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It is often difficult or expensive to measure cutoff calls, which are
usually caused by failures and malfunctions in some component of
the telephone network. Therefore, it is desirable to have an indirect
method for estimating the number of cutoff calls caused by equipment
failures in a switching system or facility. This paper discusses a
mathematical model that can be used to determine the cutoff call rate
in a network component as a function of the failure modes and failure
rates in the component, and the call holding time distribution. It
includes a discussion of a paradigm for developing reliability objec-
tives that directly reflect service as it is seen by end users. The
mathematical model, an M/M/c/c queuing system with server fail-
ures, is described. A strong law of large numbers and a central limit
theorem for the number of cutoff calls—accumulated either according
to the number of failures or over time—are developed. An example
from a switching system is given to show how these results are applied
in specific cases.

I. INTRODUCTION AND SUMMARY

The purpose of this paper is to describe a mathematical model for
the rate of cutoff calls caused by failures and malfunctions in telephone
equipment. The cutoff call behavior of almost any piece of telephone
equipment that serves callers can be analyzed using this technique,
but the primary applications we have in mind are large integrated
systems containing many components, such as switching systems and
transmission systems (trunk groups). The model relates the rate of
cutoff calls produced by failures in the equipment and its subsystems
to the failure modes in the equipment, their severity and frequency of
occurrence, and the call-holding-time distribution.

The interaction of telephone call requests with service equipment
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has often been successfully described using queuing models. Therefore,
it seems reasonable that a study of the effects of equipment failures on
the calls in a telephone system should be feasible within the context of
the classical queuing models of telephony. This is the approach
adopted here, with the additional feature that the servers may be
unreliable and subject to failures of a kind that cause the customer (if
any), in service at a position whose server fails, to be dropped from the
system at the time of the failure. Forys and Messerli have previously
studied trunk groups containing unreliable servers.! Their interest was
in characterizing the effect on arriving calls of one or more short-
holding-time (hence, very likely to be malfunctioning) trunks in the
group, whereas here the interest is primarily in the effects of unreliable
servers that may fail singly or together in groups, on customers who
are already in service.

The paper is divided into five sections. Section II contains a general
discussion of reliability objectives as they apply to telephone equip-
ment, and the paradigm for developing reliability objectives that
directly reflect service as it is seen by the customer. We observe that
the critical step that has been lacking is the ability to translate
equipment reliability into rates of occurrence and duration of cus-
tomer-perceivable problems, such as cutoff calls and network connec-
tion failures, that are produced by failures and outages.

In Section III, the structure of the mathematical models to be used
is described. The basic structure is one of a queuing system with server
failures, and, using this structure, the probability that a call in the
system will be cut off is determined. The way one describes mathe-
matically the system organization and failure modes is also covered in
this section. The probability of cutoff can be computed under quite
general conditions on the arrival process, the service times, and the
queue discipline, because it depends only on what happens after the
customer enters service.

Section IV describes a more specialized queuing model, in the
context of which certain limit laws for the cumulative number of cutoff
calls can be obtained. This is the M/M/c blocking system with server
failures, and both a strong law and a central limit theorem are obtained.
The eventual use of these limit laws, as the basis for constructing
statistical tests for determining compliance with objectives, is also
briefly discussed. Section V is devoted to the single-server case, and
explicit calculation of all parameters of interest.

Finally, Section VI gives an example of the application of this theory
to the estimation of cutoff call rates in a toll switching system. It is
important to be able to do this kind of analysis because one may wish
to predict cutoff call performance for a system that is still being
designed. This technique is then an example of an indirect, albeit
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approximate, method of estimating a cutoff call rate for which no
satisfactory direct method may be available.

Two appendices contain all proofs and other mathematical details
that, otherwise placed, would interfere with the flow of the text.

Il. RELIABILITY OBJECTIVES AND CUSTOMER SERVICE
2.1 General

It is currently recognized that the most desirable way to specify
performance and service objectives for telephone network equipment
is to use, in addition to economic information, considerations of how
the operation of this equipment affects service as it is seen by the
customer. In order to do this for reliability objectives, we need to
realize that customers do not perceive outages, failures, and malfunc-
tions as such. They are aware of them only insofar as they cause
service problems detectable by users who generally are not aware of
the internal operations of the telephone network. To achieve the goal
of determining equipment reliability objectives based on customer
needs and expectations, then, the following steps are required:

(i) Determine the customer-perceivable service effects of the reli-
ability problems to be controlled.

(ii) Determine the quantitative relationships between the fre-
quency and duration of reliability problems in the system or equipment
and the rates of occurrence and duration of the service effects found
in the first step.

(iii) Use these relationships to translate the customer service objec-
tives for the system, which control the customer-perceivable effects
stemming from reliability problems, into internal reliability objectives.

This paper focuses on the second step for a particular service effect:
cutoff calls.

2.2 Service effects

From the customer’s point of view, the primary service effects of
failures and malfunctions are cutoff calls, ineffective attempts (network
connection failures), isolation (line and toll), and transmission impair-
ments (excessive loss, noise, etc.). Cutoff calls will be discussed at
length below. Ineffective attempts, or network connection failures, can
be caused by failures and malfunctions because the unavailability of a
portion of the telephone network increases the network’s blocking
probability during the time this portion of the network is out of service.
If the failed equipment is a customer’s loop, or a part of the local
central office that disables the customer’s line functions, causing a
customer to be unable to communicate with the local central office,
the customer experiences line isolation for the duration of the failure.
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If the failed equipment is a toll-connecting trunk group from a cus-
tomer’s local central office, the customer experiences toll isolation,
meaning that toll calls to or from certain areas cannot be placed or
received.

Transmission impairments can be caused by malfunctions such as
equipment operating outside tolerances. These phenomena are well-
understood and measurement plans are in place to return relevant
information about transmission problems to maintenance forces so
that abnormal conditions may be corrected. These will not be discussed
further.

The rate of network connection failures and the duration of isola-
tions are determined primarily by the duration of the outage. Thus,
analysis of these service problems is helpful in determining reliability
objectives and maintenance policies to limit outage duration. We will
see below that the rate of cutoff calls is primarily driven by the rate of
failures, so that analysis of cutoff calls is useful mainly in determining
objectives for frequency of occurrence of outages. Of course, a compre-
hensive strategy for reliability management should deal with these
complementary facets of equipment reliability in a unified way, and
maintenance (service restoration and equipment repair) policies play
an important part here. An objective for frequency of occurrence of
failures, together with a maintenance policy, implies a certain total
outage time for the equipment. Similarly, an objective for total outage
time, together with a service restoration and equipment repair strategy,
limits the number of times outages may occur. Although this paper
deals only with cutoff calls and frequency of occurrence of outages, it
should be borne in mind that a unified approach to reliability objec-
tives, combining considerations not only of cutoff calls and outage
frequency but also of network connection failures and outage duration,
is most desirable.

2.3 Types of failures included
2.3.1 Causes of cutoff calls

A cutoff call is a connected (stable) call that has been terminated
other than by an on-hook by either party. The event of termination is
sometimes referred to as a cutoff, for short (as is a call that is so
affected). The terminology is intended to connote an unintentional,
unexpected interruption. International Telegraph and Telephone Con-
sultative Committee (ccITT) terminology refers to a cutoff-causing
failure in a switching system as a “premature release malfunction in
an exchange.”

Cutoff calls are caused by equipment failures (including recovery
actions), and other external factors, such as radio fades and in-band
talkoff (simulation of the 2600-Hz supervisory signal by a signal emit-
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ted by one of the parties). The termination takes place at the instant
the failure or other event begins, so the rate of cutoffs is influenced
primarily by the rate of failures (this is demonstrated in eq. (7)).
Cutoffs are related to reliability, then, just as ineffective attempts or
network connection failures are related to availability. To determine
the rate of cutoff calls seen by a telephone user, the cutoff call
performances of individual switching and transmission systems are
combined in a network model. A suitable model is one for the reliability
of a series system consisting of switching systems and trunk groups.

2.3.2 Scope of the model

The reliability problems covered by the model are those of failure
and repair of entire systems and parts of systems, and those failures
and malfunctions that may not completely disable a system or subsys-
tem, but that cut off calls when they occur. In the first case, systems
and subsystems will be considered to be either operating properly and
fully available for use, or not operating at all and unavailable. Cutoff
calls caused by improper operation, or operation outside tolerances, of
a system or subsystem can also be treated. The key notion is that any
event that causes cutoff calls when it occurs can be called a “failure”
for purposes of this discussion. The model can accommodate many
different “failure” modes, as long as the occurrence times and severities
of these events can be characterized sufficiently well that failure
processes and cutoff impacts (Section 3.2) can be assigned. In partic-
ular, the model could in principle include such events as radio fades
and in-band talkoff as “failure modes.” However, in studying cutoff
calls as related to equipment reliability, this is not recommended,
because these are external events, not caused by an equipment failure
or malfunction which could be controlled by preventive or corrective
action by the telephone company.

As for causes of failure, for the model there is no restriction on the
cause of the failure or malfunction. All that is required is that one be
able to list the kinds of events that cause cutoffs, and describe proba-
bilistically the times between incidents for each kind of event. The
scope of this work encompasses all failures which lead to cutoff calls,
regardless of cause, including hardware (component failure), software
and firmware faults, human intervention errors, office database errors,
and so on.

2.4 Uses of the mathematical model

This model finds three primary applications in system analysis and
design. First, it can be used to make the translation which allows
system cutoff call objectives to determine reliability objectives and
maintenance policies for switching and transmission systems. Relia-
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bility objectives should not be viewed as ends in themselves, but only
as means by which objectives for those aspects of customer service
that are affected by reliability problems can be met. Second, they have
value as predictive tools. System designers can use the probability of
cutoff as a figure of merit for hypothetical system designs, architec-
tures, and reliability characteristics. Systems that have not yet been
constructed can be compared for this aspect of service quality, and
this comparison can be a factor in deciding among competing designs,
for example. Its third major use is to provide a framework within
which to perform statistical tests, based on observed cutoff call rates,
to see whether objectives are being met. In systems where cutoff calls
are not measured, the models enable inferences to be made about the
cutoff call rate based on other kinds of data, such as reliability records
of equipment failures and malfunctions. Since cutoff calls are often
difficult or expensive to measure in a given system, these techniques
provide another, perhaps more attractive, means of understanding this
important service problem.

lil. MODEL DESCRIPTION AND PROBABILITY OF CUTOFF

In this section, we discuss the structure of the mathematical model
for cutoff calls and reliability of telephone equipment. It starts with an
outline-like guide to the sequence of results which make up the
mathematical model. As an aid to seeing where the details fit into the
overall scheme, this guide can be referred to while reading the remain-
der of the paper. A queuing model with server failures is covered, as is
the organization of the servers and failure modes. Physical interpre-
tation is given, and some probabilistic insights are added to help clarify
the ideas. Finally, the probability that a call that has been accepted by
the system will be cut off is computed.

3.1 Outline of results
3.1.1 Relation of probability of cutoff to equipment reliability

The first important result obtained is in Section 3.6, where the
probability that a call that has been accepted by the system will be cut
off is computed. This probability can be thought of as a figure of merit
for the system in question, and can be computed under weak assump-
tions about the arrival process, the holding times, and the interfailure
times. However, the probability of cutoff, by itself, is not enough to
give a good understanding of how a system will behave with respect to
cutting off calls. In particular, there are two important questions on
which knowing the probability of cutoff alone sheds no light. First,
does the observed cutoff call rate have any relation to the probability
of cutoff ? Second, what is the structure of the stochastic process which
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counts the number of calls cut off in a time interval? How much
variability can be expected in such a count, for example?

3.1.2 Measurements and consistent estimation of the probability of
cutoff

Section IV is devoted to an exploration of these questions for a more
specialized system, the M/M/c/c queue with server failures. In answer
to the first question, Corollaries 5 and 6 show that the observed cutoff
call rate converges to the probability of cutoff as given by eq. (8). This
means that, in this case, measurements can be relied upon to consis-
tently estimate the probability of cutoff, which may be controlled by
an objective. Also, when a prediction about the cutoff probability in a
new system is made, it can reasonably be expected that the cutoff call
rate shown by the system in operation will approach the predicted
value (subject, of course, to the quality of the inputs to the prediction).

3.1.3 Asymptotic distribution of the number of cutoff calls

In answer to the second question, Theorems 7 and 9 show that the
number of cutoff calls is, when suitably normalized, asymptotically
normally distributed. The asymptotic variance of the number of cutoff
calls [Theorem 8(b)], together with the asymptotic normality, suggests
the variability to be expected in the observed (normalized) number of
cutoff calls: about 63 percent of observations fall within one standard
deviation of the mean, etc. Finally, the asymptotic distribution of the
number of cutoff calls could be used as the basis for a statistical test
for determining whether the objective is being met, although this is
not accomplished in this paper.

3.2 Mathematical description of cutoff call model

The equipment will be modeled as a c-server queuing system. Calls
(requests for service) arrive at the system at times 11, 72, « - - . Denote
by 7 the time that the nth arrival enters service. If this is a blocking
system and all servers are occupied at time 7,, the nth arrival never
enters service, and for later convenience, 7, will be taken to be — in
this case. Throughout Section III the arrival process may be any
arbitrary point process. Each call has associated with it a (nonnegative)
holding time that it wishes to spend using the resources of the system.
It is assumed that a single call occupies only a single server in the
system during its entire holding time (this will be important later in
discussion of the organization of the failure modes). The holding times
are denoted by Y3, Y5, - -+, and are taken to be mutually independent
and identically distributed, and independent of the arrival process.

So far, we have just described an ordinary queuing model. The
additional feature that distinguishes the models including equipment
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failure is that the servers may be unreliable. That is, at certain
(random) times, all the servers, or certain groups of servers, may cease
serving the customers at their positions, and the affected customers
will be forced to depart prematurely from the system at these times.
Adopting the natural physical terminology for the mathematical
model, these customers will be said to have been “cut off.” Suppose
that there are m different failure modes in the system. That is, there
are m different ways in which various groups of servers (and possibly
all servers) can fail in such a way as to cause cutoffs at the instant the
failure begins. Any particular server may be affected by many failure
modes, and many different configurations of failed servers may be
included in a single failure mode. For example, suppose a switching
system having 1200 terminations (lines and trunks) is made up of ten
identical units, each serving 120 terminations. Then this system has a
failure mode at 120 servers (terminations)—this would not be counted
as ten separate failure modes if all these units had the same failure
characteristics. With each failure mode, associate a renewal process
listing the times at which failures of this type occur. These m processes
will be called “failure processes.” Let F' be the distribution of the
interrenewal times for the ith process, and let A; be the reciprocal of
the mean time between renewals, A, ' = [§ x dF'(x). Let the epochs in
the ith failure process be denoted by Si, S3, --- . It is assumed that
these failure processes are mutually independent and independent of
the arrival- and holding-time processes. The latter independence as-
sumption is reasonable when the arrivals have no prior knowledge
about the state of the system at the time of arrival.

Also associated with the ith failure mode is a number p; between
zero and one. The quantity p;: represents the probability that a call in
the system will be cut off when a failure of type i occurs, and is called
the cutoff impact of failure mode i. The severity of a failure of type ¢
is indicated by p:. If p; = 1 then the ith failure mode is an entire system
failure, and, with probability one, all calls in service are cut off when
such a failure occurs. If, on the other hand, p; is close to zero, then this
describes a minor failure, and fewer calls will be cut off when such a
failure occurs. We will take p; # 0 for every i since a failure mode with
cutoff impact zero can be ignored.

3.3 Correspondence with physical situation

Imagine a call using the resources of some telephone system (for
definiteness, say a switching system), in either the setup phase or the
conversation (stable) phase. Many elements of the system are used to
provide and maintain the conversation path that is the electrical
connection from one side (incoming or originating) of the system to
the other (outgoing or terminating). Failure of some of these elements
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may cause the call to be dropped from the system without an on-hook
by either party. In the queuing model, it is not these elements that are
thought of as the servers. Rather, a single call is thought of as
occupying a single server, such as a pair of terminations or a path
through a system, which may be subject to being disabled by the
failure of some of these elements. From this point of view, any
particular server may be affected by several failure modes.

3.4 Probabilistic interpretation

Before turning to the computation of the probability that a call that
has been accepted by the system will be cut off, the following proba-
bilistic heuristics are offered as an aid to clarifying the idea of the
model.

The event that a call in the system is cut off can be conceptualized
as a realization of a competition process. Suppose a call having holding
time Y enters the system at time £. At the entrance time ¢, m clocks
are set running, with the ith clock’s running time having the distri-
bution of the excess lifetime of the time between failures for the ith
failure process at time ¢. If the holding time Y expires before any of
the clocks run down, no failures occur and, hence, no cutoff can occur.
If one of the clocks runs down first (say the jth one), a biased coin
(P{heads} = p;) is tossed. If the coin comes up heads, the call is cut
off, and the experiment stops for this call. If the coin comes up tails,
the call is not cut off, and the experiment continues, with the jth clock
now running according to the distribution F-. For this call, the exper-
iment stops either when it has been cut off or when it departs normally
from the system.

The computation, which is performed in the next section, follows
this description by first determining the probability of no cutoff and
then subtracting from one.

3.5 Probability of cutoff

With this section, we begin following the outline of Section 3.1. The

sequence of results and their proofs is simply a mathematical transla-
tion of the description given in Section 3.4. Lemma 1, while of inde-
pendent interest, is used here only in establishing the main result of
this section, which is Theorem 2.
Lemma 1: Let {N(t): t = 0} be a renewal counting process with
interrenewal time distribution F. Then for t, y = 0 and k = 1, the
probability that there are k renewals in the interval [t, t + y] is given
by

J' 8t = s, y)dMo(s), (1)
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where

u+y
grlu, y) = f [Fralu + y—x) — Fr(u+ y— x)]dF(x), (2)

with Fy the k-fold convolution of F with itself, Fy equals V, the
standard right-continuous unit step function with jump at the origin,
and M, the augmented renewal function for the process. For k = 0,
the probability that there are no renewals in this interval is given by
Jo[1 = F(t+ y—s)ldMos).

Theorem 2: Let M; be the augmented renewal function for the defec-
tive distribution (1 — p) F",

i(x) = ¥ (1 — pi)*Fi(x), (3)

k=0

and let

&ilu, y) =1- F'(u) — p: J Mi(u + y — x)dF'(x). (4)

Then the probability that a call entering the system at time t is cut off
is given by .

i=1

o0 m t
1- J [H J gilt — s, y)dMﬁ(s)}dH(y)_ (5)
1] (1]
In the limit as t approaches infinity, this becomes
1- j I1 [1 - NP:‘J gilu, y)du] dH(y). (6)
o =1 0

If the arrival process is independent of the remaining queuing and
failure processes, the probability that the nth call will be cut off, given
that it enters the system, can be computed by integrating eq. (5)
against the distribution of 7;. In case all the failure processes' are
stationary Poisson processes, the probability of cutoff is constant and
does not depend on the entrance time of the call.

Corollary 3: Suppose Fi(x) =1—e ™ fori=1, ..., m. Then every
call in the system has probability of cutoff given by

i=1

1 —f exp(— ¥ AiPiJ’)dH(y). (7)
0

If, in addition, the call-holding-time distribution is exponential,
H(y) =1 — e, the probability of cutoff reduces to
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0=——>— (8)
v+ 2 )\,‘pg
=1

These are obtained by appropriate substitution in eq. (5).

3.6 Discussion

The probability that a call already in the system will be cut off has
been computed for a queuing system with unreliable servers. The
arrival process and queue discipline may be arbitrary; this is a reflec-
tion of the fact that the event of cutoff depends only on what happens
after the call enters the system. The limiting argument used to estab-
lish eq. (6) can be carried out even if the arrival process depends on
the service time process (as in systems with state-dependent arrival
rates), although the probability that the nth call will be cut off is more
difficult to compute in this case. We have assumed the service times
are independent and identically distributed. This could be relaxed, but
for most ordinary message telephone service applications it does not
seem necessary to introduce this complication. As can be seen from
eq. (7), great simplification results if it can be assumed that the failure
processes are stationary Poisson processes. In practice, this assumption
has often been used because, in studying large systems from a great
distance, data that would enable one to characterize the failure proc-
esses in the system in more detail are often not available. When the
conditions that obtain in the physical situation are difficult to identify
exactly, it may not be possible to determine the information needed to
make successful application of a more general model.

IV. A MARKOV MODEL AND SOME LIMIT LAWS
4.1 Introduction

In Section IV we deal, for a more specific queuing system, with the
second two items in the outline in Section 3.1. There are many ways
to particularize the general considerations discussed in Section III,
depending on the underlying queuing model. For purposes of estima-
tion of cutoff call rates in telephone systems, certainly it is desirable to
allow the most general model possible. This might be a transient
analysis of a queue in which, in addition to the exogenous arrivals,
there may be feedback and retrials by rejected and cutoff customers,
and general service and interfailure times. Unfortunately, analytic
treatment of such a complicated model is not within reach. The
asymptotic analysis of such general queues, even with perfectly reliable
servers, is accomplished only approximately in many cases.
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Here, instead, we will study about the simplest of stochastic models
for this situation, the M/M/c/c queue with stationary Poisson failure
processes. This decision results from informal consideration of the
tradeoff between realism of description on one hand and possibility of
successful execution of analysis on the other. Even in this simple case,
there are many interesting difficulties. For example, solving numeri-
cally the Chapman-Kolmogorov equations (Appendix A) for the invar-
iant distribution of the embedded chain (Section 4.3) is likely to be
easier than obtaining qualitative insight through analytic solution of
these equations. No representation is hereby made that the Markovian
assumptions are particularly accurate in representing reality, or that
the asymptotic results obtained well describe transient behavior. Nev-
ertheless, the assumptions are not such gross distortions of the physical
situation that they render such models useless, and the study of
simpler models has several important virtues to recommend it. Solu-
tions can be obtained, the general features of the underlying situation
remain visible without the technical details that sometimes obscure
the main ideas, directions for the generalizations that are likely to be
successful on more complicated models are suggested, and, last but not
least, results can be checked against data to determine if more general
models are required. The Markovian model to be described has been
successfully used in the switching systems area, and predictions made
from it have shown reasonable agreement with data. This is not to say
that further refinements of these models would not be valuable. Such
refinements would be interesting and useful advances in the state of
the art.

4.2 Specifications and notation

In the M/M/c blocking system, let a be the arrival rate, » be the
service rate, and let {A(¢): ¢ = 0} denote the arrival process. The m
failure processes are all stationary Poisson processes with rates
A1, - -+, Am, all positive. (In the example in Section 3.2, the failure rate
for the 120-termination failure mode would be ten times the failure
rate of a single 120-termination unit.) The system will be assumed to
recover instantaneously from failures, so that the only effect that a
failure has is to cause some of the calls in the system to depart
prematurely, before the completion of their intended holding times.
Failures, therefore, have no effect on calls that are not already in the
system. For example, they do not cause an increase in the blocking
probability of the system. Clearly this is only an approximation to the
true situation, but it seems to produce acceptable results, for several
reasons. First, in practical cases, the ratio of average outage time to
mean time between failures is usually small; here this small number
has been replaced by zero. Secondly, in this approximation the total
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number of cutoff calls tends to be overestimated because more calls
are accepted into the system than would be if the failure durations
were positive. This means that more calls are exposed to the possibility
of being cut off. Again, if the times between failures are long compared
to the outage times, the cutoff call rate (number of cutoff calls divided
by number of arrivals or number of accepted calls) will not be badly
distorted by this approximation.

The failure processes interact with the queuing processes in the
following way. Let B(¢) denote the number of busy servers at time ¢,
t = 0, including the effects of failures (as below), and let C(¢, r) be the
number of busy servers at time ¢ in an ordinary (no server failures)
M/M/c/c system when there are r in the system at time 0. Then,
whenever a failure of type i occurs, the probability that a call in the
system will be cut off is p;, and the cutting-off events for each of the
calls in the system at that time are assumed to be mutually independ-
ent, as are the cutting-off events corresponding to different failure
times. (Simultaneous failures occur with probability zero since the
distributions of the interfailure times are all continuous.) This models
a situation in which the calls in service at any time are more or less
regularly spread out over the servers in the system, and all parts of the
system subject to a given failure mode are equally vulnerable. The
independence, on the other hand, is invoked to reflect the fact that
this regular distribution obtains only perhaps in a very broad, average
way, and at any given failure epoch, the server occupancy might be
quite irregular. At each epoch in each failure process, then, the number
of calls cut off is a binomial random variable with parameters given by
the number of busy servers at that epoch and the cutoff impact of that
failure mode. That is, at time S;, if B (S:) = &, the number of calls cut
off is binomially distributed with parameters 2 and p;. Sometimes
many of the calls in the system will be carried by the unit (group of
servers) experiencing the failure; sometimes proportionately fewer calls
will be carried on this unit. The binomial model provides an approxi-
mate description of this situation. This is a compromise between a
very detailed model that keeps track of individual server busy and idle
times and the individual identities and times of failure of server groups,
and a deterministic model having the number of cutoffs at S equal to
piB(S%), which is unrealistic for being too regular.

4.3 The embedded Markov chain

As defined, B (¢) is a pure jump process; even with cutoffs caused by
failures accounted for, all sample paths can be assumed to be contin-
uous from the right. Pool the failure processes and denote the resulting
stationary Poisson process by {Si, Sz, ---}. Define B, = B(Sy)
(n=1,2, --.); B, is the number of busy servers just before the nth
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failure of any kind. The sequence {B,: n=1,2, ...} is a Markov chain,
called the embedded chain, with state space equal to {0, 1, ---, c}.
The survivors in the system at time S have the same exponentially
distributed service times as new arrivals do, and their number is
determined only from B,. The number of arrivals in [S,, Sn+1] is
independent of the number of arrivals before S,. Note that the strong
Markov property is not required of the arrival process, for while the
failure epochs are random times, they are not determined by the
arrival process because of the assumed independence.

4.4 Properties of the embedded chain

Let W, denote the number of calls cut off by the failure that occurs
at time S,.. Then, for each n, the conditional distribution of W, given
B,, is a mixture of binomials:

1 m
P{(W,=w|B.=b) = : _;1 Ai (i) p¥(l—p)t,

b=0---,ccw=0,...,b (9

Here A;/A is the probability that the nth event in the pooled process
comes from failure process i (A = A; +- - -+ An). Denote the right-hand
side of eq. (9) by qow.

Finally, note that the W,’s are conditionally independent, given the
B,’s, because of the independence of the cutting-off events correspond-
ing to different failure times. That is,

P{m1=H)1, '00,mn=wﬂ1Bi]=b1l "'1Bin=b"}

= [T P(W, = w|B; = b} (10)
k=1

for all positive integers n, iy, + - , in.
The properties of the Br.-process can be most readily obtained from
the fundamental representation

Bn+1 = C(Sn+l - Sm Bn - Wn),

where the equality is equality in distribution. That is, the number of
busy servers at (just before) S.:; has the same distribution as the
number of busy servers in an ordinary (no server failures) M/M/c/c
system running for time S..; — S, with B, — W, (the number of
survivors in the system at time S;') calls in the system at time zero. It
has already been observed that {B.:n = 1, 2, ---} is a Markov chain;
straightforward conditioning arguments and appeal to the indepen-
dence of the failure and queuing processes establish that its transition
probabilities are given by
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P{Bps1=j|Bn=1}

N A : o
=Y ¥\ (k) poR( - p,)'*f P{C(x, k) = j}e™dx. (11)
0

These are independent of n, so the chain has stationary transition
probabilities. Denote them by p;;. We remark that if p, = 1 for every
r, these reduce to

pij = J’ P{C(x, 0) = j}Aedx,
0

so that {B,} are mutually independent in this case. Also, if the failure
processes are not stationary Poisson, but are, say, renewal, then the p;,
are still well-defined, although they take a different form. In particular,
they then depend on n, and while {B,} is still a Markov process, it
does not have stationary transition probabilities. Some of the following
results (particularly those about recurrence) continue to hold in this
case, but limit laws are harder to obtain.
Riordan gives the distribution of C(x, k):?
NN EYAN

P(Cls k) =) =5 (): ﬁ)

¢! i e  DurdDj;(r) rx
* J! PA riD.(r)Di(ri + 1) e, (12)
where p = a/v, the D, are related to the Poisson-Charlier polynomials
¢n (Ref. 3) by D.(s) = p"c.(—s), and r, .-+, r. are the roots of
D.(s + 1). These roots are all real and negative so that the e™* all
vanish as x — o, and the P{C(x, k) = j} approach the well-known
Erlang equilibrium probabilities, independent of k. Equation (12)
shows that P{C(x, k) = j} is an analytic function of x that is not
identically zero, so that its zeros, if any, are isolated. Thus, there is a
set of positive measure in [0, [ on which P{C(x, k) = j} > 0. This
means that [§ P{C(x, k) = j} exp(—Ax)dx is positive for every j and
k, and so p;; > 0 for every i and j. This positivity shows the {B,} chain
to be irreducible and aperiodic. Since the chain is finite, all states are
positive recurrent (Ref. 4, Section 1.XV.6).

4.5 The induced Markov chain

The two-dimensional process {(B., Wx):n = 1,2, --.} is again a
Markov chain whose transition probabilities are given by rys, =
Qo Pbbs where s; = (b;, w;). That is,

P{(Bn+1, Wn+1) = sjl (Bn, Wn) = si} = rs,—sj = qtp}w} pbib1~
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Use is made here of eq. (10). This chain will be called the induced
chain.

It is desirable for the induced chain to inherit the properties of the
embedded chain discussed in Section 4.4. To obtain this, it would be
sufficient to have ¢;; > 0 for all i and j. From eq. (9), this is satisfied,
unless p; = 1 for every i. The case p; = 1 for every i is a trivial special
case of what is to follow, because then W, = B, with probability one,
for every n. Also, for large systems with many failure modes, this case
is of little interest. For these reasons, we will suppose that there is at
least one i for which p; < 1. Under this condition, r,, > 0 for every i
and j, and since the induced chain is also finite (its state space is
{tyw):b=0,1,.--,c,w=0,1, ..., b}), it is irreducible, aperiodic,
and positive recurrent, just as the embedded chain was.

4.6 Stationarity

Since service objectives represent long term goals for system oper-
ation, it is appropriate to compare the equilibrium features of the
model against the service objectives.

Since both the embedded and induced chains are positive recurrent,
they are both ergodic. The embedded chain has an invariant distri-
bution {ux:k =0, ---, ¢} given by

up = ]jInp E:)s

n—om
independent of i. As usual, the parenthesized superscript indicates
the n-step transition probability. Furthermore, u; > 0 for each &,
Yi-o ur = 1, and ux = Y=o uipir (Ref. 4, Section 1.XV.7). To say that
the system has been in operation for a long time can be expressed by
taking {uo, +--, u.} to be the distribution of the number of busy
servers at time zero. With this choice of initial distribution, {B.}
becomes a strictly stationary process.

The induced chain also has an invariant distribution, denoted by
(Voo ) Vieor). It is easy to see that v is given by veuw = Geuwlts,
b=0, ---,c;w=0, ---, b. The induced chain can also be made
strictly stationary by taking its initial distribution to be its invariant
distribution.

4.7 A strong law of large numbers

The quantity of basic interest in this study is the cumulative number
of cutoff calls, x, = W1 + ... + W,. This section is devoted to
describing a strong law of large numbers for x, and some of its
ramifications. This addresses the second item in the outline of Section

3.1.
In general, { W,:n = 1, 2, - ..} is not a Markov process. However, it
can be written as a functional of the induced chain. The appropriate
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functional to choose is 7, the projection onto the second coordinate:
W, = ma(B,., W,) for each n. m is clearly a measurable function on the
o-field of the induced chain, and so the limit theorems of Sections V.5
and V.7 of Ref. 5 may be applied to { W,}.

Let Z(t) be the number of calls accepted by the system in [0, ¢],

Z(t) = i Vit =),
n=0

and put Z, = Z(S,).
Theorem 4: x./n converges with probability one to § lim (EZ,/n).

Corollary 5: xn/Z. converges to 8 in expectation and with probability
one.

The proofs of these results can be found in Appendix B.

Now this is not quite what is required for applications. Generally,
one does not count either carried calls or cutoff calls indexed by the
times of failure S, S, --- . Rather, what one does is keep a running
count of these items indexed by a continuous time parameter. Accord-
ingly, let x(¢) denote the total number of calls cut off in [0, ¢]; one has

X(t) = E W, V(t - Sn) = Xmax(n:S,=t) -
n=1

Corollary 6: x(t)/Z(t) converges to 0 in expectation and with prob-
ability one.

Applications of these results have been discussed in Section 2.1. In
a stable Markovian environment, Corollary 6 says that the natural
estimator of the probability of cutoff in the system, namely the cutoff
call rate, is strongly consistent. The implication for measurement is
that for systems in operation, measurements can be relied upon to
estimate the underlying cutoff call rate that is characteristic of the
system. The extension of these results to other than Markovian queues
would provide even better approximations when the environment can
be more precisely specified. The implication for system design is that
once it is configured with certain failure modes, etc., its cutoff call rate,
in the appropriate environment, will be as predicted, subject to sets of
probability zero and the quality of the failure rate predictions.

Before turning to central limit theorems, a partial indication of the
rate of approach to steady state will be given.® For this purpose,
assume that ¢ = o (so that all arriving calls immediately enter service)
and that p; = 1 for all i (so that every time a failure occurs, all calls in
the system are cut off). Then it can be shown that
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f x(t) X(t) A .y 1-— e—(i\+y)t
= = 1- 1-——|. (13
E(Z(t)) E(A(t) ey e T
Eq. (13) can be used to estimate relative errors after different times.

-1
Let R(t) = ( A ) [ A - E(L(t—))], then 100R(¢) is the

Aty A+v A(t)
x(2)

—— ] as an estimate of @ after ¢ time units.
A(t)

percentage error in E(
Using eq. (13),

1
= —At _ M 1- —(A+w)t . 14
R(t)=e +_—-__(}\+v)t(1 e )(l1—e ) (14)
Measuring time in minutes, with A = 0.003 (about three failures per
day) and » = 0.166 (six-minute average call holding time), the percent-
age errors, from eq. (14), are 85 after one hour, 35 after six hours, 12
after 12 hours, and 2 after 24 hours.

4.8 A central limit theorem

The existence of an asymptotic normal approximation for the cu-
mulative number of cutoff calls makes the construction of statistical
tests easier. In this section, we discuss these approximations in discrete
and continuous time. This addresses the third item in the outline of

Section 3.1.

The central limit theorem for x. follows directly from the central
limit theorem for functionals defined on a Markov chain, for example,
see Theorem V.7.5 in Ref. 5.

Theorem T: There are positive numbers p and o for which

mp{us x} = ®(x),

where ®(x) is the standard normal integral.

This requires little discussion: the condition (Do) and the moment
condition of theorem V.7.5 of Ref. 5 are satisfied because the induced
chain is finite and positive recurrent. The interesting results are the
values of the centering and scale parameters It is easy to see that

p=EW = Z p,EBl E Zp Z bu, = Z p1 Z —, (15)
i=1 b=0 1=l
where mg; is the mean first passage time from state a to state b in the
embedded chain. (If @ = b, this is a mean recurrence time).

Theorem 8(a): The asymptotic variance of the partial sums of the
Bi's is
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1 : ¢ & ab  (my g b
lim=-Var{ ¥ B:s|= 3% ¥ - 2Mas | + Y —, (16)
n—o N k=1 a=0 b=0 MaalMlbs \ Mbb b=0 Mbb
where m 'y is the second moment of the recurrence time for state b in
the embedded chain.
Theorem 8(b): The scale constant in the central limit theorem is

m Ai c b m A,‘ c b2
=Y <p(l—-p) LT —+ ¥ +p' Y —
b=0 Mbb

i=1 i=1 b=0 Mbb

m Y. 2 ¢ ¢ (2)
+(E%pf) ¥y ab (ﬂ-zmab). (17)

i=1 a=0 b=0 MaalMbb \ Mbb

We have written the centering and scale parameters in terms of the
moments of the recurrence times for the embedded chain. These can
be found by solving for the invariant distribution of the embedded
chain (Appendix A). The mean recurrence times are then just the
reciprocals of the elements of the invariant distribution, and the second
moments can be obtained from the first moments by using Theorem
1.11.7 of Ref. 7. The mean first passage times mi; can be found by
solving another system of linear equations, for example see Theorem
6-7A of Ref. 8. For even moderate values of c, it appears that the
wisest thing to do in applications is to solve the system of egs. (25)
numerically. The single-server case is treated explicitly in the next
section, and it can be seen that even in this case, the computations are
extensive.

In continuous time, the central limit theorem looks slightly different.
This is because counting the number of cutoffs according to the
number of failures, rather than over time, introduces a random time
transformation with scale A.

Theorem 9: The distribution of the normalized cumulative number
of cutoff calls over time,

x(t)\/—ﬁk,ut, (18)
o

converges weakly to the cumulative distribution function (cdf) of a
normal random variable having mean zero and variance 1 + p*/a”.

V. THE SINGLE-SERVER SYSTEM

In this section we discuss in detail the results of the previous sections
as they apply to the single-server system. We will explicitly solve for
the invariant distributions and, thereby, be able to represent the
parameters of the limit laws in terms of the arrival, service, and failure
rates.

If there is only a single server, we will suppose that there is only one
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failure mode, of rate A and cutoff impact p. Certainly if all failures are
complete failures, p = 1. We can allow p < 1 to account for malfunctions
which may only sometimes cut off calls. Other failure modes with
other severities could be allowed. Solving the Chapman-Kolmogorov
system of egs. (25) and making use of Theorem 10 we obtain

DA+ v a

= +r+a T T A vt a (19)
From eqs. (11) and (12) we obtain the transition probabilities
v+
Poo A+rv+a
_ a
Po A+rv+a (20)
v+ pA
pm_:\+v+a’
_(1-pA+a
Pu A+rv+a

The mean first passage and recurrence times can then be obtained as
indicated in Section 4.8:
_PAtr+a
DA+
At r+a
moy =———m
@ (21)
A+r+a
PA+ v
PA+rv+a
" .

Let of be the variance of the recurrence time for state 1. By using
Theorem 1.11.7 of Ref. 7, we obtain
A+ (2 —pA+rv+
of = (PA + »)(( zp) v+a) 22)

o

my =

mn =

Since ¢® from Theorem 8(b) reduces to pofi/mf in case ¢ = 1, we
obtain

52 Bpa(p?\ +r)((2—-pA+rv+a)

(PA+rv+a)® (23)
This is the scale constant for Theorem 7. The centering constant is
pa
p=—=T—"]
PA+r+a
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VI. APPLICATIONS

These results have been applied at Bell Laboratories to predict the
cutoff call performance of certain toll switching systems, and to eval-
uate reliability objectives for these systems on the basis of a determi-
nation of whether the cutoff call objective for the system can be met
if these reliability objectives are followed.

In one such example, a system terminating 22,000 trunks was con-
sidered. Thirteen failure modes that were significant for cutoff calls in
the system were identified. Table I lists, for each failure mode, the size
of the unit failing or the number of terminations affected by the failure,
the failure rate expressed as a mean number of failures per year, and
the cutoff impact. For most of the failure modes, there was more than
one type of unit or subsystem of the given size. The failure rates of all
the units or subsystems of a single size were added together to obtain
the failure rate for that failure mode. This is done because we are going
to assume uniform distribution of calls over terminations, as discussed
in Section 4.2. If more precise information on the distribution of calls
over terminations or location of failed units is available, it may be
more reasonable not to pool, but to carry individual information, as
appropriate.

Every stable call in the system must occupy two terminations, one
incoming and one outgoing. For a particular call, the failed unit or
subsystem may be on the incoming side of the switch, the outgoing
side, or both, or neither. Then the estimation of the cutoff impact of
a failure mode is like a problem in sampling without replacement in
which one counts the number of paths through the switch that contain
the failed unit or subsystem. If the total number of terminations on
the switch is N and the number of terminations affected by a failure
of type i is n;, then the cutoff impact for failure mode i is

Table |—Failure modes, frequencies, and cutoff
impacts for example in Section VI

Failure Terminations

Mode Affected Failures per Year Cutoff Impact
1 22,000 0.248 1.0
2 5,500 0.195 0.438
3 4,080 0.077 0.337
4 2,040 0.0004 0.177
5 1,920 0.355 0.167
6 840 0.482 0.075
7 512 10.819 0.046
8 128 66.667 0.012
9 120 0.263 0.011
10 32 22,727 0.003
11 16 20.0 0.0015
12 8 217.391 0.0007
13 1 1030.0 0.0001
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__n;(2N—na— 1)
‘TONWN-1)

Using eq. (8) we find that in a Markovian environment, the probability
that a call entering the system will be cut off because of one of these
failures is 0.24 X 10™*, when the mean call-holding time is six minutes.
Based on this, it was concluded that a sufficient margin of safety
existed to ensure that the system’s cutoff call objective would be met,
even after allowing for possible errors in the specification of failure
modes and rates, and other possibilities that could not be accounted
for in the analysis.

(24)
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APPENDIX A
The Invariant Distributions in Discrete and Continuous Time

As pointed out in Section 4.8, the centering and scale constants for
the strong law and the central limit theorem are all written in terms of
the mean first passage and recurrence times for the {B,} process. It
appears from eqs. (11) and (12) that use of theorems 1.7.1 and 1.6.1 of
Ref. 7 to find the invariant distribution of {B,} will require significant
effort. In this appendix, we will derive the Chapman-Kolmogorov
equations for the {B(¢)} process. Finding the invariant distribution of
the {B(t)} process by solving these equations is easier than solving for
the invariant distribution of the discrete-time process using the tran-
sition probabilities in eq. (11). It is also a more attractive procedure
numerically, because the matrix of coefficients is upper triangular with
only a single nonzero subdiagonal, consisting of all a’s. Finally, these
results are tied together by Theorem 10, which indicates that these
two invariant distributions are identical.

Let r,(¢) = P{B(t) = n}. Then for A = 0, we can write r.(t + h) =

Yi-o P{B(t + h) =n|B(t) =k, S;& [t, t + h], YV j} P{B(t) = k, S;&
[t,t+ AL, Vi) +Yio P(B(t+h)=n|B(t)=Fk S;E[t, t+ h],3Ij}
P{B(t)=k S, [t t+h],3j).
To simplify the following display, in the first sum, all terms involving
both an arrival and a departure in [¢, t + 4] have an A” in them, and
so can be left off. Similarly, in the second sum, because of the A that
will appear in front, all terms involving either an arrival or a departure
can be left off. We obtain, omitting terms o (k) or higher,
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ro(t + k) = (1 — AR)(1 — ah)[ro(t) + vhri(2)] + AR é grar(t),
k=0

ra(t + h) = (1 = AR)(1 — ah)[(1 = nrh)ra(t) + (n + 1)vhraa(t)]

+ (1 — AR)ahra—i(t) + Ak Z gerare(t),1=n=c-—1,

k=n
re(t + h) = (1 = AR)[(1 — cvh)re(t) + ahrei(t)] + Ar(1 — cvh)geor<(2).

Collecting terms, simplifying, dividing by A, and letting h — 0, we
obtain

ré(t) = —aro(t) + vri(t) — A[ro(t) — k): qrere(t)],
=0
ri(t) = —(a + nv)ra(t) + arn—(t) + (n + 1)vrn+i(t)

= Mra(t) — kz Qrpate(f)], 1=sn=sc—1,

ri(t) = —cvre(t) + arci(t) — Alre(t) — geo re(t)].
In equilibrium, we look for solutions with r; = lim P{B(¢) = j} and
t—»oa

lim r/(¢) = 0. Then these equations become

t—o0
c

O0=—(a+ANro+vri+A Y gur
k=0

O=ar,1— (@+nv+Ar.+ (n+ Drrpyq
+A E Qrr-nThl=n=c— 1 (25)
k=n
0=arc1 — (cv + A — Agco)re

c

1= 2 Tk,
k=0
where the condition that {ro, -« - , 7.} be a probability distribution has
been added. These are the equations used to solve for the invariant
distribution of the continuous-time process. Writing p = a/p, X' =
A/v,and r = (ro, -+~ , Te)7, the first ¢ + 1 equations can be written in
matrix form as

[M(p) + NQJr =0,

where M(p) is the standard matrix for the M/M/c/c birth-death
process (Ref. 9, Section 2.1), and
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0 qu gz - . Qec

0 gu—1 g= s Geeml
oo 0 0 et e
. . . 0o . ga
0 0 0 0 0 go-—

The equations in this form show clearly that when A = 0, we recover
the ordinary M/M/c/c system, as expected. The M(p) matrix is tridi-
agonal and @ is upper triangular, leading to the attractive form for
numerical work mentioned above.

It remains to show that the two invariant distributions, for contin-
uous time and for discrete time, are identical.
Theorem 10: r;=u;, j=0, --- , c.
Proof. Define B*(t) = Ya-1 BoI(S, =t < Sn+1), where I denotes the
indicator function. Since {S,} is a Poisson process, B*(t) is a Markov
process which will be thought of as a semi-Markov process embedded
in the continuous-time busy server process. The distribution of the
time between transitions in this process is exponential(A), regardless
of the starting state, and so the expected time to the next transition,
starting from state i, is 1/A for every i. From Section 6.3(ii) of Ref. 10
we obtain that lim,.. P{B*(¢) =j|B*(0) =i} =uyiforj=0, ..., c.
Next, the distribution of the time from an arbitrary epoch back to the
most recent failure is also exponential(A), so that using Section 6.3(iv)
of Ref. 10, we obtain

ri= E uif P{B(Sn + t) =J|Bn = i}he—htdt’
=0 0

regardless of the value of n because of the stationarity of {B,}. For ¢
with S, + ¢ < S.+1, one gets B(S, + £) = j by having % survivors in the
system at time S, and letting the M/M/c/c system evolve from there
(k=0,1, .-, ). This has probability Yo g.;s P{C(Z, k) = j}, so

o c

r= 'Eo u; kzo Qii—k J' P{C(t, k) =j}A27Mdt = Z upij=u; N
= = 0

i=0

APPENDIX B
Proofs

In this appendix, we provide proofs for Lemma 1, Theorems 2 and 4,
Corollaries 5 and 6, and Theorems 8 and 9. The blot symbol B signifies
the end of a proof.

Proof of Lemma 1: For ¢, y > 0 and % = 2, begin by writing
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P{(N(t+y) = N(t)=k) =Y P(N(t+y) =k +Jj,Nt) =1}

J=0
= E P{Sk+j =t+y< S},+j+1, S_,.‘ =< Sj+1},
j=0

where the interrenewal times are X, X5, -+, S, = X1 + --- + X, and
S, = 0. Now conditionon S; = s, X;41 = x,and Xjuo + -+ + X;1p = u.
Using the independence and identical distribution of the interrenewal
times, together with some algebraic simplification, leads to egs. (1) and
(2). The sum and integral can be interchanged because of the uniform
convergence of the renewal function on compact intervals. The proof
is similar for the cases k =0and 1. W

Proof of Theorem 2: Let Ni(t) be the renewal counting process for
failure mode i, and let T, stand for the event that the nth arriving call
is accepted into the system and survives to the end of its intended
holding time without being cut off. Then there is a version of
P{T,|Y. =y, 7. = t} that is given by

]

2 e E P{THENI'(t-I-y)—Ni(t)=k!':i=1:"'rm}
k=0

kipy=0

-P{Ni(t+y) — Ni(t) =k;,i=1,---,m}

=3 - ¥ 1 =p)P{Ndt +y) — Ni(t) = ki}
k=0 k=0 i=1

= k2=c| kEO I:[] (1 — p)*- f gilt — s, y)dMb(s)

= ¥ ( —ps)"f gi(t — s, y)dMi(s),
i=1 k=0 o

where the superscript ¢ on the g indicates the function from eq. (2)
which belongs to failure mode i. Now insert the expression for g} from
Lemma 1, simplify, and use eq. (4). This leads to the desired conditional
probability’s being given by

m '3

H1 &i(t — s, y)dMo(s).

=tJo
Equation (5) is then obtained by unconditioning on the holding-time
distribution and subtracting from one to obtain the probability of
cutoff. To obtain eq. (6), first observe that since g; is directly Riemann
integrable, the basic renewal theorem (Ref. 4, Section IL.XI.1) applies,
yielding
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t L

%im gt — s, )dMj(s) = \; j &iu, y)du
o 0

0
% puty
=1- )\,-p,-J’ f Mi(u + y — x)dF'(x)du.
0 u

The Lebesgue bounded convergence theorem then allows the inter-
change of limit with the integrals in eq. (5), yielding eq. (6). W
Proof of Theorem 4: The existence of the a.s. limit as n — o of x./n
follows from standard results about regenerative processes. These
results, in a Markov chain setting (e.g., Theorem 1.15.2 of Ref. 7), show
that x./n converges w.p. 1 to

e b
2 ): Wb,

b=0 w=0
which, upon reversing order of summation, is seen to be equal to EW,
since {W,} is a stationary process. Note that one also has EW, =
lim,_.. Ex./n. To complete the proof, straightforward calculations
show that Ex, = 8EZ,, and that lim,_... EZ,/n exists. W
Proof of Corollary 5: Write x./Z. = (x./n)(n/Z,) to obtain the
result. W
Proof of Corollary 6: Use theorem 8.1 of Ref. 12. W
Proof of Theorem 8(a): Let Vj(n) denote the number of visits to state
Jj in the first n transitions of the embedded chain. Then

Y Br= Y jViln),
k=1 j=0
and it follows that

Bi= 3 jVi1) and Bi= 3} jVi{k) - Vik—1)] k=2 (26)
Jj=0 j=0

Using Lemma 7.3 of Ref. 5 and the stationarity of the embedded chain,
our first step is

1 " -
lim — Var (E Bk) =Var B, + 2 ¥ [EB.B: — (EB)*]. (27)
k=1 k=2

n—wc

The variance of B, is easily seen to be

c bﬂ c ¢
VarB1=2—— ab

b=0 Mbb  a=0 b=0 MaalMbb

(28)

For the second term, use the representation in eq. (26), exchange order
of summation, and sum by parts to obtain

§ [EB:B: — (EBy)’]

k=2
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EZUﬁm(HMme%—WD%ﬂH—R_w.(%)
=00 Ko miim

To simplify this, observe that EV;(1) V(1) = EV(1)* when j = i and is
zero otherwise. Also, P{Vi(1) = x} = 1 — u; for x = 0, it equals u; for
x = 1, and is zero for x = 2, so that EV(1)* = w; = 1/m,,;. Equation (29)
becomes
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Further simplifying, observe that
EVi(1)Vi(R) = E(Vi(R)| V1) = 1)P{Vi1) = 1}
= E(V{(R)| By = i)u,

so that the limit to be evaluated in eq. (30) becomes, after factoring
out the common term 1/m.;,
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Now, letting I stand for the indicator function, VAR) = R

I(B. = j), so that E(V;(R)| B, = i) = Y3 p{7. When j = i we obtain
immediately, using Theorem 16.5 of Ref. 7, that the limit in eq. (31) is
given by
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When j # i, add and subtract iz pj; in eq. (31), and use Theorem

1.11.4 together with Theorem 1.6.5 of Ref. 7 to obtain that the limit in

eq. (31) is given, in this case, by

(2) + mjj _ mi_,‘
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We obtain, finally,
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Combining egs. (27), (28), and (32) yields eq. (16), as was to be
proved. H

Proof of Theorem 8(b): From Theorem 7.5 of Ref. 5, the scale constant
for the central limit theorem for the induced chain is the asymptotic
variance of x.. We have

Var x. = EE Wk+2EZEWWk—(EEWk).

k=1 j<k
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The last term on the right is equal to

2 n 2
:=1 k=1
Using the conditional independence (eq. (10)), one shows that

2
E“GW& = (E p,) EB_,'B,& for j?é k,

i=1

and using eq. (9), one shows that
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Combining these and simplifying leads to
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The remainder of the proof consists in using Theorem 8(a) followed by
algebraic manipulation. H

Proof of Theorem 9: Begin by writing

Xn_#ASn_-Xn_F-n_ESn_n/A‘ (33)
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By Theorem 7, the distribution of the first term on the right converges
to the standard normal cdf. The distribution of the second term °
converges to the cdf of a normal random variable having mean zero
and variance p?/d’. We will show that for each n, these two terms are
independent. _

The stochastic process B*(¢) defined in the proof of Theorem 10 is
a Markov pure jump process, and X, = S; and B, are independent
because of the independence of the failure process and the arrival and
service time processes (or use Theorem 15.28 of Ref. 11). Since the o-
field of the W’s is contained in that of the B's, S; = X; and x; = W1
are independent too. By Proposition 15.27 of Ref. 11, S, is a Markov
time for the process, so that the process Bf(¢t) = B *(t +8S) fort=0
is a Markov process whose initial distribution is P{B, = b}, b =
0, --., c. But because of the stationarity of {B.}, P{B: = b} = uy,
b=0,.-.,c,sothat Bf(t) and B*(¢) are equivalent processes. Hence,
X: and B; are independent, and so are X; and W,, from which it follows
that S; and x: are independent. The result for S, and x. follows by
induction.

It follows that the limit of the distribution of the quantity in eq. (33)
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is the cdf of a normal random variable having mean zero and variance
1 + p*/¢*. Now apply Theorem 8.1 of Ref. 12 to obtain the final result.
The sufficient condition of that theorem is satisfied, because, using the
notation of Ref. 12, M*(n) < W41 + pAX,+1 with probability one. W

REFERENCES

1. L. J. Forys and E. Messerli, “Analysis of Trunk Groups Containing Short-Holding-
Time Trunks,” B.S.T.J., 54, No. 6 (July—August 1975), pp. 1127-53.
2. J. Riordan, Stochastic Service Systems, New York: John Wiley, 1962.
3. D. L. Jagerman, “Some Properties of the Erlang Loss Function,” B.S.T.J., 53, No.
3 (March 1974), pp. 525-51.
4. W. Feller, An Introduction to Probability Theory and Its Applications, Vols. I and
II, New York: John Wiley, 1950.
5. J. L. Doob, Stochastic Processes, New York: John Wiley, 1953.
6. N. A. Marlow, private communication.
7. K. L. Chung, Markov Chains with Stationary Transition Probabilities, New York:
Springer Verlag, 1967.
8. E. Parzen, Stochastic Processes, San Francisco: Holden-Day, 1962.
9. L. Kosten, Stochastic Theory of Service Systems, Oxford: Pergamon Press, 1973.
10. D. Gli'oss and C. M. Harris, Fundamentals of Queueing Theory, New York: John
Wiley, 1974.
11. L. Breiman, Probability, Reading, Mass.: Addison-Wesley, 1968.
12. R. F. Serfozo, “Functional Limit Theorems for Stochastic Processes Based on
Embedded Processes,” Adv. Appl. Prob., 7 (1975), pp. 123-9.

CUTOFF CALLS AND RELIABILITY 1889






