Copyright © 1981 American Telephone and Telegraph Company
THE BELL SysTEM TECHNICAL JOURNAL
Vol. 60, No. 7, September 1981
Printed in U.S.A.

Digital Signal Processor:

Adaptive Differential Pulse-Code-Modulation
Coding

By J. R. BODDIE, J. D. JOHNSTON, C. A. McGONEGAL, J. W.
UPTON, D. A. BERKLEY, R. E. CROCHIERE, and J. L. FLANAGAN

(Manuscript received June 26, 1980)

An adaptive differential pulse-code-modulation technique for en-
coding and decoding has been implemented using the Bell Labora-
tories digital signal processor integrated circuit. The encoder/de-
coder operates in real time and can accommodate 3- or 4-bit (8 kHz)
encoding. In this paper, we discuss details of the implementation, the
basic algorithm, and the features utilized in the digital signal proc-
essor.

I. INTRODUCTION

Adaptive differential pulse-code-modulation (ADPcM) encoding has
been shown to be a simple and effective method for digitally encoding
speech at bit rates in the range of approximately 24 to 48 kb/s.! % At a
rate of 24 kb/s, ADPCM can provide a good quality reproduction of
speech that is acceptable for applications such as computer-controlled
digital voice response systems.* At a rate of 32 kb/s, it can provide
essentially a telephone bandwidth “transparent quality” (a quality
that is indistinguishable from the original uncoded source) for a single
tandem encoding. Adaptive differential pulse-code modulation has
been studied for use in some types of transmission systems,® and for
message storage and retrieval systems in which a reduction by a factor
of two in bit rate over that of conventional 64 kb/s p-law companded
PCM is desired.*

Various forms of hardware have been suggested for the implemen-
tation of ADPCM coders. Some designs are based primarily on analog
hardware'”® where parameters are pair-wise tuned between transmit-

1547

ters and receivers. This results in problems with repeatability and
stability in the analog designs. Bates® and Adelman, Ching, and Gotz’
subsequently presented two different methods of designing all-digital
aDppPcM coders. The Bates approach uses a TTL logic design with a ROM-
based look-up table for the adaptive step-size and an up/down counting
scheme with digital adders and subtracters to avoid the use of a digital
multiplier. The hardware requires a twelve-bit linear PcM input and
has a total “package count” of approximately 80 standard TTL logic
packages. It was constructed on two wire-wrapped Augat cards (one
encoder and one decoder per board). The hardware by Adelman et al.,
was a ROM-based design that accepted a standard 64-kb/s p-law com-
panded pcM signal.

Recently, an Ls1 digital signal processor (DsP) has been developed
by Bell Laboratories.” The DSP is a programmable processor capable
of performing the entire ADPCM algorithm for multiple channels in a
single Ls1 device. The ability of the processor to convert between
conventional u-255 companded PcM and two’s complement binary code
formats allows the ADPcM algorithm to use either format. The config-
uration of the ApPcM algorithm that is implemented on the DsP is
described in Section II. Section III discusses details of how the algo-
rithm is configured to use DsP features. Sections IV and V describe the
hardware configuration and measured performance, respectively.

Il. THE ADPCM ALGORITHM
2.1 Overall configuration

Figure 1 illustrates the basic configuration of the psp implementa-
tion of AppcM. The input analog signal s(¢) is sampled and A/D
converted to an 8-bit p-law companded pcM format to produce the
sampled data signal s(n), where n is the discrete time index. These
operations are done externally to the psp. Then s(n) is converted in
the Dsp from p-law format to a 20-bit linear PcM format for internal
processing.

The apPcM encoding is performed entirely within the transmitter
psp. The output is a 3- or 4-bit codeword, I(n), which can be obtained
through the normal output channel of the psp. In the receiver, a

TRANSMITTER DIGITAL RECEIVER
s(e) | ANALOG | g(n) CH?ET?EL Stn) | MLAW | 3
o appcm | dlm ADPCM To

H-LAW ENCODE DECODE anatos I
INPUT H-LAW ADPCM HL-LAW OUTPUT
SPEECH CODED CODED CODED SPEECH

SPEECH SPEECH SPEECH

(64 kb/sh (32 kbfs (64 Kb/s)

OR 24 kb/s)

Fig. 1—Overall configuration of the AppPcM encoder/decoder using the DsP.

1548 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

second DsP is used to decode I(n) back to an 8-bit y-law format. This
signal is then converted to an analog signal with an external n/A
converter. The clock and framing signals are carried between trans-
mitter and receiver on separate lines. The transmission protocol for a
given application depends on the data channel in which the system is
implemented.

2.2 Block diagram of ADPCM

Figure 2 shows the block diagram of the AppcMm algorithm that was
implemented on the DsP. The transmitter is shown in Fig. 2a and the
receiver is shown in Fig. 2b. We assume that s(n) in Fig. 2 is in a 20-bit
linear pcM format, because of a direct 20-bit input to the DsP or
because of an 8-bit u-law to 20-bit linear pcM conversion that has been
performed within the DSP.

The aAppPcM algorithm can be partitioned into three basic parts (see
Fig. 2): the adaptive PCM quantizer, the differential predictor loop, and
the adaptive gain (step-size) control for the quantizer. We discuss
these operations in the above order since this is the order in which
they are computed.

2.3 Adaptive quantizer

A predicted value, p(n), is first subtracted from the input signal s(n)
to form the difference signal

e(n) =s(n) — p(n). (1)

The value of p(n) is obtained from the predictor and is based on
computations performed at the previous sample time, n — 1.

The difference signal e(n) is then quantized by the adaptive quan-
tizer to produce the ApPcM codeword I(n). This adaptive quantization
is achieved by first scaling e(n) to the range of a 3- or 4-bit fixed step-
size quantizer (see Fig. 2a). The scaled signal is denoted as

es(n) = V(n)-e(n), (2)

where V(n) is an adaptive scale factor that is also determined from
data available at the previous sample time n — 1. The combination of
scaling by V(n) followed by the fixed step-size quantizer is equivalent
to a quantizer with an adaptively varying step-size (which is inversely
proportional to V(n)).

Figure 3 shows the characteristics for a 3-bit (8 level) fixed step-size
quantizer. The input signal e,(n) (consisting of an integer plus a
fractional part) is converted to one of eight quantization levels in the
range —7/2 to +7/2 corresponding respectively to integer codewords,
I(n), in the range —4 to +3. The output quantized signal is denoted as
és(n) and is related to the code word I(n) by the relation

ADPCM CODING 1549

‘wryjuode Surpoous Wodav ayj jo weidelp yoojg—eg 814

(seo)gy
AV13d
31dWYS
(L+u)d INo
(olg
N 4007 HOL2103Hd
+
®
4001
T R T
zisTaals H3IDILNI INVL la— 378V
Av13d
s Wy (1A
(w2 {u)d
v 21V | ssauaav Tavy | [E1A
(L+up N .
+ v - :
m V[Teol v [€91A
9
- | vy w91
(86°0)4 ﬁsna I78vL 378vL
371S-d31S 37IS-d31S
A901 Q3LHIANI
NOILY LdVOY + g0 ™
H3ZILNVND ~
. Wad . @
sLig (u)r 118-¢ HO-E (u)s [{LL] + (uys
1nd1No HD33dS

LNdNI

1550 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

05 ouTPUT
INPUT o SPEECH
BITS 1{n) . &s(n) 2(n) Sn)
_/
PREDICTOR
LOOP
ADAPTATION Ain)
LOGIC ¥1(0.98)
ONE
milin)) Alsal SAMPLE fe—{ >§)
Al63] DELAY
g“’}_@ :
. (0.85)
din+1) B
TABLE Al2)
ONE ADDRESS Al
SAMPLE
DELAY TABLE
T TAKE INTEGER OFFSET
OF d(n) (32 TO 31)
din) AND ADD OFFSET
STEP-SIZE

ADAPTATION

LOOP

Fig. 2b—Block diagram of the ADPcM decoding algorithm.

é,(n) =

I(n) + 0.5.

(3)

A similar quantizer characteristic is used for the 4-bit (16 level) design.

The unscaled, decoded difference signal can be obtained from é,(n)
by rescaling it by A(n), where A(n) is inversely related to V(n) and is
directly proportional to the “step-size” of the equivalent adaptive

quantizer. Thus,

é(n) = A(n)-é(n) (4)
2 w“i‘”] =3
,)
52| 4
. (010}, \
25(n) ~~__\ BINARY
a2 b 1 ~-XREPRESENTATION
(001) OF I{n)
1/2 2
L 1 1 1 L (000) | L | 1 1
-1 1 2 3 4 5
-1/2
(100) esln)
-2
-3/2
(101)
-3 512
{110}
Iln) = -4
REIT — =772
Fig. 3—Quantizer characteristic for the 3-bit pcM quantizer.
ADPCM CODING 1551

is the adaptively quantized representation of the difference signal e(n).
This completes the adaptive quantization part of the algorithm.

2.4 First-order predictor

The sum of p(n) and é(n) also forms the adaptively quantized
representation of the input signal (see Fig. 2a)

§(n) = p(n) + é(n). (5)

However, the predictor value p(n + 1) and the quantizer scale factors
V(n + 1) and A(n + 1) need to be updated for the next sample time
n+ 1.

The new predictor value is computed as 8 times §(n); i.e.,

p(n +1) = B-3(n), (6)

where 8 is the predictor “leak” factor.” A value of 8 = 0.85 is often
used for speech encoding. The value of p(n + 1) is then stored for use
at the next sample time n + 1.

2.5 Adaptive step-size control

The computation of the new value of A(n + 1) and V(n + 1) for the
next time sample n + 1 is more involved. The algorithm used here is
based on the robust step-size adaptation approach. The details and
advantages of this form of the algorithm are discussed in considerable
detail in Refs. 8 to 10. The method is as follows. The step-size referred
to above is the effective spacing in the quantizer levels observed in the
unscaled quantized signal €(n). Since this spacing is proportional to
A(n), we will refer to A(n) in the following discussion as the step-size.

In the robust adaptation algorithm, the new step-size A(n + 1) is
chosen as

A(n + 1) = (A(n))"-M(I(n)). (M

That is, it is the old step-size A(n) raised to the power y (0 < y = 1,
typically y = 0.98) and scaled by a factor M(.) which is a function of
the code word I(n). If the code word is one of the upper magnitude
levels of the quantizer [e.g., I(n) = —4, —3, 2, or 3 in Fig. 3], a value of
M(.) greater than one is used to increase the step-size of the quantizer
for the next sample time. If the codeword is one of the lower magnitude
levels [e.g., I(n) = —2, —1, 0, 1 in Fig. 3], a value of M(-) less than one
is used to reduce the quantizer step-size for the next sample time. In
this way, the algorithm continually attempts to adapt the step-size
such that the dynamic range of the adaptive quantizer is matched to
the range of the signal e(n).

A more direct approach for implementing this algorithm is obtained
by expressing eq. (7) in logarithmic form. Let

1552 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

d(n) = log(A(n)), (8)
and
m(I(n)) = log(M(I(n))), 9

where the base of the logarithm is determined by the choice of
parameters in the coder, as discussed later. Then, eq. (7) becomes

dn+1)=y-dn) + m(I(n)), (10)

and it has the form of a first-order difference equation. This is the
equation that is implemented by the upper right-hand part of the
block diagram in Fig. 2a.

The driving function m(I(n)) is a function of the code word I (n),
and it is determined in the adaptation logic algorithm which performs
the function

_[8if|I(n) + 05| =25,
m(I(n)) = {_3 if|[I(n) + 0.5| < 2.5 (1)
for the 3-bit quantizer and
_] 8if|I(n) + 05| =45,
m(I(n)) = {_3 if |I(n) + 0.5| < 4.5 (1b)

for the 4-bit quantizer.

The output of the step-size adaptation loop is the signal d(n), which
eq. (8) shows as the logarithm of the desired step-size.

Thus, to obtain A(n) (and V(n)), we need to implement the relations

A(n) = exp(d(n)) (12a)
and

Vin) = ﬁ = exp(—d(n)), (12b)
where, again, the base of the logarithms and exponentials in egs. (8) to
(12) are determined by the choice of parameters of the coder, as
discussed later.

The exponentials in eqs. (12a) and (12b) are computed by using
look-up tables that are stored in the program Rom as indicated in Fig.
2a. The integer value of d(n) is taken and constrained to the range
—32 = [d(n)] < 32 for a lookup table size of 64. Table offset values are
then added to this value to produce the appropriate RoM address
locations. The tables are set up so that a value of d(n) = 0 points to
the center of both tables (V[32] and A[32]). Note that the bracketed
values V [-] and A [-] in the tables of Fig. 2a refer to the contents of
table locations addressed by [-] and not to sample times (which are
referred to by the parenthesis notation V(n) and A(n)).

The above algorithm uses 64 different step-size values of A(n) and

ADPCM CODING 1553

V(n). The table values are chosen to span the desired dynamic range
of the input signal. If signals of larger or smaller amplitude than this
are encountered, the step-size saturates at the upper or lower table
values, respectively.

The table address locations are stored for use at the next sample
time n + 1 to access values A(n + 1) and V(n + 1) as they are needed.
This completes the operation of the ADPCM encoder.

2.6 Parameter selection for the step-size tables

The parameters of the step-size table were chosen such that the
ratio of the maximum to minimum step-sizes in the table is 256, i.e.,

A[64]/A[1] = 256 = 2

and
V[1]/V[64] = 256.

This gives a step-size adaptation range of 48 dB (8 bits) that is
appropriate for speech coding. Since there are 64 logarithmically
spaced step-size values in each table, this corresponds to a 0.75-dB
resolution, i.e., step-sizes increase by a ratio of 1.0902 in the table,

A[i] = A[1]-(1.0902)" ",
V[i] = V[1]-(1.0902) "', .

The maximum step-size is chosen so that the maximum range of
e(n) (approximately 17 bits) scales to the maximum quantizer range
(3 or 4 bits). This prevents overloading on the high end of the dynamic
range. Thus, for a 4-bit quantizer

A(R) | max = A[64] = 2774 = 21
and
A(n) |min = A[1] = 2°.

For a 3-bit quantizer, values of A[-] should be increased by two and
values of V[-] should be decreased by two for best dynamic range
performance.

The manner in which these table values are scaled and stored in the
psp will be explained more fully in Section 3.4.

2.7 Decoder for ADPCM

Figure 2b shows a similar block diagram for the ApbpcM decoder. The
input code word I(n) is converted to the decoded difference signal é(n)
by adding 0.5 (see Fig. 3) and scaling the result by A(n). The decoded
output signal §(n) is then obtained by accumulating values é(n) in the
predictor loop in the same manner as in the encoder. The new step-

1554 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

size is then computed in an exactly duplicate manner to that in the
encoder. Thus, the ADPcM decoder duplicates a subset of the encoder
block diagram.

. PROGRAMMING TECHNIQUES UTILIZED IN THE DSP FOR THE
ADPCM ALGORITHM

The AprcM algorithm, as it is configured above, is designed so that
it can be conveniently implemented on the psp. We have already
alluded to ways in which the DsP is used in implementing the algorithm.
In this section, we point out some additional aspects of the program
and discuss how some of the unique features of the DSP are used.
Discussions in this section use the 4-bit algorithm as an example.

3.1 Memory utilization

The encoder program and the step-size tables for A[.] and V[-] are
stored in ROM occupying approximately 170 words of memory. Five
RAM locations are used for storing the following values: 2(I(n) + 0.5),
2 §(n), p(n), d(n) and the integer version of d(n). Access to the step-
size tables is made by setting the RX register in the DSP to the center
address of the desired table. The table address for the appropriate
step-size is then obtained by setting the K register to the integer value
[d(n)] (limited to the range —32 to 31) and then incrementing RX by
the value K using the rxk command. The RX register then contains the
ROM address for the appropriate step-size V[-]. The DSP instructions
that implement this technique are as follows:

rya = 5; “RAM pointer to int [d(n)]”
rx = &TABLE; “set rx pointer to V[32]”
k = rym;;; “set k to int [d(n)]”
a=7pp =rxk*c “pointer to appropriate V[-]”

Note that this technique only works for table sizes up to 256, since the
K register is limited to 8 bits.

3.2 Quantization

The computation of the quantizer input, e;(n), is accomplished in a
straightforward manner on the DsP by using a subtraction and a
multiplication. The conversion from e;(n) to a 4-bit integer I(n)
(according to the quantizer characteristic in Fig. 3) is done by truncat-
ing the fractional part of e;(n).

Assuming e(n) has been computed and stored in the w register and
RX is pointing to the appropriate step size, the following DSP instruc-
tions compute I’ (n).

ADPCM CODING 1555

p=1%

a=p p = rxXj*w; “compute e,(n) = V(n)-e(n)”
a=p+a/2 p = —1*c; “compute e;(n) + 0.5”
a=pé&a; “truncate to form I'(n)”

The truncation is achieved by using the accumulator control statement
a = p & a, which performs a bit-by-bit AND operation between the p
and A registers in the psp. I'(n) is stored in the A register and the
(binary) number 1111 ... 111.000 ... is stored in the P register by the
instruction p = —1*c (¢ = 2"). The operation zeros out the fractional
part of (es(n) + 0.5) and leaves the integer part untouched. The
resulting integer I (n) is then constrained to the range -8 < I'(n) < 7
(for 4-bit quantization) to form the desired codeword I(n). This is done
using the conditional AU operation as shown in the following instruc-
tions.

p = 8%¢;
a=p+a p = 0*c;
if (a < 0) doau (); a=p; ““Uel'(n)<-8)I'(n)=-8"
a=p-+a p = —156%¢;
a=p+a p = 0*c;
if (@a>0)doau (); a=p; “UI'ny>7In)="7
a=p+a p = T*c;
a=p+a “4-bit I(n)”

This yields the 4-bit value I(n) in the accumulator.

3.3 Internal scaling of data

At the output of the quantizer a value of 0.5 is added to I(n) (see
Fig. 2) to produce é;(n), which is then multipled by A(n). To accom-
plish this, é,(n) must be transferred from the A register to the w
register and the input of the multiplier. Since this transfer from the A
to W registers truncates the fractional part of the value in the A
register, it is first scaled by a factor of 2 to avoid the truncation of the
fractional part. This scale factor of two is carried through the compu-
tation of §(n) in the block diagram of Fig. 2.

3.4 Scaling of step-size table values

The values stored in the step-size tables in ROM are more conven-
iently handled if they are scaled to be less than 2 in magnitude. The
internal DsP arithmetic is such that 16-bit values from RoM are assumed
to have 14 fractional bits. This is appropriate for the inverse step-size
table V[-] in which numbers (e(n)) in a 17-bit range are scaled down
to a 4-bit range (e;(n)). This table takes on values:

1556 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

V[1] = 0.031250
V[2] = 0.028617
V[63] = 0.000133
V[64] = 0.000122

which can be directly stored in the rom.

In the step-size table A[.], the inverse of these numbers must be
stored. To accomplish this, the inverses are first scaled by a factor of
27" and, thus, they take on the fractional range (denoted by primes):

Af1] = 0.001953
AT2] = 0.002133
A[63] = 0.457650
A[64] = 0.499754

When these table values are used in the multiplication, the resulting
product A’(n)é,(n) is scaled back up by a factor 2'* using the 14-bit
shift option a = a << 14.

The inverse relationship between the table values requires that

V[i]-ATi]-2% =1,
i=1,2...,64. (14)

Since V[i] and A’[{] must be quantized to 16-bit numbers (14-bit
fractions), for storage in the roM, the condition in eq. (14) cannot be
met exactly. To obtain the greatest accuracy in representing these
numbers, the smaller of the two values V[i] or A’[{] for each value of
i is quantized first. The reciprocal of this number is then computed
(with floating point accuracy) and scaled by 27", This value is then
quantized to the 16-bit range of the RoM to produce the inverse table
value. Thus, the accuracy of the condition in eq. (14) is maintained as
closely as possible.

3.5 Control of the address range for the tables

Another unique part of the program involves the control of the range
of the table address pointer d(n) to the range —32 to 31 (excluding the
table offset). This is accomplished with the aid of the overflow protec-
tion feature of the psp when data is transferred from the a register to
the w register. The operations in the step-size control loop are scaled
so that d(n) is computed in the upper range of the A register. When
this number is transferred to the w register, it is automatically limited
to the proper range by the overflow protection option in the DSP.
Scaling this number back down to a 6-bit integer range gives the

ADPCM CODING 1557

desired range of —32 to 31 for the table location (excluding the table
offset).

Specifically, this is accomplished as follows. First the driving func-
tion
8.2%if |2(I(n) + 0.5)| = 9,

m(I(n)) = {_3_28 if |2(I(n) + 0.5)| <9

is computed and stored in the A register. The value m(I(n)) is then
multiplied by 8 twice and added to y-d(n) to form d(n + 1) scaled by
9" The value d(n + 1) is limited when it is transferred to the w
register, and the table look-up offset, int (d(n)), is obtained by multi-
plying the w register by 2'°. This result is directly loaded into the K
register as discussed in Section 3.1. Assuming the A register contains
the absolute value of 2 (I(n) + 0.5) — 9, and the RY register points to
d(n), the following DsP instructions compute d(n + 1) and the table
offset value, integer d (n).

p = 04000+c;
if (a < 0) doau (); “if (a = 0) m = 8+2%”
a=p p = 0176400+c; “else m = —3+2°"
a=p p =0=c;
a=p+8+a p = 98+rym,; “compute y*d(n)”
a=p+ 8+ p = Osc; “compute d(n + 1)»2'"
w=a; “overflow protection”
rdp=w a=p p = 16+w; “saved(n + 1)”
a=p;
w =g
rdp=w; “save int(d(n))”

IV. HARDWARE CONFIGURATION

The hardware used to implement the algorithm described in this
paper consists of two 16.5- by 11.5-cm wire wrap cards, one for the
transmitter and one for the receiver. Both cards are of identical
construction with jumper plugs used to determine whether the card
will act as a transmitter or a receiver in the configuration shown in
Fig. 1.

Figure 4 shows a more detailed block diagram of the cards. Each
card contains a DsP, along with a 2048-word by 16-bit PRoM holding
the program and step-size tables. (For permanent applications the Rom
would be integral to the psp). In addition, there are analog filters, p-
law encoder and decoder chips, clock generators, and synchronization
logic.

The ADPCM transmitter card accepts an analog input which is applied
to a buffer amplifier and then to a low-pass filter and a u-law encoder.
The sampling rate of this encoder is determined by the repetition
period of the sync signal produced by the sync generator. The serial
output of the encoder is shifted out by the clock signal. These three

1558 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

"dsSd 10} uorjem3yuod arempre—y ‘Siq

21907 13534 HOLYHINID INAS
anvy anv
32012 ¢sa 32072 ONITdWYS
12 ONAS
153y
H3IHINdNY NIN1D CEIFIRE)
H344ng 19 INAS 319 INAS 434408
HILTI4 ¥300030 ¥3Q00N3 | | mmwm_n__"_
1nd1no SSvdaNve My1-n M-l Mol LNdN|
90TVNY %20 a1 90TVNY
dsa
ASO ASI
-y —
0a 10
and on1d
H3dWNr y3adwnr
32012 2072
INAS -— ! — = INAS
Viva - | (at) 1NoX10 viva
318VD LNdLNO TYNHILX3 S1-0ggq Ix3 378vD LNdNI T¥NHILX3
(8Y0Z x 91

WOHd WYHO0Hd

1559

ADPCM CODING

signals (data, sync, and clock) are connected through a jumper plug to
the data in (1), input sync (18Y), and input clock (ICK) pins of the DsP.
Operating from the encoding program stored in the PROM, the psp
converts the incoming data into ADPCM code words which become
available at the data output pin (po). The shifting of this word out of
the psp is controlled by output sync (0sY) and output clock (OCK)
lines. These three signals are connected through another jumper plug
to the external output cable which sends them to the receiver card.
The p-law decoder on the transmitter card is not used.

The ADPCM receiver card receives the data, sync, and the clock
signals from the transmitter card over the external input cable, which
is connected through the first jumper plug directly into the psp. The
p-law encoder and sync generator on this card are bypassed. The DSP
takes the incoming ADPCM code words and converts them to p-law
pcM, according to the instructions of the decoding algorithm in its
proM. The p-law data words are shifted out of the DsP on the Do line
and are connected through the other jumper plug to the input of the
p-law decoder chip. The analog output of the decoder is bandpass
filtered and then sent through a buffer amplifier to produce the
reconstructed analog output signal.

The cards used here are not limited to only one application of the
psp. By setting the jumper plugs so that audio input and output are
both on the same card, different types of filtering algorithms can be
tested. Conversely, both the input and output of a card can be con-
nected over the external cables. In this manner, several DsPs can be
connected together serially for more complex signal processing.

V. PERFORMANCE

Figure 5 shows the signal-to-noise ratio measured for the 4-bit
ADPCM/p-law coder (Fig. 1) as a function of frequency for input signal

40

20 —

10 | | 1 | |
50 100 200 500 1000 2000 5000

FREQUENCY IN HERTZ

Fig. 5—Signal-to-noise ratio performance of the 4-bit (32 kb/s) appcM/p-law coding
configuration of Fig. 1.

SIGNAL-TO-NOISE RATIO IN DECIBELS

1560 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

levels of 0, =20, and —40 dB of full scale. It corresponds closely to that
of the coders in Ref. 3. The dynamic range is limited to about 48 dB
because of the range of the step-size tables and the u-law encoders.
This dynamic range performance can be modified (within the limita-
tions of the p-law encoders) by changing the step-size tables. At low
input levels the significant noise is that of the p-law encoders.

The subjective quality of the 4-bit ADPCM is very similar to 200- to
3200-Hz (telephone band) filtered speech without encoding. This sug-
gests that a single ApPcM link can provide essentially a “transparent”
quality for telephone bandwidth speech.

VI. CONCLUSIONS

In this paper, we have discussed the implementation of the ADPcM
algorithm on the psp. The encoder program uses 26 percent of the 8-
kHz real-time capability of the DSP running with a 5-MHz clock. It
uses 4 percent of the RaM and 17 percent of the rRoM. The decoder
program uses 22 percent of the real-time capabilities, 4 percent of the
rRaM and 10 percent of the rRom. This suggests that 4 encoders, 4
decoders, or 2 encoder-decoders could be implemented on a single DsP.
The program uses a number of unique features of the Dsp to achieve
an efficient implementation of the algorithm, and it demonstrates the
flexibility of the psP in doing small-to-medium scale algorithms of this
type.

REFERENCES

1. P. Cummiskey, N. S. Jayant, and J. L. Flanagan, “Adaptive Quantization in Differ-
ential PCM Coding of Speech,” B.S.T.J., 52, No. 7 (September 1973), pp. 1105-18.

2. N. S. Jayant, “Digital Coding of Speech Waveforms: PCM, DPCM, and DM
Quantizers,” Proc. IEEE, 62 (May 1974), pp. 611-32.

3. J. D. Johnston and D. J. Goodman, “Multipurpose Hardware for Digital Coding of
Audio Signals,” IEEE Trans. Commun., COM-26, No. 11 (November 1978), pp.
1785-8.

4. L. H. Rosenthal et al,, “A Multiline Computer Voice Response System Utilizing
appcM Coded Speech,” IEEE Trans. Acoust., Speech, Sig. Proc., ASSP-22, No. 5
(October 1974), pp. 339-52.

5. S. Bates, “A Hardware Realization of a pcM-appPcM Code Converter,” S. M. Disser-
tation, Dept. of Electrical Engineering, Massachusetts Institute of Technology,
1976.

. H. W. Adelmann, Y. C. Ching, and B. Gotz, “An ApPcM Approach to Reduce the Bit
Rate of p-Law Encoded Speech,” B.S.T.J.,, 58, No. 7 (September 1979), pp.
1659-71.

. J. R. Boddie et al., “Digital Signal Processor: Architecture and Performance,”
B.S.T.J., this issue.

8. D.J. Goodman and R. M. Wilkinson, “A Robust Adaptive Quantizer,” IEEE Trans.
Commun., COM-23 (November 1975), pp. 1362-5.

. D. Mitra, “An Almost Linear Relationship Between the Step-Size Behavior and the
Input Signal Intensity in Robust Adaptive Quantization,” IEEE Trans. Commun.,
COM-27 (March 1979), pp. 623-9,

10. J. D. Johnston and R. E. Crochiere, “An All Digital “Commentary Grade” Subband

Coder,” J. Audio Eng. Soc., 27, No. 11 (November 1979), pp. 855-65.

[=2]

~

o

ADPCM CODING 1561

