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Digital Signal Processor:

Power Measurements

By S. CORDRAY, D. L. FAVIN, and D. P. YORKGITIS
(Manuscript received January 7, 1981)

Power measurement is fundamental to transmission quality testing.
This measurement need is extended to signals represented by digital
bit streams. Accurate and precise measurements over a 60-dB range
have been made using the digital signal processor. One algorithm
that has been used measures the power of fixed-length sample se-
quences. A second algorithm yields periodically updated power mea-
surements of infinitely long sample sequences, but with slightly in-

creased measurement ripple and frequency restriction. Theoretical
expectations for measurement variation in the fixed-length measure-

ments of noise power are also discussed.

I. INTRODUCTION

The measurement of power is fundamental to transmission quality
testing. Power measurements of single tones, such as the milliwatt
standard, are used to adjust transmission levels. Multiple-tone power
measurements are used in nonlinear distortion testing. Examples of
power measurements of band-limited noise are return-loss and C-
message weighted noise measurements.

This paper gives an overview, discusses the theoretical accuracy and
precision of digital noise power measurements, and presents some
results using the digital signal processor (Dsp} A3990 for making power
measurements.

Il. OVERVIEW

The measurement of power will be presented following the block
diagram of Fig. 1. Since the incoming signal is generally encoded for
bit compression, the signal samples first must be decoded to linear

1673



BLOCK AVERAGING
POWER MEASUREMENT:

SUM OF SQUARED VALUES
NUMBER OF SAMPLES

Y
FAERN
ENCODED / . POWER
DIGITAL / MEASURE—
SIGNAL ALTERNATE DECIBEL MENT
——= oecoven = G 0TER - SQUARER | PATHS /| COMPUTATION
N\ ’
\ 7/
\ /
Z

EXPONENTIALLY MAPPED PAST
POWER MEASUREMENT:
LOW-PASS FILTER OF
SQUARED VALUES

Fig. 1—Time domain technique of power measurement.

samples, as indicated in the first block of the figure. For p-255 encoding
and decoding, the DSP has a dedicated instruction set and associated
circuitry.

The decoded digital signal is scaled and passed through a digital
filter. This paper discusses measurements with flat weighting, with C-
message weighting, and through a C-notched filter.

Note that Fig. 1 depicts essentially a time-domain approach, which
should be contrasted with the frequency-domain approach depicted in
Fig. 2. These two approaches are tied together by Parseval’s Theorem:
T

3

1
Signal Power = lgg }f yit) dt = f S(w) dw = R(0), (1)
- 0 0

where
J = averaging interval,
y(t} = analog signal,
S(w) = the power-density spectrum, and
R (0) = autocorrelation function at zero lag, i.e., the dc component
of y*(t).

The first integral in eq. (1) is implemented as in Fig. 1; the second, as
in Fig. 2. Implementation of the latter is not discussed in this paper.

To compute the first integral, the sample values must be squared, as
indicated in Fig. 1. Two different methods of determining the power
from the squared signal were used.

The first method is the straightforward approach. If the incoming
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Fig. 2—Frequency domain technique of power measurement.
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signal is considered stationary, the power can be approximated from
the first integral of eq. (1) as follows:
1 F 1 N 1 M
== | ydt=—== Y yiT== Y ¥, 2
R(0) ij;y() NTEoy NEOJ’ (2)

where

N = the number of samples,

y; = ith signal sample, and

T = interval between the samples (T = 125 ps in most voice

telephone applications).
This approach is termed block averaging (BA) in this paper.

To use BA, N must be chosen large enough so that the measurement
variation is within the required tolerance. In the next section, the
probability of measuring noise power within certain confidence levels
for different values of N is derived.

The second method for extracting the dc component employs a
convolution of the squared sample values with the infinite impulse
response of a first-order, low-pass filter. This algorithm, described in
Appendix B, has been termed exponentially mapped past (EMP).

The EMP is not as applicable as BA because of the extra frequency
components generated by squaring a signal. Because of the sampled
nature of the signals, some components can be aliased into the pass-
band of the EMP low-pass filter and, thus, yield measurement ripples.
For example, the EMP parameters discussed in this paper yield a ripple
of +0.4 dB for a 15-Hz tone and a ripple of less than +0.1 dB for an 80-
Hz tone.

Once the dc component has been extracted, it can be converted to
a dB measurement before it is reported. A method for calculating the
required logarithms with the psP is described in Appendix C.

Currently, the Ba program reports a dB computation once per block,
i.e., once every N samples, where N = 4096. However, when EMP is
used, linear-to-dB conversions can be made more frequently. After a
conversion is made in the current EMP program, the next conversion
can be made after another three samples have been read from the
input buffer. The rate with which conversions can be made and
reported during EMP power measurements depends on several vari-
ables, as explained in Appendix D.

For display or printout routines, a binary number representing a dB
level can be converted to binary-coded decimal (BcD). A BCD routine
was used to yield the BA signal-to-quantizing noise ratio measurements
described below. This routine is not discussed in this paper.

IIl. THEORETICAL PRECISION OF NOISE POWER MEASUREMENTS
In this section the noise power measurement precision that is
theoretically possible by digital power measurements is presented.’

POWER MEASUREMENTS 1675



Consider the finite set of noise samples nq, ni, ... nx-1. The ac power
of these N samples is expressed as

1 N—-1 2
P.(N) = N .-go (n: — n)*, (3)
where
_ 1 N-1
n= E j§0 n;

is the dc component of the noise.

How large should N be in order that the estimated power P,(N) be

within plus or minus some §, (in dB) of the actual power? That is, for
a given N, what is the probability P{ } that

n . P.(M

PN _ lim 10 log (M)

Pre[ M- ref

10 log < 8y, (4)

where P, is any reference power? The following analysis assumes that
the noise is Gaussian, but results are in most cases applicable to other
types of noise (e.g., quantizing or coding noise).

Assume the noise sample n; to be an independent, zero-mean,
Gaussian random variable with finite variance o> Then P,(N) is an

o” (see Ref. 2). To the

estimate of ¢, with expected value =

accuracy required for the BA program, P,(N) is effectively an unbiased
estimate for N > 100. For a given §,, eq. (4) becomes

2
10 log Pn(V) — 10 log g < b, (5)
Pref ref
or
0?1078/ < P,(N) < ¢%10%/1°, (6)

Now if the probability density function f.(a) of P.(N) can be found,
then the probability P{ } of satisfying the inequality (5) is

210%/10

< Sn} = J’ fole) de.  (7)

0210-8,/10

Pn,(N) 02
—10log —
ref o8 Pref

P{ ‘10 log

In Appendix A the density function is derived along with the proba-
bility. The result is

—t2/2

I
P{I,/IC,,—JK,|<6,1}EJ’ ¢ __a, ®)
'}

Vor

1

where
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P.(N 2
N =10 log P( ) (/n;=1010g;, N > 30,

ref ref

I, = V2(10)*°N — V2N - 3,

and

L = V2(10) 1N — V2N — 3.

For a graphical representation of eq. (8), see Fig. 3. For example, with
500 samples the probability that the noise power measurement preci-
sion is within +0.2 dB is 53 percent. To meet standard specifications
for noise and signal power measurements,” N was chosen to be 4096,
yielding a precision of +0.5 dB.

IV. TEST RESULTS

The ability to measure power precisely with both the BaA and EMP
schemes can be seen by comparing BA and EMP measurements with
the actual signal-to-quantizing noise ratios (SNRs) of ideally-encoded
sine waves at levels ranging from 3 to —64 dBm. Such encoded sine
waves have inherent quantizing noise frequency components across
the voiceband range of frequencies. To make SNR measurements, the
C-notched and C-message filters are generally used.

1.0

o
w©
T

o
®
I

o
<
T

o
@
I

o
o
I

b
s
[

o
w
|

IS WITHIN §,, OF THE ACTUAL NOISE POWER
S
I

N=NUMBER OF SAMPLES PER BLOCK

PROBABILITY THAT THE MEASURED NOISE POWER

o

1 | |
0 0.1 0.2 0.3 0.4 0.5

8n, IN DECIBELS

o

Fig. 3—Theoretical noise power measurement precision.
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The C-notched filter is actually two cascaded filters, each imple-
mented with three cascaded, second-order sections. The first filter, the
C-message filter, has approximately unity gain from 1000 to 2500 Hz,
and its attenuation increases gradually on either side of the passband
to 54.7 dB at 60 Hz and to 13.7 dB at 3900 Hz. The second filter, the
notch filter, is designed for attenuation of more than 50 dB from 989
to 1020 Hz. The frequency response of the digital C-notched filter was
measured by both the EMP measurement routine and by an analog
power meter. The results, limited by quantizing noise, appear in Fig.
4.

To determine the sNR of an encoded signal between 1004 and 1020
Hz, the C-message weighted measurement must be subtracted from
the C-notched measurement. By means of a real-time developmental
tool, the DSPMATE, SNR measurements were made with the BA and EMP
programs using ideal, encoded sine waves at 1015.625 Hz. The BA and
EMP measurements yielded a range of +0.5 dB, which was within the
theoretical noise power measurement precision. In Fig. 5, the BA
derived sNRs are plotted against the actual sNRs.

In order to retain significant bits at low power levels, the programs
were modified when the test signal powers were below —27 dBm. After
u-to-linear conversion, sample values from signals above —27 dBm in
power were divided by 4, while sample values from signals below —27
dBm in power were multiplied by 8. The DsP can be programmed to
choose the appropriate scaling.

Because of quantizing noise, the maximum SNR is approximately 40
dB. Thus, the maximum sNR in Fig. 5 is comparable to the quantizing
noise floor of Fig. 4.

10
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Fig. 4—Frequency response of a digital C-notched filter. (Measured signals are p-255
coded.)
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V. CONCLUSION

Two reliable methods for measuring power with the psp have been
presented: the BA approach, and the EMP approach. Both of the
approaches, when examined mathematically, have no significant bias
in their expected values. The accuracy, therefore, is as good as the
digital samples representing the signals being measured.

The precision of signal power, noise power, and SNR measurements
were investigated. Digital signal processing measurements of these
parameters showed that:

(i) In general, signal power measurements were precise to within
0.1 dB.

(i) With appropriate scaling, SNR measurements were precise to
within 0.5 dB over a 60-dB range.

(it7) Block-averaging noise power measurements all fell within the-
oretical limits.

In the EMP program, frequencies in the range 80 to 3920 Hz yielded
measurement ripples less than +0.1 dB, and frequencies in the range
30 to 3970 Hz yielded ripples less than +0.2 dB. These measurements
were made with an EMP convolution having a 3-dB cutoff at 2.489 Hz.
However, these ripples were about twice as large as the measurement
ripples from the BA program.
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Two advantages of EMP over BA are compactness of code and ability
to update a measurement 1365 times as often. Frequent updating may
aid in identifying particular types of problems and, hence, aid in
problem sectionalization.

APPENDIX A
Derivation of Noise Power Measurement Precision

In the following analysis, the probability density function of P,(N)
is presented and used to find, in computable form, the probability that
the ac noise power P,(N) is within some §, (in dB) of the noise
variance o

Recall the definition of ac noise power:

N-1

PAN) =5 3 (= )"

As a result of assumptions that n; is a zero-mean, Gaussian random
variable with finite variance o the probability density function of
P.(N) (see Ref. 4) is

- - 92
a(N 3)/2e alN/2a

2N/ JNYNTIT(N — 1)/2]

which is a chi-square density. Hence, the probability P{ } that P,(N)
is within 6, of the actual noise power is

fala) = (9)

2
Pa(N) _ 10 log d

ref ref

a210%/10
< Sn} = J’ fola) da.  (10)

0210-8,/10

P{|1010g

Using the substitution ¢ = aN/¢® yields
2
P { Pn(N) o | < Sn}

— 10 log
J'”’&"“"N FIN-3)/20~t/2 gy
1

10 log Pref Pref
2™DRT((N — 1)/2]’

(11)

0-8p/10N

For N > 30, this probability can be expressed in terms of the normal
probability integral:’

Pn(N) 0,2 I 2412/2
Pll101 —101 <s b= | S—ar, (2
{‘ o8 Pref 8 Pref } I V2 ( )

where

L = v2(10)>'°N — V2N — 3
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and

L = v2(10) "N — V2N — 3.
Eq. (8) and Fig. 3 in the text follow.

APPENDIX B
Derivation of EMP

The result of passing an analog signal y*(¢) through an analog filter
with impulse response g(¢) is P(¢), where

P(t) = J yiu) g(t — u) du. (13)

Let T be the sampling period of the digital signal y*(nT), or y*(n) for
short. The result of passing y*(n) through a digital filter with impulse
response h(n), is P(n), where

P(n) = kz Y (k)h(n — k). (14)

An analog, first-order, low-pass filter uses

Ae,  t=0
gt = {0’ ¢ r<0, (15)

where 7 is the time constant of the filter. Such a filter has a 3-dB cutoff
at (2#7)”" Hz.

If the impulse invariance h(n) = g(nT) is used to form an equivalent
digital filter, the corresponding impulse response is

Ae T n=0
h(n) = {0, n <o, (16)

where T is the sampling period. Because of sampling, aliasing is
introduced, but the effects of the aliased components are negligible if
the cutoff frequency is low.

For ease in notation, let m = T/r. From eqs. (14) and (16),

P(n) = ¥ y*k)h(n— k),

k=—w

or

P(n) = 2 Yi(R)A e R, (17)

k=—cx=

From this, a simple recursive relationship for P(n) can be developed:
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n+l

P(n + 1) = 2 yz(k)A efm[nﬂ—k)
k=—x
n+1
= e—m E yl(k)A e—m(n-k)
fe=—co
=e ™ P(n) +e ™y (n+ 1)A e" (18)
or
Pn+1) =e™P(n) +Ay*(n + 1). (19)

In eq. (19), A should be chosen to ensure unity gain at dc. To determine
A, let

2 _JL, n=0 T
¥¥(n) = {0, n<0 and P(-1)=0. (20)
Then,
P(n+ 1) =e™P(n) + AL, (21)

which implies that P(n) is a geometric series:

P(n)=AL ¥ e™
k=0

1 _ efn!(n+1]
=AL ——+, 22
1—e™ (22)
which approaches L for n approaching infinity if A =1 — ™.
The EMP power measurement P(n) can, thus, be obtained by the
recursion formula

P(n) =e™P(n—1) + (1 — e ™)y*(n), (23)

where m = T/r.

If the range of the signal power to be measured is large and no
automatic gain control is to be used, then some double-precision
arithmetic has to be done to save the least-significant bits resulting
from sums and products. In particular, the result of squaring the input
samples nearly doubles the number of significant bits in the accumu-
lator. Therefore, all bits resulting from squaring should be saved. In
addition, EMP, which follows the squaring, should be implemented with
double precision.

This implementation is facilitated by representing e™™, which is
nearly unity for a low cutoff frequency, by 1 — 27% where R is an
integer. The time constant t is

r=-—T/In(1 — 27%). (24)
For R = 9, 7 = 63.9 ms; and the 3-dB cutoff is 2.489 Hz, which yields
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power measurements with ripples of less than +0.1 dB at frequencies
between 80 and 3920 Hz.

To implement EMP in double precision, the stored value P(n — 1)
must occupy two storage locations. Conveniently, one location could
contain its integral part, while the other, its fractional part.

APPENDIX C
Using the DSP to Compute the Natural Logarithm of a Number

Using the psp, the logarithm of up to a 40-bit number P can be
computed to an accuracy of 0.001. Suppose that

In P = In[.#(2%)]
=In.#+ & 2, (25)

where .# is a real number and £ is an integer. Then, In P can be
computed from

(i) a series expansion on .# plus

(ii) a table of multiples of &ln 2.
If 0 < .# =< 2, the following expansion can be used:

_ 12 _ 13 1\
(A —1) +(J{ 1) __{L/l{ 1) 4.
2 3 4

As indicated in Fig. 6, if 0.68 =< .# =< 1.36, then In .# can be computed
to an accuracy of +£0.001 with only four terms. Since the upper bound

on.# is twice its lower bound, & can be determined by repeated scalings
of P by 2.

In#=(#—-1)— (26)

APPENDIX D
Rate of Linear-to-dB Conversions in the EMP Program

In the current EMP program, a linear-to-dB conversion of the power
measurement is made after every third sample. Although every sample
is used to update the linear power measurement, there is insufficient
time to make a conversion to dB after every update.

The number of samples, S, that must be used to update the linear
power measurement S times and to make one linear-to-dB conversion
can be determined from the following relation:

S(R+U) + C < ST, 27)
where

R = the time to check whether the input buffer is full and, if so,
to read it,

U = the time to update the linear power measurement using the
new sample,
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C = the time to make a linear-to-dB conversion of the power
measurement, and
T = the sampling interval.

Then S can be any integer greater than C/T — R — U. In Fig. 7, the
case for S = 3 is depicted. In this figure, L is the time necessary to load
the input buffer.

As shown in Fig. 7, the second sample in each group of three must
be read before the third sample begins to be loaded. Expressed sym-
bolically, this means

0.08
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0.04 —

0.02 —

—0.02 —

ERROR IN A FOUR-TERM APPROXIMATION
TO THE NATURAL LOGARITHM OF M
o

—0.04 —

—0.06 —

-0.08 | | |
0 0.68 1 1.36 2

ARGUMENT. M

Fig. 6—Performance of a four-term polynomial approximation to the natural loga-
rithm.
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Fig. 7—Timing diagram showing the rate of linear-to-dB conversions in the EmMP
program.

R+ U+C+R<T+T-1L,
or
C<?2T-L -2R - U. (28)

If eq. (28) were not satisfied by C, then the second sample in each
group of three would have to be stored during the linear-to-dB con-
version and then the sample value returned after the conversion was
complete.

In the current EMP program, the upper bound on C was sufficiently
high that, with S = 3, each linear-to-dB conversion could be followed
by a conversion to BCD.
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