this scheme
in detail under the assumption that the initial sample is selected
through binomial sampling.?’ He also considers the case in which the
k nodes are selected randomly at each stage. See also Ref. 1.

To consider two other methods of network sampling, let us view the
network as a matrix with the vertices corresponding to the columns
and rows and the elements of the matrix corresponding to the edges.
If we select a sample of nodes (rows/columns of the matrix), we can
base our inference entirely on the sampled subnetwork that corre-
sponds to the sampled rows and columns. This procedure (called
subnetwork sampling) of selecting one or even several subsystems out
of a number of subsystems is equivalent to traditional one-stage cluster
sampling. It leaves open all questions about interrelationships between
one cluster and another. In the partial network sampling scheme, we
select a sample of nodes from the node set, and observe all the edges
connected to one or more of the nodes in the sample. Estimation of
the network characteristics using these two schemes is discussed in
Refs. 1 and 18.

5.3 Survey of baseband transmission impairments

In this survey, there are a number of trunks of various types with
each trunk associated with a pair of end offices. If we select a particular
pair of end offices, it then becomes cheaper to select additional trunks
from those trunks that terminate in either one of the two offices. This
special cost structure implies that we need to select trunks (edges) by
appropriately selecting offices (nodes) to which they are connected.
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A multistage sampling scheme is used in this survey. A sample of
primary offices, using probabilities proportional to some measure of
size (the number of trunks), is selected in the first stage. A number of
secondary offices are selected, again using probabilities proportional
to some measure of size, from the set of offices connected to each of
the primary offices. From every pair of end offices thus sampled, a
number of trunks corresponding to each trunk type are selected using
simple random sampling. The parameters of the sampling design (m,
the number of primary offices, {m;}, the number of secondary offices
and {n;}, the number of trunks of a particular type) can all be
determined so that the total survey cost is minimized subject to some
accuracy criterion.

The two-stage sampling scheme used here to select the pair of end
offices can also be viewed as a two-stage snowball sampling scheme. It
is of course possible to use a k-stage snowball sample to select the
offices. Optimality considerations relating to the number of stages and
the sample size in a snowball sample have yet to be resolved.

VI. SUMMARY

We have reviewed various aspects of sampling from structured
populations in this paper. The issues that have been selected for
discussion, two-stage sampling from populations with multiple char-
acteristics and sampling designs for populations with PvP and network
sampling, are common to many Bell System surveys. Thus, we hope
that an exposition of some of the theoretical and practical considera-
tions involved in dealing with these situations will serve other survey
practitioners. Throughout the paper we have tried to balance theoret-
ical considerations with practical guidelines gained from our own
experience. Two recent Bell System surveys are used to illustrate the
ideas disscused.
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