Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 60, No. 8, October 1981
Printed in U.S.A.

Efficient Realization Techniques for Network
Flow Patterns

By F. R. K. CHUNG, R. L. GRAHAM and F. K. HWANG
(Manuscript received January 20, 1981)

In this paper, we describe several new techniques for use in the
design of switched communications networks. These techniques apply
to the development of traffic routes which realize network traffic
flows in the context of an existing optimization method that assigns
these flows. The general ideas involve the careful selection of basic
variables and the successive reduction of the problem to one of convex
hull formation in Euclidean n-space and finding Hamiltonian cir-
cuits for a class of highly structured graphs. We include several
examples showing how these techniques are applied.

I. INTRODUCTION

Recently, R. H. Cardwell' proposed a switched communications
network design algorithm for the future stored program control net-
work. The networks under consideration are nonhierarchical in struc-
ture and take advantage of traffic noncoincidence in routing. The basic
objective of Cardwell’s algorithm is to design a minimum cost trunking
network which, by using an appropriate routing strategy, can carry the
necessary traffic load and, at the same time, meet the required grade
of service.

In this paper, we describe an extremely efficient method for produc-
ing an appropriate routing strategy. One of our original intentions was
to develop a mathematical framework into which dynamic routing
problems, such as those described later, could be placed. Indeed, it
seems likely that the approach used here may be valuable for exam-
ining other classes of such routing problems.

Il. BACKGROUND

In Fig. 1 we show a block diagram of Cardwell’s algorithm. Suppose
we wish to design a network using the algorithm. (See Ref. 1 for a

1771

ROUTING ENGINEERING

UPDATE NO

YES

Fig. 1—Block diagram of Cardwell’s algorithm.

more detailed description.) We start by initializing the blocking prob-
abilities of each link. The routing module selects a set of the most
economical paths for each pair of nodes and then assigns flow to the
paths. Routes, which are ordered lists of paths, are then formed so
that the probability that all paths in any list are busy is small enough
to meet the required grade of service. Then, by means of a linear
programming formulation, the routing module determines a network
flow which minimizes the total cost, considering link costs and traffic
noncoincidence. In the engineering module, the Erlang loss formula is
then used to fix the number of trunks required for each link.? In the
update module the ECCS method of Truitt is used to help minimize
the network cost.® The blocking probabilities for all links are then
updated. The whole process is now iterated until satisfactory conver-
gence is achieved.

Figure 2 shows a block diagram of the routing module for the unified
algorithm. A basic feature of our method is that actual routes are not
formed until convergence has been obtained in an earlier part of the
unified algorithm. Only after this occurs does the routing realization
submodule generate the routes and provide the appropriate routing
strategy. Refer to the work of Murray and Wong which gives efficient
heuristic algorithms for solving the linear programming problems in
this module.* The upper bound module is a new addition which helps

ASSIGNED PATH FLOWS

GENERATE UPPER LINEAR YES ROUTE
PATHS BOUND [| PROGRAM REALIZATION

Fig. 2—Modified routing module.

1772 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

the iterative procedure to converge more rapidly by setting stronger
upper bounds for the carried loads of the various paths chosen.

One of the questions concerning this algorithm was the problem of
synthesizing routes from the assigned path flows (the route realization
block in Fig. 2). The following is a discussion of an efficient technique
that accomplishes this.

lll. CYCLIC ROUTING

Consider the special case of two nodes A and B. Assume there are
n paths P, 1 = k < n, between A and B. The amount of traffic to be
carried on P, is denoted by x:, where we have normalized the traffic
load so that one unit of traffic is attempted between A and B. The
blocking probability for P is denoted by p.. We will call the vector
X = (x;, +++, xp) the desired traffic vector and p = (p1, ---, pa) the
blocking probability vector. (The X’s are actually outputs of the linear
programming module.)

For a permutation = of {1, 2, ..., n}, by the route R () generated
by 7, we mean the route in which the path P, is tried and, if blocked,
path P,y is tried. If that path is blocked, then path P, is tried, etc.

The first question is: what are the traffic flows on the various Py
when route R (w) is used? Let ¢, = 1 — p, and assume that = is the
identity permutation, i.e., #(k) = & for all k. Since one unit of traffic is
initially attempted on P,, the first path of R (7), then ¢; units of traffic
are carried on P, and p; units of traffic are blocked. These p; units are
now attempted on P.. Thus, p1g: units get carried and p, p. are blocked.
Continuing this process, we see in general that on P,
PPz -+ Pr—1qr units of traffic are carried and p;ps --- pr1pr are
blocked. We condense this information into the flow vector F(w) =
(Fi(m), Fom), «-+, Fa(m) = (q1, P1q2, P1P2q3, -+, P1DP2 - -+ qn). Note
in particular that the amount of traffic which is blocked is just
pip: +++ Pn, independent of .

The overall plan is to use each route R () a certain fraction a(w) of
the time, as 7 ranges over all permutations of {1, 2, ..., n}, so as to
achieve the desired traffic flow x; on each P,. In other words, if
possible, find a(7) with

alm) =0, Y a(n) =1

so that
=Y al(n) F(n),

where 7 ranges over all permutations of {1, 2, -.-, n}.
This is exactly the same problem as deciding whether x is in the

NETWORK FLOW PATTERNS 1773

convex hull of points F(7) (considered as points in n-dimensional
Euclidean space E") and, if so, finding a representation of X as a
convex combination of the F,. Note that all the F(x)’s are extreme
points of the convex hull. Since

EFk('fT) = I—Plpz ---p,.foranyqr,
k

then the convex hull is actually (at most) an (n — 1)-dimensional
polytope. Thus, any point in the convex hull can be represented as a
convex combination of some choice of n extreme points F(x).

As an example, we consider in detail the case n = 3. In Table I, we
list the six possible #'s and the corresponding F(7)’s.

We will denote the permutation = which sends i to (i) by the
sequence 7(1)7(2) --- 7(n). This should not be confused with the
ordinary cycle notation for a permutation 7 (which will also be used).
For example, the permutation of {1, 2, 3, 4, 5, 6} given by =(1) = 3,
m(2) = 5, m(3) = 6, m(4) = 4, w(5) = 2, m(6) = 1 can be written both as
7= (136)(25)(4) and r=3564 2 1.

Figure 3 shows a typical picture when these points are plotted in E°.
All six points lie on the plane F; + F; + F3 = 1 — p; pzps. We should
note here that we always assume 0 < p; < 1 for all &, since any path
with blocking probability one can be removed without affecting the
traffic flow, and any path which carries any traffic at all has positive
blocking probability (less than one).

In general, we would like to be able to decide if the desired traffic
vector X lies in the convex hull of F(#) and, if so, how to represent it
as a convex combination of F(7). A natural choice to consider is a
cyclic set of routes. For example, suppose we consider the three routes:

W1=123,
1'1‘2'—_-231,
W3=312.

Let us determine whether x is in the convex hull of these three points.
Of course, a necessary condition is Y, x; = 1 — p1p2ps. In any case,

Table |—Flow vectors for the

Casen =3
g F(=)
123 (g1, Mgz p1P2g3)
132 (g1, P1@2Ps, P1g3)
213 (q1p2, g2, p1P2g3)
231 (g1 p2p3, G2, p2gs)
312 (q\ps, D1@2Ds, G3)
321 (g1 p2p3, g2p3, q3)

1774 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

Fy+Fa+F3=1-pypap3

F3

Fig. 3—Geometrical representation of the flow vectors for the Case n = 3.

since the convex hull is 2-dimensional, any point in it is a convex
combination of some set of three extreme points. The cyclic sets seem
reasonable choices since they apparently span rather large portions of
the convex hull, although certainly not all of it. For example, in Fig. 3
we have shaded the convex hull of F(m), F(m), and F(ms). This is
much larger than, say, the triangle spanned by F(123), F(132) and
F(231).
Therefore, we are looking for coefficients a; such that
3

E ll',’F(‘JTj) = .f, (1)

=1
with
a =0, E a; = 1.
By eq. (1), the a; must satisfy
3
E tx,-Fk(w-,-) = Xk, k= 1, 2, 3.
=1
Expanding these equations using Table I, we obtain
a1y + axq1p2ps + asq1pa = Xy,
a1 p1q2 + a2q2 + aap1qaP3 = Xa,
o) p1p2qs + azpeqs + aags = Xa. (2)

NETWORK FLOW PATTERNS 1775

The determinant A of the system eq. (2) is given by

g1 qi1p2p3 q10s

P1qz q: P1q2Q3
P1p2qs P2Qa qs3

A=

1 p:p3 ma
=qqqs | ;v 1 pips
pip: p: 1

= qug2qa(1 — Plpzpa)ﬂ.
Solving for the ax, we have

X1 q1p2p3 q1pPs
X2 Q2 P1gQoQs
X3 p2gs qs

= [(x2/q1) — (paxs/q3)]/(1 — p1p2pa),
a2 = [(x2/q2) — (P1x1/q1)]1/(1 — p1p2pa),
as = [(xa/gs) — (p2x2/g2)]/(1 — p1p2p3).

1

a1=_

Letting
X,
op =2 g5 = DAk

qr qr

we see that the apare = 0if o, — 83 = 0,00 — 8 = 0,05 — §: = 0.
For general n, a similar calculation shows that the corresponding
system of n equations has determinant A given by

A=qiq2 -+ gu(l = p1pa +++ pa)"”!
and coefficient values

s = [(xe + 1/qr + 1) — (Psxr/qe)]/(1 — p1p2 -+« Pn)

for the cyclic set of routes

1234 .---n
234-.---n1

34-n3n12

ni2....n-1

where addition of indices is modulo n, i.e.,
a= (01— 8.)/(1— p1 -+ Pa).

Consequently, we succeed with this cyclic choice of routes if all the
ay’s are at least 0, i.e.,

1776 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

02=8,03=28s +++,0, = 8,1, 01 = 6. (3)
Note that ¥ a; = 1 follows at once from

in=1—pl...pn

and, in particular, note that the labeling of the P, is arbitrary. Any
arrangement of the o’s and §’s satisfying eq. (2) will give us a cyclic set
of routes which works, i.e., a set of routes which contains X in the
convex hull.

In order to find these efficiently, we can do the following: From the
given x; and p; form)

qr=1-= pp,
Xk

Op = —,
qr

8 =2
qr

We are just searching for a cyclic permutation (ji, f2, -++, ja) of
(1,2, .-+, n} such that

oj, = 8_,‘1, g, = 6_,’2, e, 0 = 3_,.‘“.

To find this, form the directed graph G which has as its vertex set the
set of paths P, and an edge from each P; to P; for which g; = ;. If in
G we find a Hamiltonian circuit (i.e., a circuit passing through each
vertex exactly once), say, P, P;, --- P; (P;), then by the definition of
the edges of G, we must have

g, = 6_,'], g, = 81;.,, e, 05 = (SJ.‘”,

which is precisely what we want.

Thus, we have shown that X can be realized from a cyclic set of
routes if and only if G has a Hamiltonian circuit. Of course, the
problem of finding a Hamiltonian circuit in an arbitrary graph is
known to be an NP-complete problem (see Ref. 5 for an exposition of
this term) and, therefore, almost certainly computationally intractable
as the graph becomes large. Fortunately, however, the graphs G are
far from arbitrary and, in fact, we can provide an algorithm for finding
Hamiltonian circuits in them which runs in time O(r log n).

First, we may assume without loss of generality (by a suitable
relabeling) that

G]ZGQE CRCR) 20,;.
Note that a necessary condition for the existence of a Hamiltonian
circuit in G is:

NETWORK FLOW PATTERNS 1777

Forallk 2=k=n,
|{i:ok28.'}|2n—k+2, (4)

where | X| denotes the cardinality of the set X. To see this, note that
if G has a Hamiltonian circuit, then for each &, there is at least one
edge from a vertex in {Pi, Pii, ---, Pn} to one in (P, Py, ---,
P;,}. Thus,

or = oy = 8-
for some ¢’, t” with ¢’ = k > t”. Therefore,
{i:en =8} D {:iz= k} U {t"},
which implies
|[{(for =8} | =n—Fk+ 2.

In fact, eq. (4) is also a sufficient condition for G to be Hamiltonian.
This can be seen from the following proof (by induction on n).

Suppose n = 2 and eq. (4) holds. Then clearly o; = 8, and G is
Hamiltonian. Next, assume that eq. (4) is sufficient for all such graphs
with n — 1 vertices. Suppose G has n vertices and satisfies eq. (4). Let
G’ be the induced subgraph on {P,, P;, .-+, Pn-} (where we have
assumed as usual that ¢, = 02 = - . = g;,). It is easy to see that G’ also
satisfies eq. (4). By induction, G’ has a Hamiltonian circuit, say,
P;P;, --+ P; .Since G satisfies eq. (4),

o, = 8 forsomei,l1=i=n-1

But also
or=o, =8, forallk, 1=k=n-1.

Thus,
P ... PP,P

) .
i+1

.. P_’"“l

is a Hamiltonian circuit in G and the induction step is completed. This
proves that eq. (4) is, in fact, a necessary and sufficient condition for
G to have a Hamiltonian circuit.

We summarize the preceding discussion in the following.

Algorithm for cyclic routing
Inputs: Paths P,, - - ., P, joining two given points A and B, and the
corresponding blocking probability vector p = (py, ++ , p») and desired
traffic vector X = (xy, +++ , X»).
Object: To find a permutation = of {1, 2, --- , n} satisfying
x=Y aF(m)

i=1

1778 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

with

=0, ai =1,
i=1
where F is the flow vector function and =; is the cyclic route i, 7 (i},
7@(@@), ---, 7™ (i) (i.e., P;: is tried first, then P, etc.).
Algorithm:
(i) Calculate
Xk DrXp

and 6, =
1_pk l—pk

or = forl=k=<n.
(Recall that we are always assuming that 0 < p; < 1 for all 2.)
(if) Relabel the o, if necessary, so that oy =g, = - .- = g,.
(iti) Setr— (1), «— 2, y«—8;,z« 1.
(iv) If 0; < y, go to (vii). If a; = y, insert i after z in the cycle
representation of .
(v) If y > 8, set y « 8;, z < 1. If y = §;, y and 2 are unchanged. If
i<n,seti< i+ 1and go to (iv).
(vi) The desired Hamiltonian circuit is P,P,q)Pyoq) - -+ Pon-ngy.
Define

e
1—p1p2 ...pn’

ok 1<=k=<n.

X can be realized by using route m: for the fraction a; of the time, 1 <
k=n.

(vii) X cannot be realized by any set of cyclic routes.

End.

Note that except for (i), in which n log: n operations are required
in the ordering of the n o/’s, all other steps require at most O(n)
operations. Thus, the computational complexity of the algorithm is
nlog: n + O(n) in time and O(n) in space.

We point out that the desired traffic flow vector x can often be
realized by more than one set of cyclic routes, i.e., the graph G might
have more than one Hamiltonian circuit (each of which corresponds
to a cyclic routing realization). The preceding algorithm will always
produce one such realization provided any exists at all.

Two examples

Example 1: There are five paths between two points A and B. The
desired traffic vector X and the blocking probability vector p are as
follows:

% = (0.185, 0.231, 0.220, 0.072, 0.242)
p = (0.8,0.7,0.6, 0.5, 0.3).

NETWORK FLOW PATTERNS 1779

Thus,
a = (0.924, 0.770, 0.550, 0.144, 0.346)
& = (0.740, 0.539, 0.330, 0.072, 0.104).

The corresponding graph G is shown in Fig. 4.

From the algorithm, we find the Hamiltonian circuit, P,P;P3PPs5,
corresponding to the permutation 7 = (12354). Therefore, we have the
values shown in Table II.

The routing strategy is to use route =; for the fraction a; of the time.

Example 2: There are also five paths between A and B. However,
the desired traffic vector X’ and the blocking probability vector p” are
slightly different from those in Example 1.

% = (0.191, 0.231, 0.220, 0.072, 0.242)
P’ = (0.7,0.7, 0.6, 0.6, 0.3).

Thus,
&' = (0.638, 0.770, 0.550, 0.144, 0.346)
& = (0.445, 0.539, 0.330, 0.072, 0.104).

The corresponding graph G’ is shown in Fig. 5.

From our algorithm, we find the Hamiltonian circuit, PoP1P3PsPy,
corresponding to the permutation =’ = (21354). Therefore, we have
the values shown in Table III.

It is easily verified that

5

=Y a/F(x).

i'=1

Py

Ps P2

Py Py

Fig. 4—Corresponding graph G for Example 1.

1780 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

Table Il—Values of coefficients
for Example 1

Coefficient
i Route m; a;
1 P\P,P,P;P, 0.897
2 P.P,P;P,P, 0.032
3 PsPs Py P\ P 0.012
4 PqPIP'.!P:lPﬁ 0042
5 PsPsP,P,P; 0.017

Note that there is another Hamiltonian circuit in G’, namely,
P,P,P:P;P,, which gives an alternative cyclic routing realization as
shown in Table IV.
Again, it is easy to verify that
5

=Y a'F(=l).

i=1

IV. CYCLIC APPROXIMATIONS

As we mentioned earlier, the desired traffic vector X determined by
the linear programming module can perhaps not be realized by a cyclic
set of routes. In that case, we provide a routing strategy for approxi-
mating ¥ by modifying our cyclic routing algorithm. This is most easily
explained in terms of an example (this one was taken from data
generated by a 28-point simulation of Cardwell®).

In this example, there are 8 paths from A to B. Table V shows the
appropriate data.

Note that path 1 assumes the full traffic load, i.e., x1 =1 = pu, which
can be achieved if and only if every call requested is first attempted on
path 1. In fact, this is a typical case of the existence of a least expensive
direct line between two cities in a large toll switching network.

Py

Pg Py

Py Py

Fig. 5—Corresponding graph G’ for Example 2.

NETWORK FLOW PATTERNS 1781

Table lll—Values of coefficients
for Example 2

Coefficient
i Route = al
1 P,P;P;P,P; 0.103
2 P,P,P;P; P, 0.730
3 P3P PPy Py 0.109
4 P,P,P\P3P; 0.042
5 P;PyP PPy 0.017

There are several reasons why this X cannot be realized by cyclic
routing. For example,

(i) Path 1 assumes the maximum possible traffic load, i.e., x; =
1 — ps; this cannot happen with cyclic routing.

(ii) Traffic flow is highly unevenly distributed; in particular, paths
3, 6, and 8 get no traffic at all.

(iii) Yixi#1—pip2 +++ Ps

Let us form the graph G as described in the cyclic routing realization,
namely, G has vertices {P,, Ps, -+, Ps} and there is a directed edge
from P; to P, if 8; =< g; (see Fig. 6).

Here, G has no Hamiltonian circuit (and, in fact, is not even
connected). In this case, we approximate X by taking a combination of
(possibly trivial) disjoint circuits in G. The precise way this is done is
described by the following algorithm.

Algorithm for approximate cyclic routing
(z) Calculate

L and &, = P

,1=k=n,
l—pk]_....pk

o =

(iz) Relabel the o;, if necessary, so that 0y =02 = ... = 0. If 0, =
0, define ¢ by a; > 0 = 0,4, if 0, = 0. Otherwise, define £ to be n.

(fit) Setm 1, je—1,i« 2, ye06,2« 1

(iv) If y > o, go to (vi). If y < o, insert i after z in the cycle
representation of ;.

Table IV—Alternative values of
coefficients for Example 2

Coefficient
2 Route =/ af
1 PP,P;P;P, 0.691
2 PoP3 PPy Py 0.339
3 P3P; PP\ P> 0.012
4 P,P\P, Py P; 0.042
5 P;P,P,\P,P; 0.017

1782 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

Table V—Example not realized by cyclic routing

_ Approxima-
)7 x a é tion
1 0.30696 0.69304 1.00000 0.30696 0.69304
2 0.23850 0.00084 0.00111 0.00026 0.01832
3 0.30935 . . . 0.00233
4 0.45325 0.07555 0.13818 0.06263 0.06989
5 0.28685 0.13343 0.18710 0.05367 0.12343
6 0.33891 . . . 0.00116
7 0.60274 0.09685 0.24378 0.14694 0.08959
8 0.48781 . . - 0.00196

(v) fy>d,sety &,z i.Ify=é;, yandzare unchanged. If
i <t goto (iv). If i = ¢, go to (vii).
(vi) Setje—j+1,meiy—08,z—ilfi<tseti<i+1and
go to (iv). If 1 = ¢, go to (vii).
(vii) The routing strategy is given by using m, 7, « -+ , 7, a8 follows.
Let

Bix = ok — 8z-10m,
Bix
Qi = for k € ;.
2 Bis
J
Use the route
TLi, 2,0, = *° Ts,i,
for the fraction
000, = Og,

of the time where

. L@y
Triy = Lin, me(in), g (i), -+ 1.

£

0 P
Py Py

o Fe

O Pg

Ps Py

Fig. 6—Corresponding graph G for the Cardwell example.®

NETWORK FLOW PATTERNS 1783

Continuing the example, we apply the above algorithm to the values
in Table V. This results in the permutations m = (1), m = (547), and
ms = (2). The corresponding a’s are given in Table V1. Note that we
only use 5 of the 8 paths and the total blocking probability is 0.0057.
If the blocking probability turns out to be too high to meet the required
grade of service, we can make use of the remaining three paths in
carrying the overflow by the modification shown in Table VII. The
traffic flow generated by this routing strategy is listed in Table V
under Approximation. Note that the approximation to the desired
traffic flow is quite good.

As we pointed out before, one of the main reasons we cannot achieve
the desired traffic flow exactly is that this is inherently impossible to
do using convex combinations of the available routes, because of
premature termination or inadequate constraints in the linear program.
In the next section, we examine a method for correcting this difficulty.

Table VI—Values of coefficients for
the Cardwell example

Route Coefficient
P,Ps;P,P:P, a0z 5032 = 0.13132
P1P4P7P5P2), 1002, 4032 = 0.27634
P\P;PsP.P; ay ag,7052 = 0.59234

Vil. UPPER BOUNDS

Again, we consider a set of paths P,, P;, ..., P, connecting two
points and having blocking probabilities p,, p2, - - , pn, respectively.
The traffic flow on path P; cannot exceed its capacity, namely, 1 — p;.
Thus, an immediate upper bound on x; for any realizable traffic flow
vector ¥ is

xi=l-p; forall i

Similarly, for any two paths P; and P;, the total amount of traffic they
can carry is 1 — p;p,. Thus, if x is realizable then

xi+x=1-— pip;

Table VIl—Values of coefficients for
modified routes of the Cardwell

example
Route Coefficient
P,PsP,P;P;PsPsP; 0.13132
P,P,P;P;P,P3PsPs 0.27634
P,P;PsP,P.PsP;Ps 0.59234

1784 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

More generally, for any set of k indices zi, « - - , i, if X1s realizable then

xi+ -+ xi, =1 —pi -+ Dip (5a)

Furthermore, for k& = n, eq. (5) must hold with equality, i.e.,
X1+ ---+x,=1—p1--+ Pn (5b)

It is interesting to note that conditions (5a) and (5b) are also
sufficient conditions for the realizability of X as a convex combination
of flow vectors F(m). The proof is not difficult. Basically, it is as follows.
Suppose ¥ is an extreme point of the polytope p defined by the
intersection of the half planes (5a) and the hyperplane (5b). Then x
must satisfy at least one of the equalities in eq. 5a with equality, say
without loss of generality.

x 1+ +x,=1-p1--- p, r<n. (6)

We now use induction on n and express the point ' = (x, -++ x,) as
a convex combination of the r! flow vectors associated with paths
P, ---, P.. We next consider all the inequalities in eq. (5) which
contain x, -+ - , x, as well as other x’s. Typically, we might have

X+ e F Xk Xk kX, S 1Pt PPyt Pip
By eq. (6)

X+ oo + %, =p1e- pl—pj - D).

Again, we can use induction, this time on the new variables y, =
xx/py +++ Pnr <k < n, which satisfy the required analogues of eqgs.
(5a) and (5b). Finally, we piece together these two convex combinations
to get the desired representation for Z. Since p is convex, then we are
finished.

Of course, in actual practice some appropriate subset of the ine-
qualities in eq. (5a) would be used in the upper bounding process (see
Ref. 1).

VIIl. CONCLUSIONS

In this paper we give necessary and sufficient conditions for deter-
mining whether a desired traffic flow vector (as specified by the linear
programming solution portions of the algorithm) can be realized from
a cyclic set of routes. The algorithm to verify the necessary and
sufficient conditions can be implemented in O(n log n) time. When the
conditions are not met, we propose an approximation method which
uses several smaller cycles rather than a single cyclic set of routes.

In connection with the results we described earlier, it would be of
interest to know what proportion of the volume of the polytope

NETWORK FLOW PATTERNS 1785

spanned by the n! flow vectors F(7) can in general be reached by cyclic
routes. For n = 3, it seems that we can always cover at least % of the
volume (actually, area in this case; see Figure 3). We have not yet
examined the general case. In fact, we do not even know whether or
not cyclic routes always span a positive fraction of the volume (inde-

pendent of n).

IX. ACKNOWLEDGMENT

The authors have benefited greatly from discussions with G. Ash, R.
Cardwell, V. Mummert, and other members of the Traffic Network
Planning Department, who not only provided us with our first exposure
to the general problem, but who were instrumental in extending and
integrating the techniques we describe into an overall trunk network
design algorithm which shows great promise.

REFERENCES

1. G. R. Ash, R. H. Cardwell, and R. P. Murray, “Design and Optimization of Networks
With Dynamic Routing,” B.S.T.J., this issue.

2. D. Bear, Principles of Telecommunication Traffic Engineering, London: Peter
Peregrinus, Ltd., 1976, p. 38.

3. C. J. Truitt, “Traffic Engineering Techniques for Determining Trunk Requirements
in Alternate Routing Trunk Networks,” B.S.T.J., 33, No. 2 (March 1954), pp.
277-302.

4. R. P. Murray and R. T. Wong, private communication.

5. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, San Francisco: Freeman and Co., 1979.

6. R. H. Cardwell, unpublished work.

1786 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

