Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 60, No. 7, September 1981
Printed in U.S.A.

Digital Signal Processor:

Logic and Fault Simulations

By I. I. ELDUMIATI and R. N. GADENZ
(Manuscript received December 30, 1980)

This paper illustrates a methodology for the design verification
and testing of the Bell System digital signal processor. It is shown
that a behavioral approach, as opposed to a structural approach, is
advantageous for the generation of a first set of test vectors, since
this set (i) exercises all the functions, as they are specified by the
instruction set, and (i) uncovers the bulk of the faults. The set can
then be improved using the structural approach. The participation of
the deuvice designers in this process is essential. The relation between
fault coverage and yield is also discussed. Theoretical relations are
given which show how important it is to have a high-fault coverage
(say, >95 percent) for vLSI chips.

I. INTRODUCTION

In this paper, we describe the logic simulation and fault analysis of
a programmable vLsI digital signal processor (psP) developed by Bell
Laboratories.' The design of such a complex integrated circuit requires
an extensive effort in the areas of design verification, testability, and
fault coverage. Such an effort has a considerable impact upon the
design cycle, yield, and reliability of the device.

In the following section we discuss design verification, which was
done in software through computer simulations. Section III presents
testing and the associated problem of generating test vectors. Com-
puter simulations of the faulted circuit allow us to determine the fault
coverage obtainable with a set of input vectors. The relation between
fault coverage and true yield is discussed in Section IV.

1463

Il. DESIGN VERIFICATION

The design verification of a vLsI logic circuit could be done either in
software via a computer model or in hardware by building a bread-
board, or in both. The software approach is easier to set up and more
flexible to use and modify. On the other hand, once built, a breadboard
can be used not only for design verification but also for real-time
testing and the development of support hardware. Early users can also
benefit from it for their initial system design. However, a hardware
model is usually built with ss1 and MsI components and requires,
therefore, an adaptation of the original circuit. The breadboard could
be constructed so that it reflects the state of the circuit on a clock
cycle basis, but it is very difficult to emulate dynamic structures and
bus precharge circuits. As a result, design problems resulting from the
use of such configurations may be masked in a breadboard.

Computer models for vLsI design verification may be a functional
description in a high-level language, such as ADLIB,”> a gate level
description as in LAMP,” or a transistor level representation as in mortis*
and spICcE.” Functional analysis provides a coarse simulation and its
use is limited to the initial stages of the device conception. On the
other hand, a transistor level description is quite complex and costly.
It is most useful for the analysis of critical timing paths. A gate-level
description can be utilized both for design verification and fault
analysis. A further advantage is that it can also be used directly for
automatic routing, as in LTX,’ during chip layout. Computer aided
automatic routing was used for the layout of several Dsp sections that
have relaxed performance requirements.

In the design verification of the DsP, a functional description lan-
guage was used as a preliminary check for some particularly complex
sections. LAMP was used throughout the design phases of the device,
first to verify the logic design of the individual sections and then to
simulate the complete device. In its final form, the LAMP computer
model uses a gate level description for the random logic section, which
consists of approximately 14,000 transistors, and a functional descrip-
tion for the memories. MOTIS and SPICE were also extensively used to
analyze the behavior of the time-critical portions of the device.

Figure 1 illustrates the LaMP structure. The source file for the
computer model is written in a language known as LSL-LOCAL (a
combination of Logic Simulation Language and Logic Circuit Analyzer
Language). The same description can be used for MOTIS and LTX. The
use of a common source language for the logic and timing simulators,
as well as the automatic router, has an obvious advantage toward
generating an error free layout. The LSL-LOCAL provides a description
of the various circuit components and their interconnections, using
standard logic gates and, whenever possible, a library of NMOs subnet-

1464 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

DESCRIPTION
LSL-LOCAL
INPUT VALUES l) LTX
~
CIRCUIT
DESCRIPTION
{TRUTH TABLES)

T --r=——=—=="="=-
1
{

‘ j |—LAMP
T;:‘L ATG
TIME
o= SIM FAULT
SIM
[N [I —
-~
NO-FAULT tﬁ;ﬁﬁgg FAULTED
UNIT DELAY DELAY CIRCUIT TEST *
QUTPUT OUTFUT UNIT DELAY VECTORS
VALUES VALUES INFORMATION

Fig. 1—Lamp structure.

works or polycells. LAMP transforms this description into an object file
which is a set of truth tables.

The LAMP true-value simulator uses the truth tables combined with
a set of input vectors to check the behavior of the circuit under normal
or unfaulted conditions. Each test vector specifies a set of values (1 or
0) at the circuit inputs for each clock phase. Gate delays are uniform
(unitary) throughout the circuit. A zero gate delay can also be specified
to better simulate the structural behavior of complex cells. For each
vector, LAMP simulates the propagation of signals from inputs to
outputs taking time steps equivalent to the unitary gate delay. By
examining the values of the output signals, which are either 0, 1, or 3
(“don’t know”), it is possible to verify the gate level performance of
the circuit, as well as identify long circuit paths, races, and oscillations.
An oscillation is declared if an output does not settle within a prudent
number of time steps specified by the user.

The diagram in Fig. 2 outlines the steps followed in the design
verification procedure for the psp. Once the results of the true value
simulation were satisfactory, timing simulations were carried out both
on MOTIS and SPICE. MOTIS was used to check the overall timing
performance of the random logic portion of the DsP (approximately
14,000 transistors). SPICE simulation was extensively used in areas

LOGIC AND FAULT SIMULATIONS 1465

where the device performance had critical timing requirements. These
include the processor clocking system, the bus interface and precharge
circuitry, critical paths with long delays or excessive loading, and
places where races may occur. During the initial stages of layout, the
timing simulations utilized estimated values of the parasitics; actual
values were substituted at a later stage when needed.

lll. TESTING AND FAULT ANALYSIS

The psp architecture facilitates testability and program develop-
ment. The DsP is customized to perform signal processing functions by
means of an on-chip RoM which stores both program and fixed data.
However, the ability to access an external RoM is also provided. This
external memory interface feature allows emulating the DSP program
and provides a means for device testing. Address information and data
are multiplexed on the external bus pins, with hand shaking signals
indicating the presence of address or need for data. These signals can
also be used by an automatic tester to either force an input vector or
compare output data. In addition, to help in the debugging process,
the chip layout was partitioned and internal pads were provided, thus

r DESIGN {DRAWINGS) l)
i

r CIRCUIT DESCRIPTION {LSL)

r CIRCUIT INPUTS H LAMP TVAL SIM

NO

YES

MOTIS
SPICE

LAYOUT

PROBLEMS
HERE
?

DEVICE MASK, ETC.

Fig. 2—Steps in the design verification.

1466 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

allowing the possibility of independently exercising and testing each of
the DsP sections.

The input vectors needed for design verification were selected so as
to exercise all DSP functions, which are specified by the instruction set.
These functions were combined with data streams of either alternating
zeros and ones and their complements, or specific data patterns for
functions that exhibit a known pattern sensitivity. The task of gener-
ating the vectors was further simplified by the use of the psP Assem-
bler, which translates a functional input into machine code and deals
with some specific architectural features of the DsP, such as pipelining
and skewing of certain instruction fields. In addition, using this behav-
ioral or functional approach, the expected outputs were easily pre-
dicted. In summary, this approach to generate the vectors required for
design verification proved adequate.

The same set of vectors served as an initial input to LAMP for the
fault simulations, and was able to detect the bulk of the faults. As a
result, it became the main portion of the test vectors subsequently
used for testing the psp devices. Recently, Szygenda suggested that it
seems reasonable to expect that this procedure will be successful.” Qur
experience confirms that this is the case. Thus, we believe that the
behavioral approach to test vector generation is to be preferred to the
structural approach, at least as a first step. The latter approach aims
at sensitizing each node of the circuit and propagating the effects to
the outputs, using a set of vectors which may not represent necessarily
meaningful device functions. The process is both lengthy and costly.
Currently available programs for automatic test generation (such as
the aTc feature of LAMP or Teradyne’'s P400) are also based on the
structural approach; as a result, they are limited in capability and
expensive to use, especially for devices with such complexity as the
DSP.

The faults exercised in LAMP are gate inputs and outputs stuck at
either zero or one, with the excitation and observation points being at
the pins. For each input vector, LAMP considers one fault at a time and
compares the outputs of the faulted and unfaulted circuits. A fault is
detected if a change is observed at the output pins. Faults that have
equivalent effects on the output are collapsed in order to reduce
computational cost. Also, once a fault has been detected, it is possible
to remove it from the list of faults, so that the following vectors will
not have to consider it. The LAMP simulation provides a list of all-test-
passed (ATP) faults, as well as information on possible races and
oscillations caused by the faults. From these data, the fault coverage
and subsequent steps to improve it can be determined.

Figure 3 displays the fault coverage given by LAMP versus the
number of test vectors used to verify the psp random logic. The fault

LOGIC AND FAULT SIMULATIONS 1467

83%
e p————

80—

60—

40—

FAULT COVERAGE IN PERCENT
T

20

0 | 1 I 1 I 1 wes I
0 1 2 3 9
NUMBER OF VECTORS IN THOUSANDS

Fig. 3—Fault coverage for psp random logic.

coverage achieved with ~9000 vectors generated via the behavioral
approach was 83 percent. This is an excellent starting point in the
quest for a high fault coverage. Our goal was to obtain a fault coverage
in excess of 95 percent. Analysis of the undetected faults and the
structures used in the circuit implementation revealed that the actual
fault coverage is significantly higher than the value given by LAMP.
This is because faults not observable due to built-in circuit redundan-
cies can be disregarded along with the faults which are not detected in
the simulator but will be detected in the actual circuit. The DsSP timing
utilizes a four-phase clock with non-overlapping master and slave
pulses in each phase. These pulses are used to achieve signal transfers
between registers. The master and slave pulses are generated locally
in each of the DsP sections, and are kept synchronous through a
universal synchronizing signal. This clocking scheme is tolerant to
certain classes of faults such as stuck slaves if the data is synchronous.
When reclocking is done at the boundaries of the DsP sections, some
faults may be disregarded if spICE simulations indicate proper timirg—
at those boundaries. Other examples of faults that can be neglected
are the ones resulting in switched depletion loads being always on, if
the device meets the maximum power dissipation requirement, and
the undetected faults that are due to unassigned instruction fields.
To achieve high reliability, the test vectors should guarantee an
extensive fault coverage which should cover not only the device
functions, but also the structures used for the circuit implementation.
This is especially important because the DsP is programmable and the
test vectors are designed to be independent of the program in the on-

1468 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

chip rRoM to avoid costly test program development. A more in-depth
look at the circuit was required to detect at least part of the remaining
faults and further improve the fault coverage beyond 95 percent.
Additional specific sequences of test vectors had to be generated by
means of a structural approach. These sequences were applied to
exercise the faults not previously detected and to propagate their
effects to the output pins.

The vectors used to test the DsP random logic exercise only a limited
number of RaM locations. Therefore, the RAM is further tested by
writing into it and reading from it standard checkerboard patterns.
When reading, the contents of the different memory locations are
accumulated into a checksum which is sent to the output and compared
with the expected value. The contents of the on-chip ROM is also
verified via a checksum test. The DSP external memory interface makes
it possible to treat the contents of the internal RoM as data which is
fetched sequentially to compute the checksum. The result is sent to
the output where it is compared with the precalculated value, deter-
mined from the user’s program. This value is the only difference in the
complete testing patterns of different psps. The additional vectors
required to test the RAM (~3600) and the Rom (~4300) bring the total
number of test vectors used for the Dsp to slightly above
20 K.

IV. FAULT COVERAGE AND YIELD

The fault coverage provides a measure of the fraction of the faults
detected by a given set of test vectors. A fault coverage less than 100
percent implies that some devices which passed the test may fail to
execute the user’s program. This could be the result of using certain
program sequences or data patterns that exercise faulted nodes not
covered by the test vectors. The presence of such devices affects the
reliability and the eventual cost of the host system. Identifying faulty
devices during incoming inspection, if any, or during system subassem-
bly has some impact on the cost. Failure in the field results not only
in a reduced system reliability, but also in a higher replacement cost
and the possibility of loss of service. Therefore, it is very important to
identify faulty devices as much as possible during device testing. In
this section, the relationships among yield, fault coverage, and chip
area are discussed.

The reduction in a wafer yield y can be attributed to two sources.
The first one is the existence of area defects, i.e., defects that cause
whole portions of a wafer to provide no good devices. This area defect
condition is represented by the parameter y, in the equation below.
The second source is the existence of fatal point defects which are
randomly distributed over the wafer area where good chips can be

LOGIC AND FAULT SIMULATIONS 1469

found. These assumptions result in the following expression for the
yield y of a wafer

Y =.yUEADAa (1)

where
o = the area defect yield factor,
D = the point defect density, and
A = the chip active area.

In order to account for the spread of the random defect density D
among wafers, Murphy® suggested that the defect density is distributed
according to a probability density function. Assuming a gamma distri-
bution for the defect density D, the average yield Y, for a very large
number of wafers, is given by” "

Yo

Y=Tmna™ @

where
Yo, = the average area defect yield factor,
D, = the average value of the defect density, and
A = the variance of the defect density.

It should be noted that the gamma distribution provides the best fit to
experimental yield data.’ In addition, depending on the value of A, it
encompasses several distributions which were proposed earlier. (See
Refs. 8 and 11 to 13.) Therefore, eq. 2 will be used to study the
relationship between fault coverage and yield.

A fault coverage less than 100 percent indicates a lack of observable
exercise for some of the logic gates making up the circuit. Assuming a
uniform distribution of logic gates over the chip active area, the
effective chip area A, being probed can be expressed as a function of
the fault coverage as follows,

A, =FA, (3)

where F is the fractional fault coverage for a given set of test vectors.
The ratio between the true yield Y., obtainable with a 100 percent
fault coverage, and the yield at probe Y, is then given by

Y,
?‘ = (1 +AFDoA)A. (1 + ADoA) A, (4)
P

This expression can be used to determine the fault coverage required
to achieve a desired value for Y,/Y):

1470 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

_(Y/Y,)' (1 +ADoA) — 1
ADoA '

The dependence of the yield on the fault coverage for several values
of A and a Dy A of 3, is displayed in Table L.

The parameter A is a function of the fabrication facility and could
be determined from the yield data. For simplicity, assume that in the
limit A approaches zero. Then eq. 2 reduces to

F

(5)

Y = Yoe P04, (6)
and eq. 5 becomes
1 Y,
F=1+—In—. 7
DA Y, @

This expression is plotted in Fig. 4 for various values of Dy-A. The
figure emphasizes the need for extensive fault coverage as the value of
Dy-A is increased. For example, in order to achieve a value of 0.9 for
Y./Y, and assuming a value of 3.0 for Dy-A, the fault coverage should
be 96.5 percent.

V. CONCLUSIONS

A methodology for the design verification, fault analysis and testing
of a programmable vLsI device was presented. Logic design verification
was performed at the gate level through LAMP true-value simulations.
Sections of the device having critical timing requirements were verified
via MOTIS and SPICE.

A behavioral approach to test vector generation, in which all the
device functions were exercised with appropriate data, proved ade-
quate for the design verification. Through fault analysis, it was found
that these vectors also uncovered the bulk of the faults and, therefore,
could be used for testing the device. The structural approach, which is
both lengthy and costly, was used only to generate additional vectors
in order to further improve the fault coverage.

The need for an extensive fault coverage, and its impact on the
device cost and reliability, was emphasized. A relationship between

Table |I—Y,/Y, vs. Ffor Do-A =3

Yp/ Yp
F[%) A=0 A=t A=1
80 0.549 0.729 0.850
85 0.638 0.791 0.887
90 0.741 0.857 0.925
95 0.861 0.927 0.963
98 0.942 0.970 0.985

LOGIC AND FAULT SIMULATIONS 1471

50

B
o

FAULT COVERAGE IN PERCENT
w
=]

20

10 1 i 1
0.6 0.7 08 09 1.0
(TRUE YIELDI/(YIELD AT PROBE)

Fig. 4—Fault coverage as a function of Y;/Y, and DyA.

fault coverage, yield and chip area was established. The analysis shows
that it is important to have a fault coverage in excess of 95 percent for
chips with large areas.

VI. ACKNOWLEDGMENTS

The authors wish to thank J. R. Boddie, N. J. Elias, H. Shichman,
D. C. Stanzione, and R. L. Wadsack for useful discussions and com-
ments.

REFERENCES

1. J. R. Boddie et al, “Digital Signal Processor: Architecture and Performance,”
B.S.T.J., this issue.

1472 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

2. D. D. Hill, “apLiB: A Modular, Strongly-Typed Computer Design Language,” Proc.
Fourth Int. Symp. Computer Hardware Description Languages, Palo Alto, Cali-
fornia, October 1979, pp. 75-81.

“LaMp: Logic Analyzer for Maintenance Planning,” several papers in B.S.T.J., 53,
No. 8 (October 1974), pp. 1431-555.

. B. R. Chawla, H. K. Gummel, and P. Kozak, “MoTIs: An M0os Timing Simulator,”

Trans. on Circuits and Systems, CAS-22, No. 12 (December 1975) pp. 901-10.

. L. W. Nagel and D. O. Pederson, “spicE—Simulation Program with Integrated
Circuit Emphasis,” Memorandum No. ERL-M382, Electronics Research Labora-
tory, University of California, Berkeley, April 12, 1973.

. G. Persky, D. N. Deutsch, and D. G. Schweikert, “LTx—A System for the Directed
Automatic Design of Ls1 Circuits,” Proe. 13th Design Automation Conference,
San Francisco, California, June 28-30, 1976, pp. 399-407.

7. S. A. Szygenda, “Recent Results on Simulation and Testing for Large Scale Net-
works,” Workshop on Large Scale Networks and Systems, IEEE 1980 Symp. on
Circuits and Systems, Houston, Texas, April 28-30, 1980, pp. 22-5.

. B. T. Murphy, “Cost-Size Optima of Monolithic Integrated Circuits,” Proc. IEEE,
52 (December 1964), pp. 1537-45.

9, C. H. Stapper, “Defect Density Distribution for Ls1 Yield Calculations,” IEEE
Trans. on Electron Devices, ED-20, No. 7 (July 1973), pp. 655-7.

10. C. H. Stapper, “On a Composite Model to the 1c Yield Problem,” IEEE J. of Solid
State Circuits, SC-10, No. 6 (December 1975), pp. 537-9.

11. J. Sredni, “Use of Power Transformations to Model the Yield of 1cs as a Function
of Active Circuit Area,” Proc. Int. Electron Device Meeting, Washington, D.C.,
December 1975, pp. 123-5.

12. A. G. F. Dingwall, “High Yield Processed Bipolar LsI Array,” Int. Electron Devices
Meeting, Washington, D.C., October 1968.

13. J. E. Price, “A New Look at Yield of Integrated Circuits,” Proc. IEEE, 58 (August
1970), pp. 1290-1.

o e o

=2]

@

LOGIC AND FAULT SIMULATIONS 1473

