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Least-squares algorithms are the fastest converging algorithms for
adaptive signal processors, such as adaptive equalizers. The Kalman,
fast Kalman, and adaptive lattice algorithms using a least-squares
cost function are investigated and extended to complex, fractionally
spaced equalizers. It is shown that, for a typical telephone channel,
these algorithms converge roughly three times as fast as the conven-
tional stochastic-gradient technique. We analyze and compute the
computational complexities and demonstrate that the fast Kalman
algorithm is the most efficient in terms of overall performance.

I. INTRODUCTION

Adaptive channel equalization is a widespread technique used in
most high-speed digital data modems. Generally, a transversal filter
with adjustable coefficients is used as the equalizer. It can be adjusted
adaptively to compensate for the undesired intersymbol interference
introduced by the channel.

A large number of equalizer adjustment algorithms are conceivable,
depending on the cost function. The currently prevailing technique is
the so-called stochastic gradient algorithm. In the past years, three
new rapidly converging algorithms were published, namely, the Kal-
man,' fast Kalman,? and adaptive lattice>” algorithms. Here, we con-
sider algorithms which minimize the sum-of-error-squares cost func-
tion. Because these least-squares algorithms make better use of all the
past available information than the stochastic gradient algorithms,
their start-up is faster.’

Originally the Kalman, fast Kalman, and adaptive lattice algorithms
for equalizer update procedures were published for real-valued signals.
In this paper, we present extensions of these algorithms to complex-
valued signals which facilitate the analysis of quadrature-amplitude-
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modulated (QaM) data transmission formats. We also extend the
algorithms to include fractionally spaced equalizers.” An important
characteristic of each algorithm is its computational complexity which
we analyze for the least-squares, as well as for the stochastic gradient
algorithms. Simulation results of the equalizer start-up using least-
squares adjustment algorithms are presented for fractionally and sym-
bol-spaced equalizers. Quadrature-amplitude-modulated and real-life
voice-grade transmission channels are used for this study.

Il. THE LEAST-SQUARES ALGORITHMS

In this section, we describe extensions of the Kalman, fast Kalman,
and adaptive lattice adjustment algorithms for the coefficient adjust-
ment of complex, fractionally spaced equalizers. It is assumed that
equalizer output values are computed once for each symbol interval T,
where T denotes the time interval between successive data values in
the transmitter. The fractionally spaced equalizer is assumed to oper-
ate on 7'/p-spaced complex samples of the received signal.

Let £(n) denote the complex p—dimensional vector of the new signal
samples entering the fractionally spaced equalizer at time nT. Denote
the M dimensional complex signal vector at time nT containing all
signal samples over the past IV time instances (M = Np) by

x(n)* =[£@m)* én—1*, --. &(n — N+ 1)*].¢ (1)
Then the output of the fractionally spaced equalizer is written as
y(n) =c(n—1)*x(n), (2)

where c(n — 1) is the M dimensional coefficient vector which was last
updated at the previous time instant n — 1. The desired data value at
this instant is d (n). Therefore, an output error

e(n) =d(n) —y(n) (3)

results.

The objective of the least-squares algorithms is to determine the
coefficient vector ¢(n) which minimizes the weighted sum of all
squared errors as if it were used over all the past received signal
vectors, 1.e., ¢(n) minimizes

n

Y AR d (k) — c(n)*x (k)| (4)

k=0

Setting the derivative of eq. (4) with respect to ¢(n) to zero yields the
discrete-time, Wiener-Hopf equation

+ The * in eq. (1) denotes conjugate complex scalars and conjugate complex trans-
posed vectors (matrices).
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A(n)e(n) = vin), (5)

where

n

An) = ¥ N *x(n)x(n)* + N"8Ium = AA(n — 1) + x(n)x(n)*, (6)

k=0

and

v(n) = i AN d(n)*x(n) = Av(n — 1) + x(n)d(n)*. (7)
k=0

A small positive definite matrix 8In» is included to ensure positive
definiteness of A (n) for all n. For A = 1, § = 0 and large n, 1/n A(n) is
an estimate of the channel correlation matrix, 1/n v(n) is an estimate
of the cross correlation vector between the desired and the received
signal. For A = 1, all past information is weighted equally in calculating
an updated coefficient vector; for A < 1 the past is attenuated geomet-
rically. Consequently, the present has a larger influence on the update
than the past. This is a desired feature if time-varying channels are
involved.

Since eqgs. (6) and (7) can be written recursively, the updated
coefficient vector can be calculated recursively as follows, cf. Appendix
A:

c(n) =c(n —1) + g(n)e(n)*, (8)
where g(n) is the Kalman gain defined as
g(n) = A(n) 'x(n). (9)

The Kalman, the fast Kalman, and the adaptive lattice algorithms all
minimize the same cost function.* The difference is in the manner and
the complexity with which it is achieved.

The remaining part of this section contains a brief discussion of the
Kalman and the fast Kalman algorithms. The adaptive lattice algo-
rithm is discussed in more detail; its derivation is given in Appendix A.
Emphasis is placed on the signal transformation which is performed
by the lattice structure. This signal transformation permits the eval-
uation of equalizers of increasing order in a computationally efficient
way. The three algorithms are given in Appendix B in a form suitable
for numerical evaluation.

2.1 The Kalman algorithm

The Kalman algorithm makes use of the recursive definition of A (n)
in eq. (6) and iteratively computes and stores its inverse A(n)"'. The
equalizer coefficient vector is then updated according to egs. (8) and
(9) at each iteration.
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While the Kalman algorithm assures rapid equalizer start-up, it has
the disadvantage of requiring matrix operations. Therefore, the num-
ber of calculations is proportional to M* and grows very fast with
increasing M.

2.2 The fast Kalman algorithm

Ljung et al." succeeded in formulating an equivalent algorithm with
reduced complexity, where the number of operations is proportional
to M. This algorithm was applied to the adaptive equalizer in Ref. 2.
The algorithm exploits the fact that only p new signal samples enter
the signal vector x(n), p samples are discarded, and the remaining are
just shifted. This is accomplished by means of p X M dimensional
forward and backward predictors for the new and discarded values.
Recurrence equations for these predictors and, finally, for the Kalman
gain vector can be derived based on this. At most, p X M matrices
have to be iterated—the chief reason for the reduced complexity.

2.3 The least-squares adaptive lattice algorithm

Recently the adaptive lattice algorithm for a least-squares cost
function, originally published by Morf et al.,'' was extended to equal-
izer update applications by Satorius and Pack® and Shichor.* Its
application to the decision feedback equalizer is reported by Shensa.®
Here, a further extension to the complex fractionally spaced equalizer
is presented. A short form of this was published by Lim and Mueller.”

In the adaptive lattice structure, the equalizer coefficients operate
on a transformed signal vector

Z(n)=L(n— 1)x(n), (10)

where the transformation matrix is a lower triangular matrix formed
by the backward prediction coefficients c5(n) of order m, m =1 ..
N—-1,1ie,

I 0...0
—c}(n)* I0...
—ci(n)* I0..
L(n) = . RN B (11)
. 10
—ci(n)* I

The backward predictor ¢f,(n) of order m is a mp X p dimensional
matrix satisfying
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_ 17 0 7
—ch(n) .
0
A(n) I =| e’(m,n) |- (12)
0 X
. o0 1 L x

In eq. 12, €’(m, n) is the p X p dimensional backward prediction error
residual of order m. For a detailed discussion of the backward predictor
and the backward prediction error residual refer to Appendix A. In
egs. (11) and (12), I denotes a p X p dimensional identity matrix. The
crosses in eq. (12) denote some unspecified elements which are of
no further interest at this time. It follows from eqgs. (11) and (12)
that A(n)L(n)* is a lower block triangular matrix. Then it follows
that L(n)A(n)L(n)* is lower block triangular, because it is the
product of two lower block triangular matrices. On the other hand,
L(n)A(n)L(n)* is Hermitian because A(n) is Hermitian according to
its definition in eq. (6). Therefore, L(n)A(n)L(n)* has to be a block
diagonal matrix. Its diagonal element at the mth position is e’(m—1,
n), i.e.,

L(n)A(n)L(n)* = diag [¢’(m — 1, n)]. (13)
Hence, L(n) diagonalizes A (n).

We assume that all €?(m — 1, n) are invertible and so we invert eq.
(13). After premultiplying the result by L(n)* and postmultiplying it
with L(n) we obtain

A(n)™' = L(n)*diag [e*(m — 1, n)'IL(n). (14)
Since it is desired that the adaptive lattice equalizer perform identically

as the other least-squares equalizers, it follows that all the equalizer’s
output signals have to be equal, i.e.,

y(n) = c(n — 1)*x(n) = é(n = 1)*&(n). (15)
From egs. (10) and (15), it follows that the transformed coefficient
vector é(n) has to satisfy
é(n) = L(n) *c(n). (16)
The matrix L(n) *, denotes the conjugate transposed inverse of L(n).
Upon substituting egs. (5) and (14) into eq. (16), we obtain
é(n) = diag [€*(m — 1, n)"'|L(n)v(n). an
This suggests that the transformed coefficient vector is easily obtain-

able from the transformed correlation vector. The equalizer output of
order N can be written as
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N
yn)= ¥ z(m,n— *e*(m —1,n—1)"'e’(m - 1,n), (18)

m=1

where we defined

e’(0, n) 2(1, n)
e’(1, n) z(2,n)
i(n) = : ,and L(n)v(n) =| - (19)
e’(N-1,n) z(N, n)

Note that the elements of £(n) are the backward prediction errors of
order 0 to N — 1. Therefore, the transformed equalizer operates on the
backward prediction errors of order 0 to N — 1.

Equations (10), (11), and (17) to (19) define the adaptive lattice
equalizer as a transform of the ordinary transversal equalizer. An
interesting property of this transform is due to the fact that L(n) is a
lower triangular matrix. This makes it possible to increase the dimen-
sion of the transformed signal vector and of the equalizer in a rather
simple way, i.e., only one new p-vector is added to the vectors of order
m — 1 to form the vectors of order m. The already existing elements
are unchanged. Accordingly, the equalizer output can be computed
order-recursively in a very efficient way.

The time update algorithm of the lattice structure makes consequent
use of the above-described order recursions. In addition to the back-
ward predictor, the forward predictor and its error residual are iterated.
Only the prediction errors and the prediction error residuals of order
zero are updated in time. Then, using these elements as an anchor, the
prediction errors and prediction error residuals of higher order are
obtained recursively. It turns out that the predictions themselves are
not needed. Finally, a time update of the elements z(m, n) of the
transformed vector v(n) is obtained.

This scheme also makes use of all previously received data. Theo-
retically, its performance should be identical to the Kalman and the
fast Kalman algorithms. Since there are no matrices involved, storage
requirements and numbers of multiplications increase linearly with
the equalizer length, though faster than in the fast Kalman algorithm.

A detailed derivation of the least-squares adaptive lattice equalizer
algorithm is given in Appendix A. There, we adopt a notation which
allowed us to describe the equalizer, the backward and the forward
predictors as special cases of a general least-squares problem. In
Appendix B, we list the adaptive lattice algorithm together with the
two other least-squares algorithms in a form suitable for sequential
execution.
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il. COMPLEXITY

The number of multiplications (divisions are counted as multipli-
cations) per iteration and the required precision are the dominant
factors determining the complexity of real-time algorithms.

The effect of limited precision was investigated by T. L. Lim and
the author in earlier work on that subject. There are no major
differences between the three algorithms. With floating-point arith-
metic, the requirements for the mantissa are from 11 to 12 bits for
symbol-spaced equalizers and from 13 to 15 bits for T/2-spaced equal-
izers.

Table I gives the number of multiplications for the three least-
squares algorithms and for the stochastic-gradient algorithm which is
obtained when in eq. (8); g(n), is replaced by a scalar. Results for both
symbol- and T/2-spaced equalizers are given. The numbers for expo-
nential weighting are included for the three least-squares algorithms.

The gradient algorithm requires the smallest number of multiplica-
tions, followed by the fast Kalman, the adaptive-lattice, and the
Kalman algorithms. The gradient algorithm, of course, requires twice
as many multiplications for the 7/2 equalizer than for the symbol-
spaced equalizer. For the Kalman algorithms, this factor is about four
and for the adaptive-lattice, it is about five.

The fast Kalman algorithm has the lowest complexity of all least-
squares algorithms; it requires about five times as many multiplications
as the gradient algorithms for symbol-spaced equalizers and ten times
as many for T/2-spaced equalizers. The adaptive-lattice algorithm
requires more multiplications than the fast Kalman algorithm, espe-
cially for T/2-spaced equalizers. This is mainly because of the large
number of matrix operations which is reflected in the large coefficient
of p®. However, it was pointed out in Refs. 3 and 4 that it offers a

Table I—Number of complex multiplications for equalizer spanning N
symbol intervals with p samples per interval

N=31 N=31

# Multiplications p=1 p=2

Gradient 2Np 63 127
Kalman A#1 2N%p°+5Np 2015 7998
A=1 Np(Np+ 1)/2less than for A # 1 1519 6045

5 .

Fast Kalman A1 N(p:’+6p)+§p"+2p2+4§p 316 1202
A=1 p(p+1)/2less than for A # 1 315 1199

1 11
Adaptive lattice A#1 N(?Elp3 +7p% + ?p) —4p° —5p*—2p 454 2046

A=1 (N—%)p(p+l)lessthanfor:\%l 393 1863
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unique feature: the number of equalizer taps can be increased according
to the actual need for the particular channel involved. Since for real-
time applications the computational power for the longest required
equalizer has to be provided, this cannot be regarded as an advantage
and does not justify the considerably higher complexity for modem
applications.

The Kalman algorithm requires the largest number of multiplica-
tions. Since it offers no additional features when compared with the
fast Kalman algorithm, the latter is preferred for equalizer implemen-
tations.

IV. SIMULATED COMMUNICATION SYSTEM

Figure 1 shows the simulated system, where the transmitter is
assumed to have a raised-cosine shaped transfer function with 12
percent excess bandwidth. Quadrature amplitude modulation with a
symbol rate of 2400 baud and 2 bits per symbol is used. The carrier
frequency is placed at 1700 Hz. The data symbols in the in-phase
branch are taken from a binary pseudo random noise sequence (PRNS).
The same sequence, shifted and reversed in time, is used in the
quadrature branch.

Various channel transfer functions were considered. Figure 2 shows
the transfer function of a channel which barely meets the requirements
for basic conditioning of private lines. The eigenvalue spread of the
autocorrelation matrix for symbol-spaced samples equals 9.8. The
equivalent baseband impulse response of the combined transmitter
and channel is used to generate the input data for the equalizer.
Gaussian noise of specified power is added.

MODULATOR DEMODULATOR
{an}
TRANSMITTER CHANNEL PHASE oY%
J— SPLITTER|
[n}
elwct e—iwet
| {8)
DECISION
SAMPLER EQUALIZER ] DEVICE |—
{4 {Bn)
=y(n)
|

eln) ~—" " +din)

Fig. 1—Simulated transmission system.
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w
DELAY IN MILLISECONDS

0 0.5 1.0 1.5 2.0 25 3.0
FREQUENCY IN KILOHERTZ

Fig. 2—Channel transfer function.

V. INITIAL CONVERGENCE

The initial convergence of the squared error at the output of the
equalizer was determined for the Kalman, fast Kalman, and adaptive
lattice equalizer structures. The behavior of the gradient algorithm, as
well as of a fixed transversal filter with optimal coefficients were
simulated for comparison purposes. Single precision floating-point
arithmetic is used throughout, i.e., the mantissa is represented by 24
bits. The s/n is 25 dB and all equalizer coefficients are initially set to
zero. A PRNS with a period of 127 symbols is used for the data symbols,
and ten simulation runs with different starting points with respect to
the PRNS are averaged. The resulting curve is smoothed with an
exponential weighting factor of 0.9 to obtain the results shown in Fig.
3.

Figure 3 shows the results for the channel depicted in Fig. 2. The
sampling phase is chosen to be 25 percent of a symbol interval away
from the optimal sampling phase. Figure 3a corresponds to a 31-tap,
symbol-spaced equalizer and Figure 3b to a T/2-spaced equalizer also
spanning 31-symbol intervals. The behavior of the Kalman and fast
Kalman algorithms has been observed to be identical [the difference
in the output mean squared error (mse) is always smaller than 0.01
dB]. Therefore, the Kalman algorithm is not included on the plots.

The optimal fixed equalizer attains an output mse of 23.1.dB
normalized to the signal level. For the symbol-spaced equalizer, about
125 iterations are required to converge to a normalized mse of 20 dB.
For the T/2-spaced equalizer, all least-squares algorithms converge in
about 150 iterations. The gradient algorithm requires about 400 itera-
tions to converge to the same level. Very similar results were obtained
for a channel with amplitude distortion as shown in Fig. 2 but with no
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(a) O OPT.EQUALIZER
O FAST KALMAN
A ADAPTIVE LATTICE

® GRADIENT

mse IN DECIBELS

(b) O OPT. EQUALIZER

O FAST KALMAN

A ADAPTIVE LATTICE
@® GRADIENT

mse IN DECIBELS

0 25 50 75 100 125 150 175 200
NUMBER OF ITERATIONS

Fig. 3—(a) Convergence of symbol-spaced equalizer. N = 31, s/n = 25 dB. (b)
Convergence of T/2-spaced equalizer. N = 31, p = 2, s/n = 25 dB.

phase distortion. If an ideal channel (no amplitude and no phase
distortion) is used, the convergence time is reduced by about 35
percent.

These results indicate that, for realistic telephone channels, the
least-squares algorithms behave very similarly and converge about
three times faster than the stochastic gradient algorithm. Furthermore,
it is found that the least-squares algorithms can be implemented
successfully for both the symbol-spaced and 7T/2-spaced complex
equalizers. Notice that the adaptive lattice algorithm requires a high
number of matrix inversions per iteration if p > 1, which is often
susceptible to numerical instabilities. However, our simulations did
not uncover any stability problems.

The inclusion of an exponential weighting factor in the sum-of-
squares cost function was proposed in Refs. 2 and 3 to allow for the
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tracking of time varying parameters or channels. When this was
included in our simulations, and single precision floating-point arith-
metic was used, an unstable behavior of the fast Kalman algorithm
resulted. Double precision arithmetic (i.e., 56-bits for the mantissa)
was found to eliminate the instability. The Kalman and the adaptive-
lattice algorithms did not show this instability.

VI. CONCLUSION

The Kalman, fast Kalman, and adaptive-lattice algorithms are the
fastest known methods for the training of equalizers. In particular, it
was found that they require only about a third as many iterations as
the gradient algorithm to converge to within 3 dB of the optimal mse.
For a T/2-spaced equalizer and a worst-case channel, the equalizer
start-up requires about 150 iterations.

The fast Kalman algorithm possesses the lowest complexity of these
schemes. It requires about ten times as many multiplications per
iteration for a T/2-spaced equalizer as the stochastic-gradient algo-
rithm.

The adaptive-lattice algorithm requires more multiplications per
update but has the advantage of being able to increase the equalizer
length adaptively when needed. This is an advantage for off-line or
batch processing but not for real-time applications.

The Kalman algorithm possesses the highest complexity and offers
no advantage over the two other schemes. Therefore, it is not recom-
mended for implementation.
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APPENDIX A
Derivation of the Leasi-Squares Algorithms

Let £(n) be a p-dimensional complex vector denoting the new
elements in the pm dimensional signal vector x,,(n)

xm(n) = [£()*, -+ E(n —m + 1)*]. (20)

Let c%(n) be a complex pm dimensional coefficient vector, which
denotes the equalizer coefficients if s = e, and let ci,(n) be a complex
pm X m dimensional matrix which stands for the forward predictor if
s = f and backward predictor if s = b.

Then the output of the equalizer, the forward and the backward
predictors can generally be expressed as

¥i(m, n) = cm(n — 1)*xn(n). (21)
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The double argument (m, n) denotes order m and time n. The desired
signal d*(m, n) is defined as
a(n — D) fors=e
dm,n)=1£&n+1) fors=f. (22)
((n— m) fors=54

The transmission delay between transmitter and receiver is denoted
by D. The equalization and prediction errors e®(m, n) are defined as

e*(m, n) = d*(m, n) — y*(m, n). (23)

For s = e, y*(m, n), d*(m, n) and e*(m, n) are complex scalars, for s #
e they are p—dimensional, complex vectors.

The equalizer and prediction coefficients are determined such that
they minimize the trace of the following least-squares cost function

n

Y A (m, k) — cn(n)* xn(R)][d°(m, k) — ch(n)*xn(R)]*. (24)

k=0

Lambda is a geometric weighting factor. Differentiating the above cost
function with respect to ¢i.(n) and equating the resulting expression to
zero yields the discrete-time, Wiener-Hopf equation for the coefficients

An(n)em(n) = vn(n), (25)

where

n

An(n) = 3 N7 xm(R)2m(R)* = An(n — 1) + xa(n)xa(n)*  (26)

k=0
vnn) =Y A Exn (BYd (m, B)* = Avi(n — 1)
k=0

+ xn(n)di(m, n)*. (27)

In eq. 27, A(n) is an mp X mp dimensional, Hermitian matrix, and
vm(n) is a mp X p dimensional complex matrix. They are equivalent to
the autocorrelation matrix and the cross-correlation vectors which
occur in the familiar mean-square approach.

The optimal value of the cost function is obtained when the solution
resulting from eq. (25) is substituted into eq. (24)

€(m, n) = E°(m, n) — vn(n)*ch(n), (28)

where
E’(m,n) =3 A kde(m, k)d*(m, k)*
k=0

=AE*(m,n—1) + d*(m, n)d*(m, n)*. (29)

For s = e, €’(m, n) is a scalar. For s # ¢, it is a p X p Hermitian matrix.
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A.1 Time update recursions

We observe that egs. (26) and (27) contain a recursive definition of
A,(n) and v (n). This allows us to obtain a recursion in time for the
optimal coefficients. Upon combining egs. (25) and (27) we have

An(n)ci(n) = An(n — D) cih(n — 1) + xu(n)d*(m, n)*.  (30)

Add and subtract xm(n)x.(n)*ci(n — 1) to the right-hand side of eq.
(28), then use eq. (23), the recursive form of eq. (26), and premultiply
both sides with A,,(n)~"' to obtain the desired recursion

ei(n) = ch(n — 1) + Am(n) 'xm(n)e*(m, n)*. (31)

To obtain time update recursions for various auxiliary variables, we
consider c&,(n)*vi,(n), where sand ¢ € {e, b, f:} From the time update
recursion for the coefficients eq. (31), we conclude that

e (n)*vh(n) = [chin — 1)* + e°(m, n)xm(n)*Am(n) Jon(n). (32)

We multiply out and use eq. (27) for the first term. In the second term,
we apply eq. (25) and obtain

en(n)*vm(n) = Aen(n — D*vn(n — 1)
+ ch(n — 1)*xm(n)d'(m, n)* + e*(m, n)xm(n)*cm(n). (33)

Now add and subtract d®*(m, n)d‘(m, n)* and use eqgs. (21) and (24) to
obtain

ci(n)*vh(n) = Aen(n — 1)*vn(n — 1)
+ d*(m, n)d'(m, n)e*(m, n)[xm(n)*cn(n) — d'(m, n)]. (34)
From eq. (31) it follows that the error after updating the coefficients
e'(m, n)*=—xn(n)*cn(n) +d'(m, n)=(1—y(m, n))e'(m, n)*, (35)
where we defined the real scalar
y(m, n) = xm(n)*An(n) ' xn(n). (36)
Finally, we obtain from eqs. (34) and (35)
ci(n)*vh(n) = Aeh(n — )*vh(n — 1) + d*(m, n)d'(m, n)
— e*(m, n)e'(m, n)*[1 — y(m, n)]. (37

A time recursion for €*(m, n) can be obtained from eq. (28) by using
eqs. (28), (29), and (37)

e(m,n) =Ae*(m,n— 1) + [1 — y(m, n)]e*(m, n)e*(m, n)*. (38)

The mth component of the transformed correlation vector is defined
as, cf. egs. (11) and (19)
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z(m, n) = [—em-1(n)*, Tvn(n)

=—ct (n)*ve_i(n) + \2 A RE(R+ 1 — m)d(m, k)*.
k=0

We note that d®(m, k) = d°(m — 1, k), and within apply eq. (37) and
obtain the time recursion
z(m,n) =Az(m,n—-1)

+[1—=y(m—1,n)]e’(m -1, n)e’(m — 1, n)*. (39)

For future use, we define the p X p matrix
n+l

k(m—1,n) = ¥ A"k — m)E(R)* — vm-a(n)* chua(n).

=1

We apply eq. (37) and observe that d/(m — 1, n) = £(n + 1) and that

d®(m — 1, n) = £(n — m + 1). Thus, we obtain

km—-1,n)=Ak(im—1,n-1)
+[1—-y(m—1,n)]e’(m—1,n)e/(m - 1,n)*. (40)

A.2 Order update recursions
Observe that from eq. (20) it follows

£(k)

*n (k) (41a,b)

Xmsr(R) = | xn(k—=1) | =
- fh—m)

This relation is the order-time update equation for the signal vector.
It allows the derivation of order-time update equations for the various
coefficient vectors, for the error values and for the error residuals.
Update equations for various auxiliary variables necessary for the
algorithm are also derived.

From eq. (41) and the definitions egs. (26) and (27) and under the
condition that x,(0) = 0 it follows

Ef(m, n) vhi(n)*
vi(n) An(n)

=[Aun+n vl (n +1) ]'

Ann(n+1) = ]:

vin+1)* E'm,n+1) (42a, b)

Upon combining eq. (26) and eq. (42a, b) we obtain the augmented
Wiener-Hopf equations
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Am+1 (n + 1)

I €/(m, n) 0
0
—et(n+1)
—cfn(n) = * - 3
I 0 e’im,n+1) (43a, b)

where we used partitioned matrices to represent the two systems of
equations for the forward and the backward predictors, having the
same matrix of coefficients.

Similar equations can be derived for predictors of reduced order

Amii(n +1)

I 0 elm—1,n) (k®(m -1, n)
0 0
—el () | =choi(n) |= .
0 0
0 I Em-=1,n)lm—-1,n)]1 (44a,b)

Equation (44a) can easily be verified by applying the expansion of
(42b) with reduced order and time indices to An(n) in eq. (42a). The
same method with the order reversed verifies eq. (44b).
The auxiliary variables k/(m — 1, n) and k®(m — 1, n) are defined as
n+1

ki(m—1,n)= Y Nk — m)E(R)* — vma(n)*chii(n)  (45a)
k=0
n+1

Rim—1,n) = ¥ NFE(R)E(R — m)* — vha(n)*emoi(n).  (45b)
k=0

From eq. (45a, b) and with the definition of the predictor coefficients

from eq. (25), it is easily verified that
Elim—1,n)=k’m — 1, n)*=k(m - 1,n). (46)

The order update equations for the predictor coefficients and for the
error residuals are now obtained through the combination of egs. (43)
and (44). We consider that

(43a) = (44a) — (44b)e®(m — 1, n) "k(m — 1, n)
and
(43b) = (44b) — (44a)e’/(m — 1, n) 'k(m — 1, n)*.
This, with n reduced by one, yields an update equation for the

prediction error residuals
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efmn-1)=€e(m=1,n-1)
—k(m-Ln-1)*"m-1L,n-1)"k(m—-1,n-1) (47a)

emn)=€e?m-1,n-1)
—km-1L,n—1em-1,n-1)""k(m—-1,n—-1)*. (47b)

We assume now that An.1(n + 1) is nonsingular and premultiply eqgs.
(43) and (44) by its inverse. The same combinations of the new
equations yield update equations for the coefficients.

7 b
f _ Cm—1 (n) _ Cm—1 (n)
cm(n) - [ 0 ] l: —I

€®m—-1,n)""k(m-1,n) (48a)
b _ 0 _ -I
en(n+ 1) [c.’;_l(n)] [Cfn-l(n)]
efim —1,n)"tk(m — 1, n)*. (48b)

We premultiply eq. (48a) with xn(n + 1) and eq. (48b) with
xm(n + 2)*. This yields eqgs. (41), (21), and (23)

Xm(n + 1)*ch(n) = xma(n + 1)*cha(n) — [Xma(n + 1)*
eb_i(n)—tn—m+2)*e’(m—1,n)"'k(m—1,n) (49a)
Imn + D*ei(n+ 1) = Xnaln + D*choi(n) — [Xma(n + 1)*
el (1) — £(n + 2T/ (m — 1, n) " k(m — 1, n)*. (49b)

With eq. (23) we identify the terms in the bracket of eq. (49a) as eb
(m — 1, n + 1)* and in the bracket of eq. (49b) as e/(m — 1, n + 1)*.
We transpose eq. (49a), decrease n by 2, and use eq. (23) to obtain the
update equations for ef(m, n — 1). The update equation for e®(m, n)
is obtained similarly.

efmyn—1) =e/(m—-1,n-1)
—kim—-1,n-2*¢m—-1,n-2""e’m—-1,n-1) (50a)
e’(m,n)=e’(m—1,n-1)
—k(m,n—2)e (m,n—2)"ef(mn—1). (50b)
The Kalman gain gn+1(n) is defined by
Ani1(n) gmi1(n) = Xmar(n). (51)

From eq. (40) we deduce
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0 |gM(n)
Am+l(n) [gm (n — 1)| 5 ]
= vhin—1)*gn(n — 1)| Xm (1) il
[ Xm(n — 1) |Uﬁ.(n)*gm n) | (52a, b)

We note from eq. (41) that egs. (51), (52), and (43) are related as
follows

(51) = (52a) + (43a)e/(m, n — 1)7'[£(n) — vh(n — 1)*gn(n — 1)]
(51) = (52b) + (43b)€*(m, n)"'[{(n — m) — v} (n = 1)*gn(n — 1)].
We identify the terms in the brackets as the forward and backward
prediction errors after updating the coefficients eq. (35). Performing
the above-defined linear combinations of eqs. (43), (51), and (52) and

premultiplying with A,.+1(n)”", yields order update equations for the
Kalman gain.

(n) = 0 + I
Emtl = gmn — 1) —chn—1)

e'im,n—1""'é(m,n—-1) (53a)
b
gmer(n) = [g"‘é")] + [ c”}(n)]eb(m, n)~'6%(m, n).  (53b)

We now proceed to obtain order update equations for y(m, n) as
defined by eq. (36). Note from egs. (36) and (51) that

y(m, n) = xm(n)*gm(n). (54)
Upon using eqs. (41a), (53a), (41b), and (53b) respectively, we obtain
yimn)=ym—-1L,n—-1)+é(m-1,n-1)"*
em-1,n-1"é(m-1,n-1) (55a)
y(m,n) = y(m — 1, n) + €*(m — 1, n)*

-e*(m—1,n)"'&%m — 1, n). (55b)

APPENDIX B
Least-Squares Equalizer Update Algorithms

Here the least-squares equalizer update algorithms are listed and
ordered such that they can be evaluated in the given sequence.
Emphasis is put on a simplified notation compared to Appendix A.
Generally, capitals denote matrices and lower case letters denote
scalars and vectors. Table II gives the correspondence of variables and
their dimensions, where M = Np.
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Table l—Correspondence of variables

Variable Appendix A Appendix B Dimension

Signal vector Xn(n) x(n) M
Correlation matrix An(n) A(n) MxM
Equalizer coefficients cmin) c(n) M
Equalizer error e*(m, n) e(m, n) 1
Forward prediction

Coefficients c‘,;.. (n—-1) F(n) Mxp

Error elfm,n—-1) f(m, n) p

Error residual e(m,n—1) Ef(m, n) pPXp
Backware prediction

Coefficients ch(n) B(n) Mxp

Error eb(m, n) b(m, n) p

Error residual e®(m, n) E®(m, n) pPXp
PARCOR coefficient kim—-1,n-1) K(m, n) PXp
Kalman gain gm(n) g(n) M

B.1 The Kalman algorithm

The Kalman algorithm makes use of the recursive definition of A (n)
in eq. (26) and the matrix inversion lemma, i.e.,

a1 -1 Al - ) 'x(n)x(n)*A(n—-1)"
Aln)™ = A |:A(n 1 A+ x(n)*A(n—1)""x(n) (56)
and defines
P(n)=A(n)". (57)

Upon using egs. (2), (3), (8), (56), and (57) we obtain the Kalman
algorithm for equalizer updating

t(n) = P(n — 1)x(n), (58)
g(n) = t(n)/(A + x(n)*t(n)), (69)
1
P(n) =[P(n—1) — g(n)t(n)*] X (60)
y(n) =c(n = 1)*x(n), (61)
e(n) =d(n)—yn), (62)
cin) =cn—1) + g(n)e(n)*. (63)

To initialize, set all variables to zero except P(0) which is set to
P(0) = 1/8 I. Note that because of the Hermitian nature of A (n) and
consequently of P(n) = A(n)”}, eq. (16) needs only be evaluated for
the upper (or lower) triangle including the diagonal.

B.2 The fast Kalman algorithm

To obtain the fast Kalman algorithm, apply egs. (21) to (23), (31),
(35), and (38) for the forward predictor of fixed order m. This yields
egs. (64) to (67)
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f(n) =£&(n) — F(n—1)*x(n —1) (64)

Fn)=Fn-1)+gn—-1)f(n)* (65)
fin) =f(n)[1—gn—1)*x(n—1)] (66)
E(n)=AE(n—1) + f(n)'f(n)*. (67)

Then use eq. (53a) to calculate the extended Kalman gain g(n) and
partition as indicated

o E(n)'f(n) ey
gln) = [g(n -1 - F(n)E(n)'lf(n)'] B [u(n) ] (68) (69)

Now the backward prediction error &(n) is calculated from eq. (23)
b(n)=&n—N)—B(n—-1)*x(n). (70)

Equations (31) and (53b) can now be used to update the backward
predictor and finally to determine the updated Kalman gain

B(n) = [B(n — 1) + g(n)'b(n)*][Lp — p(n) b(n)*]™! (71)
g(n) =g(n) + B(n)u(n). (72)

Equations (21) to (23) and eq. (31) applied to the equalizer conclude
the algorithm.

y(n) =c(n — 1)*x(n) (73)
e(n) = d(n) — y(n) (74)
cn)=cn—-1) +g(n)e(n)*. (75)

To initialize, set

F(0) = B(0) = Omp

x(0) = g(0) = c(0) = Om
and

E(0) = 8.

Notice for the numerical evaluation that E is Hermitian and that the
matrix inversions in egs. (68) and (71) can be avoided if a
p—dimensional system of linear equations is solved for multiple right-
hand sides.

B.3 The lattice algorithm
For each time instant, the algorithm is initialized for order zero

y(0,n) =vy(0,n) =0 (76)
e(0, n) =d(n) (77)
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f(0,n) = 6(0, n) = £(n) (78)
E(0,n) = E*(0,n) =AE’(0,n — 1) + £(n)£(n)*. (79)

From eq. (40), the following time update equation follows
K(m,n)=AK(m,n—1)+t(myn—1)f(m — 1, n)*. (80)

Then we obtain from eq. (50) order update equations for the prediction
errors

flm,n)=fm—-1,n) —Gm,n—1)b(m—1,n—1) (81)
bm,n)=b(m=1,n-1)—-H(m,n—-1)f(m-1,n), (82)

where auxiliary p X p matrices are determined as
G(m,n)=K(m,n)*E*(m—1,n—-1)" (83)
H(m,n)=K(m,n)E'(m —1,n)"". (84)

Equation (48), together with eqs. (83) and (84), permits the update of
the prediction error residuals

E/(m,n) =E/(m — 1,n) — G(m, n)K(m, n) (86)
E®*(m,n) = E*(m — 1,n — 1) — H(m, n)K(m, n)*. (86)
The equalizer output and output error follow
yim,n)=ym-1,n) +z(m,n — 1)*
E'(m—-1,n-1)""b(m-1,n) (87)
e(m, n) = d(n) — y(m, n). (88)
From egs. (35) and (55), we have
tim,n)=[1—y(m—1,n)]b(m—1,n) (89)
y(m,n) =y(m—1,n) + t(m,n)*E*(m — 1, n)""¢t(m, n). (90)
Equation (39) finally allows to update the coefficients
z(m,n)=Az(m,n— 1)+ t(m,n)e(m — 1, n). (91)

Equations (87), (88), and (91) are evaluated for me[1, N]. The other
equations are evaluated for me[1, N — 1]. To initialize, set all variables
to zero except E’(0, 0) = E®(0, 0) = 81,,.

For the numerical evaluation, it should be noted that E/(m, n) and
E"(m, n) are Hermitian, thus, only the real diagonal and the upper or
the lower triangle need be computed. Note also, that G(m, n) and
H(m, n) are computed best as the solution of a p—dimensional system
of linear equations with p right-hand sides.
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