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It is shown by numerical solution of Maxwell’s equations that, for
a given wavelength, the degree of confinement of the electromagnetic
field to the core of a graded-index, single-mode, optical-fiber can be
optimized by the proper choice of the radial variation of the index.
Such confinement of the energy to the core helps alleviate loss. The
fibers considered have zero total dispersion bandwidths in excess of
100 GHz-Km, at wavelengths between 1.3 pm and 1.55 pm.

I. INTRODUCTION

Our earlier work described a method of designing single-mode light-
guides with zero total dispersion by varying the index profile in the
core.! In the range of wavelengths between 1.3 um and 1.55 um,
bandwidths in excess of 100 GHz.Km are attainable by balancing
material dispersion with waveguide dispersion.>® However, one of the
serious difficulties with single-mode fibers is microbending loss. We
know that the microbending loss for the case of the step-index, single-
mode fiber is proportional to A?/A%.**® Here, A refers to the operating
wavelength and A to the relative index difference which is defined as:

A= (Nmre - Nclad)/Ncore . (1)

Now the design of a single-mode fiber must be such that it prevents
the field of the fundamental mode (HE,;) from extending well into the
cladding. In other words, the electromagnetic field must be tightly
confined to the core. To this end, two methods can be considered: one
is to increase A, which is a common and prevailing method, and the
other is to change the index profile in the core. This work will focus on
the latter case by assuming an « index profile, where N = Ni(1 — Ar).
Reducing microbending by profile design might be advantageous be-
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cause the TE and TM modes can be maintained well beyond the cutoff
point of a step-index, single-mode fiber and the manufacturing toler-
ances are relaxed. Note that N1 = Neore and Nz = Nojaa.

For a single-mode lightguide having a radially inhomogeneous core,
it is usually not possible to obtain analytical solutions of closed form
for Maxwell’s equations. Hence, to attain vector electromagnetic field
distributions of the HE;; mode and to determine accurate propagation
characteristics of a single-mode fiber, we used a numerical method to

solve the governing equations.”®

Il. THEORY

Our method of solving Maxwell’s equations for lightguides has been
described in our earlier publications. However, we did not consider the
cladding fields in much detail. For the work to be described in this
paper, this is essential. Thus, we develop the necessary mathematical
expressions.

In an optical fiber having a permittivity ¢ and permeability p, we
assume that the outer diameter D is much larger than the core

Fig. 1—A cross-section of a fiber and its cylindrical coordinate system.
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diameter 2a. In a cylindrical coordinate system, for a position vector
r having as its components {R, ¢, z}, the corresponding components
of electric and magnetic fields can be written as E = {Eg, E,, E.} and
H = {Hg, H,, H.) (see Fig. 1). However, in obtaining a complete set of
vector solutions, it is only necessary to find the tangential components
(E,, E.} and {H,, H.} since the radial components Er and Hr are
linear combinations of the other components. In particular,

Z, Z,N,

E.R = _W Hz + V‘H‘b, (2)
1 N.
HR=ZEZ—ZE¢. (3)

In addition, the tangential field components are continuous through
the core-cladding interface and this simplifies the mathematics of the
boundary value problem.

In the above equation, Z, is the wave impedance defined by (/e
and N is the index of refraction and a function of R. The effective
refractive index N, is defined by two quantities, 8 and %, where £ is
the propagation constant along the fiber axis and 2 = 27/A; p is a
dimensionless quantity defined by Rk. The fundamental HE;; mode
propagates in the fiber when the angular mode number M equals 1.
Moreover, V < V. must be satisfied. Here Vis the normalized frequency
and V. is the cutoff frequency for a single-mode propagation. The V
value is defined by

)1/2

2mat,
V=$\/N%—N§. (4)

The input data, @, is the optimum core radius that will give zero
total dispersion for a given a, A, and A.

In the most general case, there are two possible solutions to Max-
well’s equations for a guided mode in a lightguide. A general solution
will be a sum of these two vector solutions. We introduce variable T';
to establish the following relationship with the tangential field vectors
{Edu EZ} and {H¢= Hz}

I E,
o I — —L opH¢
ri=| s (5)
Iy —iZ,H.

From eq. (5) we denote the two solutions in cores I';; and I'iz. Since
our earlier work gave a detailed description of the computation of I';;
and T;, we will avoid repetition of the procedure for the solution in
the core region.' In the cladding region, the two solutions designated
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by I'is and I'is are given by the following expre:ssions:"'
[ NZ - k(c)
T = Wi(£)- "(c)};‘f) )
(VN

and

-

[ 0
Ne

v |
NZ—«k(c)

Tu= Wl(f)' (7)

where « (c) is the dielectric constant in the cladding, and

E=[N:—«(c)]p:i
Wi(¢) = Ki(§)/[N? — «(c)] (8)
v,(6) = £Ki(B)/Ki(E) |,

where K, is a modified Bessel function of the second kind and its prime
denotes differentiation with respect to £. (Note that p; is the value of
p at the interface.)

The total solution I" can be written in the core and cladding region

separately.
In the core region, I' is expressed by

I'=AT; + AT, 9
and in the cladding, I" is expressed by

I'= AT + AT, (10)

where A, is an arbitrary constant, j = 1, 2, 3, 4.

To calculate the field function T', we require basically four input
data, namely, A, the optimum core radius aop:, Ne, and N. Among those
parameters, calculation of N, has been described in detail in Ref. 1.
The material dispersion effect is incorporated with Maxwell’s equa-
tions to achieve a high degree of accuracy for N.. This is needed to
acquire the precise eigenfunctions from egs. 9 and 10.

In the design of a single-mode fiber, A is usually specified as an input
data. It is rather small, ranging from 0.002 to 0.008, since the cladding
of the fiber is generally made of a high-silica glass. The dispersive
character of the cladding is well known.? Therefore, for a given A, the
index of the core center N, can be expressed in terms of N; by

N,

ST (11)

1

The dispersive properties of the N; in eq. (11) can be described by a
modified Sellmeier formula."’
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Cs + Cy + Cs
A= K- =¥

N2 = Co + C])\z + CzX‘ + (12)

where [ = 0.035. The coefficients C; are given in our previous work.”
For the index profile, we use a well-known formula that is particu-
larly useful in fiber design.

N=N1[1—A(£) :| (13)
a

Finally, the dispersion of the index N will be determined by substitut-
ing N, in eq. (13) with egs. (11) and (12).

At the core-cladding interface, I' must satisfy the continuity condi-
tion of the tangential field components. Consequently, this yields a set
of simultaneous equations

Al + Aol = Asllis + Aal'y
ATy + Aol'so = Asles + AsT's
A5 + Aol'se = Aslaz + Al
Ay + Al = Aslys + ATy

(14)

To compare the field distributions, it is convenient to introduce the
following normalized variables into eq. (5).

E.- Eg;))

Er= 50

H.- H;;)

:¢ = H¢§}: (16)
He = 0]

Il. ELECTROMAGNETIC FIELDS FOR THE HE;; MODE IN DISPERSION-
LESS SINGLE-MODE LIGHTGUIDES

We begin our study by considering a germania-doped silica light-
guide with A = 0.002 and A = 1.33 um. The profile parameters examined
are a = 100, 2, and 1. Thus, we span the range from rectangular
through parabolic to triangular index functions. In Table I we calculate
the values for the radii to make these lightguides dispersion-free.
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Table |—Radii values for
dispersion-free lightguides

« Qoptium)
100 4.142
2 5.7256
1 6.294

The normalized electromagnetic fields as a function of normalized
radii for these three cases are shown in Figs. 2a, 2b, and 2c. Note that
in all cases the 2z fields are much smaller than the other field compo-
nents. In fact, these fields are less than 3 percent of the tangential
fields. The magnitude of the R and ¢ components of the electric and
magnetic fields for a given a are all essentially the same. This is not
likely if the index profile becomes more complex. For example, a profile
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Fig. 2a—Normalized field distributions of the HE;, mode in a single-mode lightguide,
where A = 0.002, A = 1.33 pm, a = 100, and a.p = 4.142 ym.
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containing a central “burn out” and ripples, which would be charac-
teristic of modified chemical vapor deposition (McvD) profiles, would
not have such a simple relationship between field components.

An interesting observation from Fig. 2 is that the slopes of the field
components at the core-cladding interface change with a. For a = 100,
the field distribution near the interface forms a cusp, but it rounds
progressively as « decreases. This is due solely to the index distribution
in the core of the single-mode fiber.

Figure 3 shows the normalized transverse components of the elec-
tromagnetic field as a function of radial distance for the three a values.
The curves are essentially identical up to R = 3 um. However, beyond
that distance they deviate appreciably. Also shown, by the vertical
lines, are the optimum radii.
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Fig. 2b—Normalized field distributions of the HE,; mode in a single-mode lightguide,
where A = 0.002, A = 1.33 um, a = 2, and @, = 5.725 pm.
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Fig. 2c—Normalized field distributions of the HE,, mode in a single-mode lightguide,
where A = 0.002, A = 1.33 pm, a = 1, and aop = 6.294 pm.

IV. ENERGY FLOW FOR THE HE,; MODE IN DISPERSIONLESS SINGLE-
MODE LIGHTGUIDES

So far we have only considered the field in the fiber. However, in
experimental practice it is more convenient to know the field intensity,
which is the amount of energy flowing through the cross-section of the
fiber. This can be calculated from the Poynting vector S in Ws/cm®.
The Poynting vector in the z direction, S. is given by,

S. = W(ERH; — E,H}), (17)

where * indicates the complex conjugate of the variable.
We define the normalized Poynting vector I by

I=28./8.(0). (18)
Figure 4 shows the curves of I versus the normalized radial coordinate
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R/a for three different a values. The normalized Poynting vector (field
intensity) falls off more rapidly with normalized radius for lower «
values.'” As in Section III, when a = 100 the Poynting vector develops
a cusp at the core-cladding interface. We also note a near identity of
the @« = 1 and a = 2 curves. Thus, these two have nearly the same
focusing power.

V. DEGREE OF FIELD CONFINEMENT

We know that the degree of field confinement in a fiber is related to
its microbending loss.*” In the fabrication of single-mode fiber cables
for undersea applications, microbending loss has been one of the
factors that determines the performance of the cable.
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Fig. 3—Normalized field components versus radial distance for three different values
of a.
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Figures 3 and 4 indicate that the field or power distribution is largely
dependent on the index profile. To quantify the focusing power or
confinement of a lightguide, we introduce a parameter ® defined by:

f S.RdR
d = J",m— (19)
S.RdR
0

The parameter @ represents the degree of power confined to the core
with respect to the total propagating power. This ratio is plotted in
Fig. 5, along with aop, as a function of a. We see that a.p increases
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with decreasing a and that ® reaches its peak very near a = 2. A
slightly larger value for ® occurs if the profile is Gaussian; that is,

e PN

This value of ® is the open circle in Fig. 5. We suspect that this slightly
larger value may be caused by the close matching of the field with the
index profile. The Gaussian index profile and the a = 2 profile yield
~40 percent increase in @ over the step-index profile case. This may
help in eliminating microbending loss in single-mode fibers without
increasing A.

VI. CORE-TO-CLAD RATIO

In the design and fabrication of single-mode lightguides, it is custom-
ary to fix the core-to-clad ratio at 0.1. This value seems appropriate
for step-index fibers. It is, therefore, quite important to investigate the
behavior of the evanescent field for graded-index fibers. From egs. 6
and 7, we can readily calculate the field intensity in the cladding for
different values of « and any radius.

For the cases of @ = 100, 2, and 1, including a Gaussian index profile,
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Fig. 5—Degree of field confinement in a single-mode fiber versus profile exponent a,
(solid line). The dotted line shows the optimum core radius corresponding to the a value.
The open circle indicates the maximum value of @ obtained from a Gaussian-like index
profile.
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Fig. 6—Normalized evanescent field intensity at R >> a versus normalized radius for
three different values of a and a Gaussian index profile. The horizontal dotted line is the
cutoff level at 7= 107"

the results are given in Fig. 6. To compare the core-to-clad ratios for
different o’s we define an intensity level I at R > a equal to 107" as
the cutoff point. This corresponds to R/a ~ 9.3 for a = 100. Accord-
ingly, Fig. 6 shows that there are substantial differences in those values
among the four cases. The clad-to-core ratio is reduced to 7.6 from 9.3
as a decreases to 2. The value for the Gaussian profile is very close to
that for a = 2. Finally, it is interesting to note that the value of I at the
core-cladding interface is ~0.13 for a« = 1 and 2, but it is ~0.28 for a
= 100 (see Fig. 4).
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VIl. VALIDITY OF GAUSSIAN APPROXIMATION FOR THE FIELD
FUNCTIONS OF HE,; MODE

As mentioned earlier, it is usually not possible to find an analytical
expression for the electromagnetic field functions for the HE. mode
in a single-mode fiber. One exception to this is the step-index profile.
Therefore, an approximate expression for the field distribution of the
fundamental mode is frequently used to determine the propagation
characteristics. A prevailing approximation is a Gaussian-like
field.'"'>" Thus, we can write

E, = Enexp[ -b (%) ] (21)

GAUSSIAN FIELD
l,"’APPRomMATrUN

Inin (1/]Ul)

/
—4 -3 -2 -1 0 / 4
In (R/a)

CORE CENTER

-2

-5
Fig. 7a—Comparison of Gaussian field distribution with exact field solutions. The

solid lines are the exact values, and the dotted lines are the Gaussian approximation for
m =2 and « = 100.
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where E, and b are constants. Taking a double logarithm of both sides
of eq. 21, we can rewrite it as

In ln(_i) =Indb+m ln(E), (22)
E a

I3
where
E,=E./E,.

We introduce the dimensionless quantity U to represent any one of
transverse electric or magnetic field components, for example, Er.
Equation (22) was plotted with m = 2 (precisely Gaussian) and
compared with the exact values. The results are shown in Figs. 7a, b,
and c for cases a = 100, 2, and 1. The solid lines are the exact values,
while the dotted lines are from the Gaussian approximation. In all
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Fig. Tb—Comparison of Gaussian field distribution with exact field solutions. The
solid lines are the exact values and the dotted lines are the Gaussian approximation for
m=2and a=2
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Fig. 7e—Comparison of Gaussian field distribution with exact field solutions. The
solid lines are the exact values, and the dotted lines are the Gaussian approximation for
m=2anda=1.

cases, the fields of the core region appear in the third quadrant of the
figures. Those in the cladding region are shown in the first quadrant.

For the core region, when a = 100 and it is near the core-cladding
interface, there is satisfactory agreement between the Gaussian field
function and the exact field function. There is poor agreement near
the center of the core; this is also evident from Refs. 11 and 12. When
a = 2 or 1 there is much worse agreement between the exact and
Gaussian functions in the core regions. For all values of a, the agree-
ment in the cladding region is extremely poor. It is interesting to note
that the slope of the exact field functions in the cladding for all «
values is close to 1. This indicates that the field is decaying exponen-
tially.
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Vill. SUMMARY AND CONCLUSIONS

From a numerical solution to Maxwell’s equations, we can accurately
describe the field distribution of the HE,; mode in a single-mode
lightguide. According to our calculated results, the fraction of power in
the core reaches its maximum value near a = 2. Thus, for a parabolic
profile or Gaussian profile, the fraction of power within the core is ~40
percent larger than that of a step-index core. On the other hand, it is
clear that the optimum core size increases with decreasing a value. A
linear index profile (a = 1) provides an optimum core size that is over
50 percent larger than that of a step-index core. Therefore, in designing
a single-mode fiber, it is important to remember that one should
choose a value of a to optimize certain characteristics, such as zero
total dispersion, TE and T™ cutoff, core size, manufacturing tolerances,
field confinement, or microbending loss.

The work of Marcuse shows that for the case of step-index, single-
mode fibers, microbending losses can either increase or decrease as a
function of fiber radius, depending upon the statistics of the axis
deformation function.'*'>'¢ He also concludes that single-mode fibers
with parabolic-index profiles may have smaller microbending losses
than single-mode, step-index fibers. If the distortion power spectrum
peaks sharply at low spatial frequencies, the advantage will be slight,
if it exists at all. However, for distortions with a wider Fourier spec-
trum, the parabolic-index fiber should clearly be advantageous. The
reason for this is that in the case of the distorted parabolic-index fiber,
the sources of the radiation field are distributed throughout its volume,
while in the case of the step-index fiber, they are located at the
waveguide boundary. The constructive interference among the volume
sources is never as pronounced as among the boundary sources.

It should be noted that when we increase the mode confinement we
reduce the field at the core-cladding interface. This reduces the
strength of the radiation sources because of microbending at this
boundary. Furthermore, if there is a barrier layer such as B;0s, then
bulk loss is reduced as well.

An additional discussion seems in order concerning the important
TE and ™ cutoff. As we have previously shown' for A = .002 and A =
1.33 um, the TE and T cutoff is 1.0 um when a = 100, and it shifts to
0.85 um for & = 1. Attempts to increase the field confinement by
increasing A, while keeping the core radius fixed, may move the cutoff
rather close to the operating wavelength. Instead of increasing A it
may sometimes be better to reduce a. The substantial increase in core
size when a« = 2 is an advantage as far as coupling to a source is
concerned. It has the important added advantage in that the clad-to-
core ratio is reduced.

Finally, we must conclude that the Gaussian field approximation is
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likely to be of value only in the core region of a step-index fiber. It is
always very poor in the cladding. However, the Gaussian-like approx-
imation with m # 2 may be useful for graded-index, single-mode
lightguides. For example, for o = 1 and 2 the m values for best fit are
~1.6 and ~1.8, respectively.
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