Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 60, No. 8, October 1981
Printed in U.S.A.

Using Documentation as a Software Design
Medium

By S. D. HESTER, D. L. PARNAS,* and D. F. UTTER
(Manuscript received March 25, 1981)

This article describes a software design method based on the
principles of separation of concerns and information hiding. The
principle of separation of concerns is used to structure the design
documentation, and information hiding is used to guide the internal
design of the software. Separation of concerns requires that design
information be divided into clearly distinct and relatively independ-
ent documents. The design documents are the main products of the
initial design phase, and are carefully structured to (i) expose open
issues, (ii) express design decisions, and (iii) ensure that information
is recorded in a way that allows it to be readily retrieved later.
Information hiding is used to design software that is easy to change.
We have applied many elements of the design method to the devel-
opment of the No. 2 Service Evaluation System (SES), a multiprocessor
data acquisition and transaction system. Our experiences in applying
the design method are described, and some examples are included.

. INTRODUCTION

This article describes a software design method based on the prin-
ciples of separation of concerns and information hiding. Software
design documentation is the medium used to apply the principles.

The expected benefits of the design method are as follows:

(i) Ease of change. System functions that are likely to change are
identified and information hiding is applied to minimize the amount of
software affected by a change in these functions.

(ii) Control of the information about the functions of the system.
A carefully structured requirements document is to be maintained
throughout the life of the project.

* Currently on leave from University of North Carolina. Present addresses: IBM
Federal Systems Division and Naval Research Laboratory.

1941

(iit) Ordering of the development steps to meet the project objec-
tives. Documentation of the useful subsets of the system and the
dependencies between the software modules serve to guide the sched-
uling of the development effort.

(iv) Making the agreements between developers explicit. Misun-
derstandings are avoided and a smoother system integration is
achieved by documenting the interfaces between the software modules
of individual developers.

This article provides an overview of the design method as adapted
to a particular class of software systems, and suggests guidelines for
applying the design method. Related work on software design meth-
odology has been reported in Refs. 1, 2, and 3. The Naval Research
Laboratory has reported related work on a real-time system in Refs. 4,
5, and 6. Examples and experiences are presented from our application
of these principles to the design of the No. 2 Service Evaluation System
(sES), a multiprocessor system performing data acquisition and trans-
action functions.

We will discuss the key design principles, the proposed design steps
and associated documents, the guidelines for preparing each of the
documents, and finally, our experiences in applying the principles.

IIl. A DILEMMA

We are concerned with the dilemma posed by the following two
statements:

() In most software projects coding begins too early. Important
design decisions about the functions of the system, the nature of its
interfaces, and its maintainability are made as by-products of the
coding process and do not receive the conscious attention and review
they deserve.

(ii) When part of a project’s time is invested in a preliminary phase
(sometimes called a “concepts phase,” “project definition phase,” or
“gspecification phase”), one sees little in the way of tangible results.
When actual software design begins, the programmers do not use the
products of the earlier phase and one has the impression that the time
spent was wasted.

These views are held by the same designers at different times in
their careers. After an experience without a preliminary design phase,
the first viewpoint is espoused with great vigor. After an experience
with a preliminary design phase the second viewpoint is held by most
participants.

The design method described here attempts to resolve this dilemma
by specifying that the preliminary design phases produce a carefully
structured set of documents as the main product. The documents are
the means to express design decisions, not an afterthought to be

1942 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

produced after the system development is completed. Since documen-
tation is the main product of the design phases, it is important and
must be produced with the same discipline and care with which code
is produced.

The principles for organizing the documents are discussed in the
following sections.

lll. OUR KEY DESIGN PRINCIPLES

The method we are advocating for design and documentation is
based on the principles known as separation of concerns’ and infor-
mation hiding."*® Separation of concerns involves the division of
information about a system into clearly distinct and relatively inde-
pendent parts. A software system design can be better controlled if the
information in design documentation is divided in accordance with
separation of concerns. The complexity in a software system comes
from the number of details that must be considered.’ To do their jobs,
the developers must deal with large amounts of information describing
what the system is to do and how their work relates to the work of the
other developers. If each design document contains types of informa-
tion that are clearly distinct and relatively independent from the
information contained in other design documents, then the users of
the documents can easily determine which document should contain
the information of interest.

Ease of change and enhancement of the software system is typically
a major objective in adopting a formalized design method. The prin-
ciple of information hiding can be used to guide the structuring of
software to make specific types of changes easy to implement. Infor-
mation hiding involves encapsulating information likely to change in
moderate size software modules. This encapsulation limits the amount
of software that must be modified when a change is made. The
possibility of future change must be explicitly considered during the
design process in order to apply information hiding. One cannot foresee
all possible changes; however, by evaluating the possibility of change
openly, at least the decisions about what is likely to change are made
explicitly and one knows beforehand which functions are likely to be
easy to change.

Separation of concerns and information hiding describe the same
idea from two perspectives. For example, to fully separate the concerns
about the different aspects of a design is equivalent to encapsulating
all elements of each aspect, and hence, hiding the information about
each aspect. We find viewing some issues from the perspective of
separation of concerns to be helpful while other issues are better
viewed from the perspective of information hiding. The division of the
software documents into clearly delineated areas of coverage is con-

SOFTWARE DESIGN 1943

veniently viewed as separation of concerns; whereas, the determination
of the information to be contained in a software module is viewed as
information hiding.

We discuss a number of applications of these principles in the
remainder of the article.

IV. DEFINITION OF TERMS

Before introducing the proposed design method, we define a few
terms used in the paper. These terms have been used in a variety of
ways in the literature; however, we attach the specific meaning de-
scribed below.

Software system - A multiperson (and typically multiversion) soft-
ware development which is delivered and used
as a unit.

Input data item - A data item received by the system from a user
or an external hardware device or system. An
input may be used promptly in the execution of
a function, as in the case of a parameter a user
enters with the request for a report, or it may be
stored in order to influence later operation of the
system, as in the case of scheduling information
used to control later execution of a function.

Output data item - A data item displayed to the users of the system
or sent to an external hardware device or system.

Event - A stimulus to the system causing a function to
be performed. Events may be internally trig-
gered upon a change in the state of the system
or they may be triggered by a signal from a user
or an external hardware device or system. An
example of an internally triggered event is the
match of the clock time against stored schedul-
ing information that initiates the execution of a
function.

Function - The algorithms, rules, or relationships applied
by the system in response to events in order to
determine the values of one or more output data
items and/or the display of the output data items
to the user. We do not attempt to fix the size of
a function at this point, and discuss both large
and small functions. Later, when dealing with
module decomposition, we recommend subdivid-
ing functions until they are small enough to be
developed by one person in a limited period of
time.

1944 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

Module - A piece of software and the associated docu-
mentation which together contain all the infor-
mation about some function(s) or part of a func-
tion. Each module is small enough to be devel-
oped by one person in a limited period of time—
generally one to three months.

Access routine - A piece of software in a module which can be
invoked by software in other modules to perform
some portion of the module’s functions. A sub-
routine in a data base module which is used by
software in other modules to access the data
base would be a typical example of an access
routine. An access routine is not restricted to
being a subroutine. A macro or the top level
software controlling a process (which we call the
main loop of a process) could also be an access
routine.

Process - A set of access routines whose execution se-
quence is prescribed. The execution of a process
may overlap in time with the execution of other
processes in the system. In the No. 2 SEs we
have chosen to restrict the relationship between
modules and processes for simplicity. A module
does not encompass the main loop of more than
one process. This restriction results in some
small modules, but it reduces the potential con-
fusion in the relationship between modules and
processes.

A module is the basic unit of development and change in this design
method. Each module is defined according to the information-hiding
principle (i.e., containing all information about some functions) in
order to localize the software affected by a change in a function. The
limitation to one person doing the development eliminates the need
for multiperson communications during the internal development of
the module, and the time limitation restricts the amount of work
necessary to recode the module in the event of a change.

The usual approach to specifying a function is to describe input,
processing, and output, in that order. The above definition of a function
leads to function specifications organized around the system outputs.
The values and display of systems outputs are specified in terms of
algorithms, rules, relationships, inputs, and events. We have found this
approach encourages more precise specification of system functions,
and reduces the tendency to bias the specification toward a particular
implementation.

SOFTWARE DESIGN 1945

Table |—Software design documents

Document Scope
Requirements Everything the software designers need to know about the
specification system.

Module decompo-
sition

Module depend-
ency

Process structure

Resource alloca-
tion
Module interface

Module design
Test plan

The division of the system into modules.

Tabulation of the other modules which each module uses to
perform its functions.

Groupings of access routines that have prescribed execution
sequences.

System resources used by each module.

Everything another programmer needs to know to correctly
use the functions provided by the module.

Description of the internal design of a module.

Description of the subset of the requirements which will be

tested and the strategies for performing the tests.

V. APPLICATION OF SEPARATION OF CONCERNS TO THE DESIGN
PROCESS

We propose dividing the information about the system into the set
of documents listed in Table I. This division is based on what we
believe are fundamentally separate concerns in the design of a software
system. These concerns continue to be relevant throughout the sys-
tem’s life so the documents should be kept up to date.

The relationship of the proposed documents is shown in Fig. 1. The
arrows indicate the principal flow of information required for the
preparation of each document. Many inputs are, of course, necessary
for the preparation of the requirements specification; however, discus-
sion of the many sources of information is beyond the scope of this

TEST PLAN
REQUIREMENTS r:l)%g%&s
SPECIFICATION \
RESOURCE
ALLOCATION
MODULE
DECOMPOSITION
MODULE
DEPENDENCY [T —————___|
MODULE
INTERFACE
PROCESS
STRUCTURE

Fig. 1—Relationship of proposed documents.

1946 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

article. Several feedback paths exist, but have been omitted for sim-
plicity.

The module decomposition, module dependency, process structure,
and resource allocation documents collectively constitute an overview
of the software structure. Since the first draft of each of these docu-
ments can be prepared before any decisions are made about the
implementation environment for the system, the overview provided by
the documents can provide useful guidance in choosing the processor
architecture and operating system.

One could prepare a single-design overview document with chapters
dealing with module decomposition, module dependency, process
structure, and resource allocation. Similarly, one could have individual
module overview documents containing module interface and module
design chapters; however, care must be taken to avoid mixing concerns
between the chapters in an overview document. We believe the con-
cerns are less likely to be mixed if separate documents are prepared as
shown in Table I.

The discussion in the remainder of the paper may appear to repre-
sent the design process as a linear progression through the design
steps. In fact, experienced developers know feedback to earlier steps
occurs repeatedly during the design process. We recognize feedback
must occur; however, the feedback should be recorded in the proper
document. For example, modifications to the requirements should be
found in the requirements specification and not in a note in a module
design document. We are aware of the price of adhering to this
discipline; however, we feel that the cost of neglecting it is even higher.

We will next present the scope, use, and design considerations for
each document. By design considerations, we mean guidelines for the
software design associated with the step covered by the document.
The guidelines for preparing each of the documents are presented
later.

5.1 Requirements specification
5.1.1 Scope

This document, together with the documents it refers to, should
contain everything one needs to know to build an acceptable software
system. All significant externally visible behavior of the software
should be constrained to acceptable alternatives in this document.

5.1.2 Use

The requirements specification can be used both for communicating
with the system user and to guide the software design. When the
requirements specification has been reviewed by the system users, and
the developers and users agree on the contents of the document, it can

SOFTWARE DESIGN 1947

serve as part of a contract. Some of the many uses of the document in
guiding the software design will be discussed in the following sections.

5.1.3 Design considerations

Many decisions about the functions of a system are made during the
preparation of the requirements specification. Recommendations are
made later in the paper for structuring the document in a way that
encourages systematic resolution of the issues associated with specifi-
cation of the system functions. The framework of the requirements
specification is intended to stimulate addressing requirements issues
early in the system design.

Preparation of the requirements specification should start during
the earliest stages of a project. The document then evolves as the
project proceeds—beginning as a rather sketchy skeleton and gradually
filling out until it is complete. Gaps in the requirements specification
serve to highlight the open issues.

5.2 Module decomposition document
5.2.1 Scope

The module decomposition document records the division of the
software system into modules.

5.2.2 Use

It should tell readers the way the software has been structured and
direct them to the appropriate component and its documentation. This
document should eliminate any need to search through more detailed
documents to find out which one of those documents contains a specific
piece of information.

5.2.3 Design considerations

A number of the popular software design methods focus attention
on the module decomposition step.”’®"" The module decomposition
document could be prepared for a decomposition obtained by any of
a number of the popular methods; however, since a major objective of
the design method is to design for change, we believe module decom-
position is best accomplished by applying the principle of information
hiding.!

Module decomposition according to the principle of information
hiding involves systematically hiding in a module all the information
about each function defined in the requirements specification. The
first step in selecting functions to hide should be to examine the
“expected changes” chapter of the requirements specification (see
Table II). Any function that is likely to change should be hidden in a
module.

1948 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

After doing the decomposition indicated by the Expected Changes
chapter of the requirements, some functions may not yet be associated
with modules, and many modules may still be too large. We have
approached the further selection of functions to be hidden in modules
from two opposing directions. The first involves decomposing the
major functions into progressively smaller functions until we judge the
implementation effort to be within the constraints we have set for a
module. For example, a major function of displaying stored data to the
users is broken down into a number of individual reports that can be
independently requested. Each report may then be decomposed into
a function that controls dialogue with the user, a function to compute
output data, and an output-formatting function. As discussed earlier,
all major functions can be defined in terms of the information required
to determine the output data items associated with the function; e.g.,
“the prompts to the user,” “the output data items required for the
report,” and “the format of the report.”

Continuing subdivision of a complex function may eventually lead
to subfunctions that do not directly control an output data item. We
introduce the notational convention of intermediate data items to
describe the interaction between such subfunctions. Subfunctions and
intermediate data items are further discussed in the guidelines later in
the article for preparing the data items chapter of the requirements
specification. When a function is subdivided, the resulting parts should
be chosen so they are likely to change independently.

Another approach to selecting functions to hide in modules is to
identify common-use functions from the requirements. One looks for
services required repeatedly by a major function or by several major
functions. The common-use functions are hidden so they can be
changed without affecting other parts of the system. For example, data
storage and retrieval services are often required throughout a system.
In support of a report generation system, one might identify a common
function controlling dialogue with the user, common data base access
functions, and a common output-formatting function. Having identi-
fied as many common-use functions as possible, one constructs the
major functions from combinations of the common-use functions and
whatever single-use functions are necessary.

The approach of identifying common-use functions has the advan-
tage of ensuring uniformity in the user view of the system, and it
reduces the redundant development of similar functions by several
programmers. A disadvantage of this approach is that no single major
function can be completed until development is completed on a number
of modules hiding common-use functions. On balance, we favor the
development of modules that hide common-use functions.

Most experienced software developers will quickly identify a number

SOFTWARE DESIGN 1949

of common-use functions that should be hidden in modules. Database
functions, device interfaces, output functions, and user interfaces are
typical of the functions that will generally be readily identified. During
implementation of the modules, the developers may identify the need
for additional common-use modules which can be used by two or more
developers. Some guidance is available for identifying potential com-
mon-use modules;® however, good communications among developers
continues to be necessary to avoid the development of the same tools
by two or more developers.

Access routines in a module may be used by several other modules.
For example, portions of a device handler module may be used by a
data acquisition module, while other parts may be used by a testing
module. Neither of the modules using the device handler would contain
any information about the device since that would all be hidden in the
device handler.

Module decomposition involves breaking down a multiperson devel-
opment into individual work assignments; therefore, the initial decom-
position must be refined when the implementation effort can be better
estimated. If a module is found to require only a small development
effort, we generally do not try to merge it with another module since
there is not a great deal of overhead associated with having additional
modules. If, on the other hand, a module is found to require more
development effort than one person can complete within the allowed
time limit, then it should be subdivided into two or more smaller
modules as described above.

Since the decomposition is based on the functions described in the
requirements specification, the decomposition should be independent
of the implementation chosen for the modules, with the exception that
the amount of implementation effort limits the size of the modules.

The key guideline to keep in mind throughout the decomposition
process is to always define a module in terms of the information hidden
by the module.

5.3 Module dependency document
5.3.1 Scope

This document specifies for each module which access routines from
other modules it must use to perform its function.

5.3.2 Use

The module dependency hierarchy determines which other modules
must be available for a module to perform its functions; therefore, the
document can be used to identify the modules necessary to provide
the required subsets (i.e., the portion of the system to be developed
first if time and staffing limitations prevent developing all functions).

1950 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

The module dependency document is most valuable during the early
stages of the design when the development order for modules and the
users of each module must be identified in order to prepare and review
the module interface documents. Once the module interface documents
have been prepared, this document continues to serve as a summary
document derived from the module interface documents.

5.3.3 Design considerations

The requirements specification, together with the module decom-
position, defines for each module which other modules must be used
to perform the required functions. For example, a data acquisition
module which is required to obtain data from a device must use the
device handler module. Similarly, if the data is to be stored, then the
data acquisition module must use a database module. One must
systematically examine all of the functions of a module as prescribed
in the requirements specification to obtain a list of all of the modules
used. No decisions about the implementation of the modules are
necessary in order to perform this step. In the case of the data
acquisition module, we only need to know that any access to the device
must be through the device handler module and any access to the
database must be through the database module.

5.4 Process structure document
5.4.1 Scope

This document specifies the groups of access routines having a
prescribed execution sequence. The execution of two access routines
in the same process are always clearly sequenced, whereas access
routines in separate processes can be executed in arbitrary order.

5.4.2 Use

The process structure is a necessary input to the design of the
module interfaces since the methods for interfacing between processes
are generally different from those used within a process. The groupings
of access routines into processes determine which module interfaces
are between modules within a process and which cross process bound-
aries.

The process structure is a major determiner of the potential for
exploiting extra processors.

5.4.3 Design considerations

The process structure for a system can largely be defined by deter-
mining which functions in the requirements specification can overlap
in time and which must be executed in a specified order. A maximum
number of processes is obtained if the only modules grouped into

SOFTWARE DESIGN 1951

processes are those for which the execution order is prescribed in the
requirements specification. All modules for which the execution order
is not specified are separated into independent processes. The choice
of the maximum number of processes would yield a more flexible
design than one with fewer processes; however, the overhead associ-
ated with administering processes may cause one to choose a design
with fewer than the maximum number of processes.

Additional guidance for defining the process structure is given in
Refs. 12 and 13.

5.5 Resource allocation document
5.5.1 Scope

The resource allocation document summarizes the system resources
used by each module. The tabulation can include any resource poten-
tially causing a bottleneck in system performance. Resources of con-
cern typically include cpPu real time, memory, disk real time, disk
space, and communications channels.

5.5.2 Use

This document can be used by module developers to judge the
proper level of attention to give to resource usage in the design of each
module. If each developer adheres to the resource budget for their
module, then the overall system should perform properly.

The document is useful for ongoing tracking of resource usage after
the initial design is completed. When enhancements to the system are
evaluated, this document can be used to assess potential impact on
resource usage.

5.5.3 Design considerations

The requirements specification and module decomposition docu-
ment provide the basis for determining the frequency of invocation of
a module and for estimating the likely resource usage for each invo-
cation. Unfortunately, the initial estimate of resource usage must be
based on a rough conception of a possible implementation, and there-
fore, the estimate may be inaccurate. If a module is likely to consume
a large fraction of the system resources, then alternative implementa-
tions should be evaluated early in the system design to refine the
estimate of likely resource usage.

Substantial effort should be invested in early study of resource
allocation. We have seen several projects fail or be severely set back
by encountering serious resource usage problems late in the design
process. If resource needs are documented early in the project, provi-
sion can be made for adequate system resources and for careful design
of the modules consuming most of the resources.

1952 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

5.6 Module interface documents
5.6.1 Scope

Each module interface document describes the aspects of module
behavior visible to other programmers using the module. Aspects of
behavior visible to the system user are fully documented in the
requirements specification and should not be duplicated in the module
interface documents. For example, an interface document for a device
handler module describes the means for invoking the software, the
return values, and any modifications to stored data resulting from
invoking the module. No messages exchanged with the device are
described.®

Everything in the module interface document should be true for all
acceptable internal implementations of the module, and should not be
biased towards any particular implementation.

5.6.2 Use

The module interface documents settle the agreements between
programmers about how cooperating modules will interact. Each mod-
ule interface document should contain everything another programmer
needs to know to develop software that interacts with the module.
Clear documentation of agreements between programmers is very
important on a multiperson development for smooth integration and
ease of maintenance.

5.6.3 Design considerations

In order that the module interface documents adequately describe
the means of communicating between modules, the implementation
environment (e.g. operating system and programming language) must
be selected before the documents can be completed.

5.7 Module design documents
5.7.1 Scope

The module design documents are intended to record the decisions
made in the internal design of the module. Such topics as data structure
design, resource usage, data buffering strategies, subroutine structure,
and control logic are appropriate for the module design documents.

5.7.2 Use

The module design documents are used to guide a review of the
software design and to inform future maintainers of the module of the
reasons why the particular design was chosen.

5.7.3 Design considerations
Several design methods could be used for the internal design of

SOFTWARE DESIGN 1953

modules.”*"' The design method influences programmer efficiency and
the maintainability of the module; however, since the design method
that we are advocating encourages limiting the size of the modules, an
entire module could be discarded and recoded if it proved to be
unmaintainable.

The principle of information hiding can be used in the internal
design of a module just as it is in the overall system design. If
information hiding is applied in the internal design of a module, then
the effects of change should be isolated to a portion of the module,
and less effort should be required to maintain the module.

5.8 Test plans

5.8.1 Scope

All of the requirements stated in the requirements document are
testable, but in practice we can only test a subset due to time limita-
tions. Test plans describe the approach to be used to verify a specified
subset of the requirements document.

5.8.1 Use

A separate test group should prepare and execute the test plan.
Since the test plans represent only a subset of the total software
requirements, the test plan should be maintained as private informa-
tion within the test group to ensure that software is not written so
that it will only pass the test. Even developers with the best intentions
may fall into the trap of focusing on the functions to be tested.

5.8.3 Design considerations

The choice of how large a subset is to be tested must be influenced
by the potential cost of not finding bugs versus the project limitations
in development staff and time. For example, a medical control system
could have a very high cost associated with a residual bug in the
system. The test plan should explain which potential errors are con-
sidered particularly important to detect and what the testing strategy
is to detect those potential errors.

VI. DOCUMENTATION PRINCIPLES

Before providing specific guidelines for preparing each of the docu-
ments, we will introduce some principles to guide the preparation of
any software documentation.

6.1 General principles

(i) Write a specification for every document. Five questions should
be answered in each document specification:

1954 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

» Who will use the document?

* What will they use it for?

- What do they know before reading the document?

+ What should they know after reading the document?

* What sources are there for prerequisite knowledge?

Note that a document specification is not an outline of the document.
Instead, it identifies the audience, the perspective of the audience, and
the way that the audience will use the document."

(i) When writing a document, a chapter in a document, a section
in the chapter or a paragraph in a section, formulate the questions to
be answered before starting to answer them. Writers often confuse
organizational issues with issues about the substance of the article; to
avoid this confusion, we express the organization in terms of questions
rather than answers.

(1) Design documents using the principle of information hiding.
Every section of the document should deal with a clearly defined and
limited aspect of the system; one should not yield to the temptation to
include other “relevant” facts in the same section.

(iv) Use formalism to describe design decisions and natural lan-
guage for introductions, motivation, justifications, etc. Formalisms,
when appropriately designed and used, can greatly increase the preci-
sion and compactness of a description. Formal descriptions are more
easily checked for completeness and consistency. Natural language is
preferable to formalism for describing motivational material. There is
never a need to describe the same thing both ways.

(v) If there are a large number of descriptions containing the same
information, restructure the document so common aspects are de-
scribed only once. It is essential to make the structure explicit or the
reader will not know where to find the information that has been
pulled out of the individual descriptions to avoid repetition. Repeti-
tious documentation is both time wasting and a cause of errors due to
inattentive reading.’

6.2 Stylistic rules

(i) Eliminate all statements containing little information. If the
negation of a sentence would rarely be uttered, the sentence itself
communicates very little.

(if) Replace oblique statements with direct statements. Often sen-
tences containing little information are there as indirect ways of saying
something else. If something else needs to be said, say it directly.

(zzt) Avoid saying the same thing twice. If you say the same thing
two different ways because neither is perfectly clear, you decrease the
clarity because readers will wonder about differences. It is better to
spend the time necessary to say it clearly once. However, remember

SOFTWARE DESIGN 1955

purpose is different from method, and a decision is different from a
reason. Stating the intent behind a design and stating the design is not
saying the same thing twice.

(iv) When describing a program do not confuse its effects with its
intended use. A program may do A and be used to accomplish B, but
we often mix A and B in a way that makes it unclear what the program
itself actually does.

(v) Make the significance of a design decision more explicit by
stating the alternatives excluded by the decision. We often read about
designs with a “ho hum” feeling because we are not made aware of the
significance of the decisions.

(vi) Do not justify things in terms of principles nobody could be
against. State precisely what pragmatic benefits will result.

6.3 Diagrams in program documentation

Pictures have been hotly debated as a means of documenting pro-
grams. If a program is clearly understood, it can be described precisely
in terms of predicates and states or in terms of mathematical functions.
Pictures tend to be quite imprecise as a means of documentation. On
the other hand, pictures are quite useful as a means of introducing
someone to a program he does not yet understand. Pictures should be
used as introductory material but never as the binding documentation.

When pictures are used, precision in drawing the picture is necessary.
Many computer system diagrams are confusing and easily misinter-
preted because there is no precise meaning given to the symbols used.
Often the same symbol is used to represent a program, a data structure,
a hardware device, and a user, all in one diagram. If each picture is
accompanied by a legend, there will be less of this confusion.

6.4 Review procedures

Effective review of the documents serve to verify the correctness of
the documents and to ensure that they are understandable. The
following guidelines can help one achieve effective document reviews.

(i) The selection of the reviewers for a document can be ap-
proached at the following levels depending upon one’s objectives.

(a) The user of the software is an obvious choice for a
reviewer. This would be the system user for the requirements specifi-
cation, and the software developer who will use the module in the case
of a module interface document. The user has a clear interest in the
proper operation of the software, and hence, has a reason to do a
thorough review of the document.

(b) A developer other than the one who prepared the docu-
ment can be given the work assignment of reviewing the document.
This so-called “buddy system” can result in someone else in the

1956 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

development group who is responsible for the correctness of the
document and who is prepared to defend it. An additional benefit of
the “buddy system” is the cross-knowledge gained within the devel-
opment group. This cross-knowledge can be helpful when task reas-
signments are necessary.

(c) A person outside the project can be brought in to review
the document. This reviewer will uncover omissions presumed to be
common knowledge by those closer to the development. The outside
reviewer is also a good choice for reviewing the overall set of documents
for consistency.

(it) The reviewer should be asked to examine the document from
a specific perspective. For example, an expert in the system outputs
should be asked to verify that section of the requirements specification.
A questionnaire can be used to ensure reviewer will consider specific
issues. Such a questionnaire should be prepared by the person who is
directly concerned with the correctness of the document.

(iit} The reviewer should be asked to provide input in a comments
section of the document. The reviewer should sign off on the document
and note the areas of the document with which they were chiefly
concerned. A record is then available of who has examined the docu-
ment. The reviewer can be consulted later if issues arise that they may
have considered.

6.5 Inclusion of justification material in the documents

Arguments can be made both for and against the inclusion of
justification material in the documents to record why decisions were
made. On the one hand, inclusion of a justification section in each
document encourages the writer to record the reasons for making each
decision at the time the decision is made. The reader is also more
likely to read the justification material if it is included in the primary
documents.

On the other hand, justification material can be quite verbose and
its inclusion can swell the size of the document to the point that it
becomes unwieldy, and the potential users of the document are dis-
couraged from reading the document by its sheer bulk. The use of
separate justification documents (referred to in the primary design
documents) encourages clear separation of the concerns between what
was decided versus why it was decided.

Faced with this dilemma, we have chosen to use separate justifica-
tion documents for all of the documents, except the module interface
and module design documents. The documents dealing with the whole
system are quite large—particularly the requirements specification.
Inclusion of justification material in these would make them exces-
sively bulky and forbidding. The individual module interface and

SOFTWARE DESIGN 1957

module design documents are typically only a few pages in length so
the inclusion of justification material does not make them excessively
large. A principal part of the module design document is, in fact, an
explanation of the strategies used in the design.

VIl. DOCUMENT PREPARATION GUIDELINES AND EXAMPLES

In this section, we provide preparation guidelines for each of the
documents.

The guidelines and examples for the requirements specification are
more detailed than for some of the other documents; however, the
other documents may be of equal or greater importance for a particular
project, and some of the other documents may require more effort to
prepare. For example, module interface and module design documents
are prepared by each software developer, so the collective effort in this
area is quite large.

7.1 Requirements specification

The guidelines we have evolved for preparing the requirements
specification for the No. 2 sEs are based on a model project to prepare
requirements for a real-time system.*® The transaction-oriented nature
of the No. 2 sEs has motivated us to shape the guidelines to be more
appropriate for our type of system.

We believe the requirements specification is most effective if it is a
concise reference document. Formalisms are used wherever possible
and tabular organization is frequently used. These techniques aid us
in making the document concise. A concise document may require
some additional effort for first-time readers to familiarize themselves
with the formalisms and background material; however, the concise
format is more efficient for day-to-day use, it eases updating of the
document, and it encourages precision in the specification of require-
ments.

We organized the document into ten chapters which separate the
concerns about the external behavior of the system. The chapter
organization we have used is shown in Table IL

7.1.1 Introduction

The introduction should provide a guide to reading the document
rather than an introduction to the system. Reference can be made to
a separate system description for an overview of the system. We
include a discussion of the organization of the document. Formalisms
are explained and examples of the formalisms are given.

7.1.2 Input and output data items
The input and output data items are specified in several tables and

1958 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

Table Il—Chapter organization

Chapter

Contents

1. Introduction
2. Input and Output Data
Items

3. Communication Proto-
cols

4. User Transactions and
Reports

5. Performance Require-
ments

6. Response to Undesired
Events

7. Fundamental Assump-
tions

8. Expected Changes

9. Required Subsets

10. Glossary of Acronyms
and Terms

A guide to using the document.

Definition of the input and output data items pre-
sented to the user and/or to external devices or
systems.

Details of communications with hardware devices,
software systems, and users. The user command
syntax may be included here since it is a protocol.

Specification of the user interaction with the system,
plus all scheduled and spontaneous reports gen-
erated by the system.

Constraints on how functions must be performed.
We include timing, concurrency, accuracy, and
storage considerations in this chapter.

What the software must do when undesired events
occur.

Characteristics of the system that are not expected
to change.

Changes expected or planned for future releases.

Description of one or more subsets of the functions
which would still constitute a useful system.

Explanation of the acronyms and technical terms
associated with the system.

supporting sections within this chapter. This chapter corresponds to
a data dictionary.

Examples in Tables III, IV, and V illustrate the techniques we have
used to specify the data items. These examples are arranged around a
user transaction in the No. 2 sEs needed to display some of the data
stored about entities (telecommunications switches). The display con-
sists of a set of output report data items.

We introduced the concept of data types to aid in the specification
of the data items. Two criteria are applied to determine whether two
data items are of the same type.

({) The data items have the same set of values.

(ii) It is meaningful to use them in an assignment statement. For
example, even though a computer identifier and a data link identifier
might have the same set of values, using them together in an assign-
ment statement would not be meaningful.

We bracket an item by “+” to indicate it is a data type. Our text
processing system is used to audit the data types to ensure that every
data item has a valid type and every type is used in at least one data
item. Sample data types are presented in Table III. An enumerated
type is a set of values. A list is a one-dimensional array.

Input data items are grouped into two classes—user inputs and
device inputs. Output data items are grouped into three classes—
report data items, interactive messages (errors, help, prompts, and
positive feedback), and outputs to devices.

Input and output data items are bracketed by “/” and “//”, respec-
tively. All references to the data items use the bracketed notation.

SOFTWARE DESIGN 1959

Table lll—Data types

Type Values Description
+boolean+ enumerated boolean (two values)
YES$ yes
NO no
+ent-no+ integer, range (1-999) entity number
+ent-state+ enumerated entity state
$NOT-DB$ not in database
$READYS ready
$OFF-MANS off manual (user action)
$OFF-AUTO$ off automatic (by program)
+list-4+ list of integers list used for many reports
size 4 entries
+nsc+ integer, 4 digits network service center number

Wherever a bracketed item appears in the document, the reader can
readily recognize that it is an input or output data item. When we
change a data item, our text processing system is used to search for all
occurrences of the bracketed item.

Separate tables are prepared for input and output data items. A
description of each data item is provided in these tables, and the data
type is specified. The specifications of the functions controlling each
output data item are identified in the table for output data items. We
have categorized the No. 2 sES functions as either user transactions or
data acquisition functions, and have grouped the specifications of the
functions into two separate lists. The %A-B% notational convention
shown in Table IV is used to point into the two lists of function
specifications. The A number points to the specification of the user
transaction controlling the output data item, and the B number points
to the specification of the data acquisition function. If both A and B
are nonzero, then the output data item values can be set by either a
user transaction or a data acquisition function; e.g., the entity state
data item, //ENT-STATE//, in Table IV can either be set by the user
or by a data acquisition function responding to an error event.

Some functions are made up of several parts that may change
separately. Such functions should be described in terms of two or more
subfunctions each of which is likely to change as a unit. To describe
the communications between individual subfunctions, we have intro-

Table IV—OQutput data items

Data Item Description Functions Data Type
//ENT-CLL1// entity’s text identifier %1-0% +char(13)+
//ENT-COM-PT// common evaluation done %1-0% +boolean+

on entity?
//ENT-LOOPMAX// maximum loop on entity %2-0% +loop-no+
//ENT-NO// entity’s number %1-0% +ent-no+
//ENT-NPA// entity’s NPA %1-0% +npa+
//ENT-STATE// entity’s state %3-8% +ent-state+
//CALL-DISP// call disposition %0-12% +disp+

1960 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

duced the notational convention of intermediate data items (bracketed
by !). An intermediate data item is not visible to the user and serves
only as a notation for the output of one subfunction that is, in turn,
used as an input to another subfunction.

The No. 2 sEs function of determining the disposition of a customer
call attempt is subdivided into two subfunctions. The first determines
the initial disposition 'INIT-DISP! by analysis of voice signals. The
second subfunction uses stored information about the data source
and the value of 'INIT-DISP! to determine the final call disposition
//CALL-DISP//. The two subfunctions are likely to change independ-
ently so they are hidden in different modules.

Intermediate data items are specified in a table similar to that used
for output data items.

7.1.3 Communications protocols

The communications required with external hardware devices and
software systems are specified in this section. External hardware
devices include devices used for data acquisition, control, and/or
display. If the communications with an existing device or software
system are fully documented elsewhere, then the appropriate docu-
ment can be cited.

The user command syntax rules can also be specified here because
the syntax rules can be viewed as a protocol; however, the detailed
command semantics should be specified in the chapter on user trans-
actions.

7.1.4 User transactions and reports

All functions of the system visible to the user are specified in this
chapter. These functions include computer operations, data base in-
teractions, maintenance, user requested reports, scheduled reports,
and spontaneously generated reports, such as equipment failure alerts.
These functions are defined in terms of the input and output data
items defined in the data items chapter. The same data items may
appear in many reports.

A sample specification of a user transaction to obtain an output
report is given in Table V. Some words of explanation may be needed
to interpret the notation. The User Data Entry specifies the user input
required to produce the report. The user enters the command “display
entity-list” and selects which entities are desired. The default value
for the entity selection is “all” entities. The output report is the
collection of data items listed under Qutput Values. These are output
for each entity displayed. The Transaction Effects section describes
any changes to the state of the system or modifications to stored data
resulting from performing the transaction; therefore, in this example,

SOFTWARE DESIGN 1961

Table V—Output report specification

Transaction name: entity list
User data entry: display entity-list /ENT-SELECTION/ = all
Output values:
//CH-NO//
//ENT-CLLI//
//ENT-COM-PT//
//ENT-NO//
//ENT-NPA//
//ENT-NSC//
//ENT-STATE//
//SCA-Port//
Transaction effects: none
Error messages:
a. type error +ent-select+
//E-ENT-SEL//
b. constraint error +ent-select+ (entity not in database)
//E-NO-ENT-SEL//

the Transaction Effects are “none” because this function simply reads
the database and leaves no trace. The Error Messages section lists all
messages specific to this transaction. The type error can be detected
by examining the input data item itself, whereas constraint errors must
be determined by checking the input data items against data stored in
the system. The purpose and use of this report are not discussed
here—that information is contained in the user guide.

7.1.5 Performance requirements

The preceding chapters of the requirements used the narrow defi-
nition of a function as being what the system was to do. The consid-
erations of timing, concurrency, data volumes, data retention, and data
accuracy are reserved for this chapter. A separate chapter is provided
for these considerations because the requirements on what the system
is to do may change separately from the performance requirements.

The process structure selected for the system must permit satisfying
the sequencing and concurrency requirements described in this chap-
ter.

7.1.6 Response to undesired events

Undesired events (UEs) prevent the software from performing the
desired functions. Undesired events may be caused by input data
errors, computer hardware malfunctions, or software errors. The num-
ber and variety of things to go wrong are quite large, and one has
difficulty anticipating all possible problems when writing the require-
ments. One can begin by documenting all known UEs together with
the desired response to each of the UEs. As the system is developed,
additional vEs will be identified, and can be documented in this
chapter.

The key objectives are (i) consciously consider the desired response

1962 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

to each UE, and (ii) document all UEs and responses to the UEs in one
place.

7.1.7 Fundamental assumptions

This chapter consists of the list of functions and subfunctions that
are not expected to change during the life of the system.

Discussions between the users and developers about which functions
are not likely to change can be a useful part of the review of the
requirements. These discussions will often involve challenges to the
fundamental assumptions and may result in moving several of these
functions to the next chapter. If the users wish to change functions
appearing in this section after the system has been developed, they
can expect such a change will require a large development effort since
the developers did not have a reason to make it easy to change. Note
that one does not try to make a function difficult to change. It will
naturally become difficult to change if all information about the
function is not carefully hidden in a module.

7.1.8 Expected changes

This chapter complements the fundamental assumptions chapter by
providing a list of functions that are expected to change. The lists of
functions in this chapter and in the chapter on fundamental assump-
tions should constitute a complete list of functions since a function is
either likely to change or not.

Since many functions are likely to change at some point in the
lifetime of a system, ranking the expected volatility of these functions
may be helpful. Changes to some functions may already be planned
for a future release of the software. Changes to a second group of
functions may not be planned, but from historical data one knows
functions of this type have often been subject to change. One may
have no reason to expect changes in a third group of functions, but, on
the other hand, there may be no firm reason to expect them to be
stable. The additional cost of designing, with the expectation that most
functions may change at some point, is modest in relation to the cost
of later changing a function for which no thought had been given to
possible change.

Functions that are likely to change should be carefully considered
when the decomposition into modules is performed. At that stage, one
should ensure that all information about each of these functions is
completely contained in a module.

7.1.9 Required subsels

The functions of the system should be analyzed to determine what
would constitute a minimal useful system. This minimal subset should

SOFTWARE DESIGN 1963

be the first part of the system to be developed. If delays are encoun-
tered in developing the software, then a useful subset of the system
can still be delivered on a timely schedule.

This chapter should define the minimal subset, plus any larger
subsets which would provide additional valuable functions.

Developers are often under pressure to start development before the
requirements are fully defined. If moderate risk can be taken, devel-
opment can, in fact, begin once certain critical parts of the require-
ments are completed. If the functions in a minimal subset are defined
and the performance requirements, fundamental assumptions, and
expected changes associated with the minimal subset are defined and
reviewed, then one can start the development of the minimal subset
without excessive risk of wasting effort. A continuing source of risk
arises from the possibility that the performance requirements for the
full system will be more demanding than for the minimal subset.
Common-use modules should be developed to accommodate the per-
formance demands anticipated for the full system.

The people on a small project will often have excellent informal
knowledge of the requirements before the formal document is written.
In such a situation, the other design steps can be started, while the
requirements specification is being written; however, issues that were
thought to be resolved are often revealed to be incompletely defined
when the attempt is made to write them down.

7.1.10 Glossary of acronyms and terms

This chapter is, of course, useful in supporting all of the document;
however, it is particularly helpful in expanding the descriptions of the
data items.

7.2 Module decomposition document

In the module decomposition document, we list the modules pro-
duced in the decomposition phase, and state what information is
hidden in each module. Since a concise document is desired, we do not
include any discussion of the strategy used to obtain the decomposi-
tion; instead, we refer to a separate justification document.

The modules are grouped into major classes to assist in locating a
module dealing with a particular type of information and to assist in
reviewing the decomposition for completeness. Most systems will have
at least three classes of modules that hide (i) hardware information,
(it) user visible behavior, and (iif) software design decisions. We have
found a somewhat larger number of module classes to be useful for the
No. 2 sEs. Our module classes are as follows: Database, Device Inter-
face, Data Acquisition, User Input/Output, and Maintenance.

To review the completeness of the decomposition, we check to

1964 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

ensure that the information about each function in the requirements
specification is stated to be hidden in some module.

A portion of our module decomposition document is shown in Table
VI. Since the modules represent individual work assignments, we have
found the document to be quite useful in tracking the progress of the
work; therefore, we identify the author and reviewers of each module
(the author and reviewers are not shown in Table VI to save space),
and we have indicated the current status of the module. The abbrevi-
ations in the status fields are as follows:

NW Module interface document has not been written.
MS Module interface document has been written.
MSR Module interface document has been reviewed.
DD Module design document has been written.
DDR Module design document has been reviewed.

C Coding of the module has begun.

CR Code for the module has been reviewed.

7.3 Module dependency document
The module dependency document should list all of the modules in

Table VI—Module decomposition document

Class Module Status Information Hidden
Database — — Modules providing access to the stored
information.
Call-record CR Storage and retrieval of call data.
Bureau CR Storage and retrieval of bureau data.
Device inter- — — Modules providing communication to
face the call acquisition hardware.
SCA*-handler CR Communications with SC/A devices.
VDAS+-handler NwW Communications with VDAS devices.
Input-output — — Modules providing the user-required in-
puts and outputs.
Term-interface CR Syntax rules for the user terminal com-
mand and feedback.
Bureau activity CR Report summarizing system activity.
DB-builder C The means for the user to alter contents

of the No. 2 SES databases.

Data acquisi- — Modules associated with the acquisition

tion of call records.

CR-generator Cc Cont&-;)l of the acquisition of call rec-
ords,

Classify-call C The computation of call dispositions
from input voice and call data.

CCT-sched C Scheduling the acquisition of calls from
entities.

Cr-proc C Control of the processing of call records.

* Signal converter allotter.
1 Voice data systems.

SOFTWARE DESIGN 1965

the system, and for each of the modules a secondary list should contain
all of the modules used by each module. An example module depend-
ency document is shown in Table VII.

7.4 Process structure document

The process structure document should list all of the processes in
the system and indicate which module encompasses the main loop of
the process. Recall, we have restricted the scope of modules so no
module encompasses the main loop of more than one process. We give
the process the name of the module which encompasses the main loop.

The modules containing the main loop of a process are identified in
Table VII. In fact, this simple table could serve as a process structure
document; however, as we discuss later in the experiences section, the
process structure document for the No. 2 sEs includes a summary of
interprocess communications.

7.5 Resource allocation document

The resource allocation document should contain a list of all modules
and the amount of resources allocated to each. The total resources
consumed when the module is invoked should be recorded including
the resources consumed by any subordinate modules used.

When the module design documents are available, the resource
allocation document can be derived from information in the module
design documents, and the resources used by each access routine can
be included. Thus, just as the module dependency document becomes
a summary document once the module interfaces are written, this
document also becomes a summary document once the module design
documents have been prepared.

Table VIl—Module dependency document

Process
Main
Module Other Modules Used Loop
Call-record — —
Bureau — —
SCA-handler — —
VDAS-handler S —
Term-interface Bureau -
Bureau-activity Call-record X
Bureau -_
Term-interface —
DB-builder Bureau X
Term-interface
CR-generator SCA-handler X
CCT-sched —
Classify-call —
Classify-call — —
CCT-sched — —
CR-proc Bureau X
Call-record —

1966 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

Table VIll—Standard form for module interface documents

Section

Contents

Module name
Author

Reviewers
Information hidden

Access routines

Name of module.

Name of author.

Names of reviewers.

List of functions for which all information is contained in the
module.

The process and/or subroutines invoked by other modules to

perform the functions provided by this module. The input
parameters and return values for each access routine are
defined using the conventions of the chosen programming
language.

The stored data items modified by the invocation of the access
routine are tabulated for each access routine. All changes in
the system resulting from the invocation of each access rou-
tine should be recorded; therefore, the effects of all other
modules used by the access routine to perform its functions
must be noted.

Undesired events UEs occur when an access routine is not able
to perform the requested function. All potential UEs for each
access routine are listed and the return value is specified for
each UE.

List of access routines in other modules that must be invoked in
order for this module to perform its function.

Discussion of the design issues which were considered in choos-
ing the access routines to be provided, in choosing the input
parameters and return values, and in defining the UE re-
sponses. Typically, the discussion of the choice of the UE
responses is a major part of this section.

The reviewer’s comments and sign-off. This is the only section
of the document that the reviewers may edit.

Effects on stored

data

Undesired events

Other modules used

Design issues

Review comments

7.6 Module interface documents

Each module interface document should contain all the information
another programmer needs to know to use the module. The document
should specify how to invoke the module, what functions are performed
by the module, and what return values and error indications are
provided.

Since one of these documents will be prepared for each module, we
used a standard form for the document to ensure that the same
information is available for each module and to make it easier to find
information in the document. A description of the contents of each
section of our standard document is shown in Table VIII.

7.7 Module design documents

Each programmer should prepare a module design document before
the code is written. The document deals only with the implementation
of the functions of the module. The strategies the programmer used in
the design are discussed. Typical topics include data buffering strate-
gies, resources usage, subroutine structure, UE handling strategies, and
program control flow. Pseudocode is used to show the control flow.
Pseudocode is more readable than the “prose programs” often written
when a programmer attempts to document what their software does."®

SOFTWARE DESIGN 1967

Design documents for modules that invoke a subordinate module
should identify it, but not describe the internal design of the subordi-
nate module.

7.8 Test plan

The test plan should list the tests to be performed together with the
planned order of testing, testing strategy, and test environment. The
test should be prepared directly from the requirements specification
rather than from any lower level design documents. The test descrip-
tions should refer to the requirements for the functions to be tested
rather than paraphrasing the requirements since such paraphrasing
may introduce subtle differences between the test objectives and the
requirements.

Viil. DESCRIPTION OF THE NO. 2 SES DEVELOPMENT ENVIRONMENT

To provide the reader with some perspective on our experience with
the design method, we will discuss the purpose, resources, and devel-
opment environment of No. 2 SEs.

The No. 2 sEs collects data on the quality of service offered to the
users of the telephone network. More specifically, it collects data on
whether a customer-dialed call attempt succeeds or fails, and if it fails,
the failure type. This data on network performance is the basis for an
overall assessment of the adequacy of equipment provisioning and
maintenance.

The No. 2 sEs architecture, illustrated in Fig. 2, consists of a central

CALL CLASSIFICATION
TERMINAL (CCT)

—
SATELLITE
PROCESSOR
56-K
32 * BAUD
MAX . CENTRAL
PROCESSOR
—D— 3-MBYTE
MEMORY
TO L
SWITCHING — 1-MBYTE MEMORY [, | DOWN-
SYSTEMS 176-MBYTE DISK | » |-STREAM

TAPE DRIVE * | SYSTEMS
. 3-5TYPICAL [~
« 16MAX

=
{—

Fig. 2—No. 2 sEs architecture.

1968 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

processor and a number of satellite processors. The satellite processors
are used for a signal recognition task requiring extensive computation.
The satellite processors are, in turn, each supported by 32 micro-
processor systems that extract data from analog telephone signals.

The development environment and schedules for the No. 2 sEs
project have much in common with a number of operations systems
developed at Bell Laboratories over the past eight years. The system
uses an enhanced version of the UNIX* operating system and is
programmed in the C language. The development group is modest in
size—on the order of ten people. The development schedule is typical
of the first development cycle of many operations systems. Feasibility
was examined with a small staff beginning in 1978. The definition of
functions and architecture were done in 1979, and the development
group was fully staffed. Most of the coding was done in 1980, and the
first field system became operational early in 1981.

No relaxation in the schedule nor increase in staffing was provided
to aid the prove-in of the new software method. The effort invested in
generating additional documentation was offset by effort saved during
the system integration largely due to the clear expectations between
developers fostered by the use of module interface documents. One of
the authors was employed as a consultant between November 1979
and July 1980, and another worked full time on the requirements
specification.

IX. EXPERIENCES IN APPLYING THE DESIGN METHOD TO THE NO. 2
SES PROJECT

9.1 General comments

Since we are writing this paper shortly after the No. 2 SEs became
operational in the first field application, we cannot present a full
retrospective evaluation of the process; however, we will review some
of our experiences thus far in applying the design method.

The development environment for the No. 2 SES has, of course,
shaped our experience in using the design method. The environment
of a small staff working against a tight development schedule offers
advantages of flexibility and easy communication throughout the
group, but on the other hand, there is little time or staff available to
prepare detailed plans or to provide detached review and testing
support. Most of the projects with a small staff with which we have
been associated in the past have taken advantage of the easy com-
munications within the group, and have correspondingly minimized
the amount of documentation prepared. Such projects have often met

* Registered trademark of Bell Laboratories.

SOFTWARE DESIGN 1969

their initial objectives, but have been costly to maintain over their
lifetime.

We were handicapped by adopting the principles after the develop-
ment was well underway. We had to learn how to apply the principles,
while the development was proceeding under the constraint of a fixed-
project schedule. Much of the additional effort we have incurred in
using the design method has been the result of the inefficiency of
trying to learn the method, while the development was in progress.
Hopefully, this article will help the reader understand beforehand
what is involved in adopting this design method so the learning phase
can precede the development rather than being concurrent with it.

9.2 Requirements specification

9.2.1 Relationship between the user guide and the requirements

specification

We prepared a draft user guide late in 1979, and used it for a review
of the proposed system features with an advisory panel of prospective
Bell System operating company users. With the draft user guide as a
starting point, we prepared a requirements specification in the first
half of 1980. The first step in preparing the requirements specification
invoived recasting the general feature descriptions contained in the
user guide into the more precise format described in this article. Many
decisions were required to make the general descriptions more precise.
Additional material was then prepared for the chapters on performance
requirements, undesired events, fundamental assumptions, expected
changes, and required subsets.

The overlap of the user guide and requirements specification has
been a continuing source of concern. We now see how to have common-
source text files form the core of both the requirements specification
and the user guide. The requirements specification is divided into
those parts visible to the user (e.g., reports) and those parts not visible
to the user (e.g., communication protocols). The user guide is con-
structed by augmenting the user visible portion of the requirements
specification with descriptive material to explain the intended uses of
the functions. The use of common source files for both documents
avoids the duplication of information that makes documents so difficult
to keep up to date. We are only now starting to implement the use of
common source files for the requirements specification and user guide.

9.2.2 Preparation of the document

Our late start on preparing the requirements specification dictated
that it be written in parallel with the other design steps. During the
preparation of the document, we depended upon the general knowledge

1970 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

of the requirements within the group and upon the draft user guide
which described most of the output reports.

The sections on output data items and reports were prepared first.
The database was defined from these sections. The input data items
and user transactions were defined next. The communications proto-
cols with external devices and systems were documented elsewhere, so
preparation of these sections did not have high priority. The user
command syntax was defined after the development was well under-
way.

Considerable time was consumed in choosing the organization for
the document and the formalisms to be used. We now believe the basic
chapter organization proposed here is sufficiently general to satisfy the
need of a broad range of developments with minimal modifications.
Much time was devoted to selecting the formalisms for describing the
data items. Time can be saved by starting with simple formalisms to
describe data items, such as the table descriptions illustrated here. If
the simple formalisms prove to be cumbersome and verbose for a
portion of the data items, then additional formalisms can be introduced
to handle just the troublesome items. Our selective use of intermediate
data items is an example of this approach. Similar selective use of
formalisms is appropriate for user transaction and report descriptions.
The more sophisticated notational conventions, such as modes and
event tables in Ref. 4, yielded more concise descriptions of real-time
functions than the simple formalisms we have used.

The size of the requirements specification is a major concern of
many people who are considering this design method. Concern about
size is appropriate when deciding how to staff the task of preparing
the document, and when considering subdivision of the document;
however, size should not be a consideration when deciding whether to
prepare a requirements document. We do not know of a good alter-
native to adequately document requirements. There are many exam-
ples of projects that experienced serious trouble because they did not
have well-defined requirements.

Issue 2 of the requirements specification for the No. 2 SEs contains
about 250 pages. The specification of 115 user transactions and reports
occupies about 150 pages. About 50 pages are required to describe 800
input and output data items and 80 data types. The remaining 50
pages is mostly text. The number of user transactions and data itemns
required for a system is a useful indicator of the potential size of the
requirements specification.

9.3 Module decomposition

We established the module decomposition with surprising ease and
unanimity among the people involved in the task. This decomposition

SOFTWARE DESIGN 1971

has remained substantially intact through the rest of the development.
Most of the later changes have involved the definition of additional
modules as the requirements have been refined in areas that initially
were vague.

Provided the requirements are clearly understood and the decom-
position is approached by asking questions about what functions of
the system should be hidden in modules, then we believe most people
will generate similar module decompositions. The chief difference we
have seen in the results of several people doing a decomposition is the
degree to which the system should be broken down; i.e., should some
function of the system be in a single module or should the function be
divided into two or more modules. For example, we had no difficulty
agreeing database access routines belong in a different module from
data acquisition tasks; however, we could not definitely determine
whether all database functions should be in one module or whether we
should have several database modules. The appropriate size for a
module is difficult to estimate early in the design; fortunately, it is easy
to later decompose a module into two or more smaller modules if
closer examination of the implementation indicates too much work is
involved.

9.4 Module dependency

The module dependency for the No. 2 sEs was rather simple. Only
the database and user interaction modules were extensively used
throughout the system. Most of the other modules had one or two
users. If we were developing an operating system rather than an
application based on an existing operating system, we might have
found a much more complex module dependency. Since most com-
monly used utilities for our system are provided by UNIX, we only
needed to develop a few common-use modules.

9.5 Process structure

We chose a process structure allowing very near the maximum
concurrency permitted by the requirements. Most of the small proc-
esses resulting from the maximum partitioning reside on the central
computer. The central computer has ample resources available in the
initial versions of the system so the overhead of administering the
additional small processes is acceptable, and the ease of maintaining
the small processes is valuable.

The multiprocessor architecture of the No. 2 sEs has caused us to
have more complex interprocess communications than would have
been necessary for a single processor system. Because of the complexity
of the interprocess communications, we have found the inclusion of an
overview of all interprocess communication in the process structure

1972 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

document to be useful as an aid in introducing people to the system
design. This overview is derived from the module interface documents.

In some cases, implementation considerations have caused us to use
two UNIX processes to perform the functions of one logical process.
Interprocess communications sequence the execution of the two proc-
esses as prescribed in the requirements. For most purposes, these two
UNIX processes can be considered to be one logical process.

9.6 Resource allocation

A small number of modules in the No. 2 sEs consume most of the
system resources, and we were careful to track the resource usage of
these modules. We did not recognize the need for a resource allocation
document until well into the development so the tracking has been
informal. If resource usage had been more uniformly distributed among
the modules, we would probably have been motivated to prepare a
resource allocation document earlier in the development.

9.7 Module interface

We have prepared a module interface document for each of the
modules in the system using the format illustrated earlier. These
documents have been quite valuable in coordinating work among
developers on the project. Our experience confirms the expectation
that the use of module interface documents reduces the effort required
for system integration. Misunderstandings about interfaces are ex-
posed during system integration. Since we had documented and re-
viewed the interfaces before coding started, we discovered fewer mis-
understandings during system integration.

9.8 Module design

These documents have been useful for guiding the review of the
design. We have not used a standard format for these documents,
partially because we did not have a clear idea of what a good format
would be. The format for the documents written by the developers has
tended to converge during the course of the development so we could
probably specify a suitable standard format now.

9.9 Test plan

Developers test their own module, and a small integration and test
team tests the overall system. A testing strategy was established early
in the development, and more recently, we have devised a detailed test
plan. The minimal subset of the system was developed first, and we
have used the subset to provide the test environment for the remaining
features in the system.

SOFTWARE DESIGN 1973

X. APPLICABILITY OF THE DESIGN APPROACH TO LARGER AND
SMALLER PRODUCTS

We believe the design method described here can be used effectively
on both small and large projects. Resistance can be encountered from
people on small projects who are often able to learn most of the
requirements and design decisions, and therefore, do not see the need
to generate documentation containing the level of detail we have
described here. To accept the need for careful documentation one
must recognize that most software systems must be maintained for a
number of years, and the original developers generally move on to
other projects. If the original developers do not adequately document
the design, replacement people find the maintenance of the system
increasingly difficult as the reasons behind undocumented design
decisions are lost.

The need for careful documentation is more readily accepted by
people on a large project; however, we have observed cases where
people on large projects have overreacted by specifying the generation
of redundant documentation that has been a burden to the project.

People on a large project are likely to recognize that a precise
specification of requirements is essential to guide development and
testing. Module interface documents are particularly important for a
large project since the agreements between developers become much
more complex as the number of developers is increased.

A large project is often subdivided into several subsystems in order
to aid project management. All of the design steps described in the
article could be applied to each subsystem. The requirements specifi-
cation for a subsystem would include functions that are external
(visible to the system user) and others that are internal (visible only
to the developers of other subsystems). To obtain a complete view of
the user visible functions, the text files describing the external func-
tions of each of the subsystems could be combined into a single
document. Information hiding should guide the decomposition of a
large system into subsystems.

XI. USING THE DESIGN METHOD AS THE BASIS FOR PROJECT
MANAGEMENT

The framework provided by the design documents can be used as
the basis for project management. The agreements with the user about
the functions of the system are embodied in the requirements specifi-
cation. The basic development unit is the module—a work assignment
for one person for a limited period of time. The agreements between
developers are recorded in the module interface documents. The order
in which the modules are developed is determined from the combina-

1974 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

tion of the required subsets chapter of the requirements specification
and the module dependency documents.

Several additional planning and tracking tools (e.g., PERT charts) are
needed to aid project management; however, the additional tools
should use the work units and agreements specified in the design
documents as building blocks. For example, a PERT chart displaying
development activities should use modules as the basic development
units and the completion of required subsets should be major mile-
stones in the development.

We have used the design method as the basis for managing the
development of the No. 2 sEs. The module interface documents have
been particularly valuable. With the module interface document
agreed upon before internal design of the module begins, the developer
is much freer to work independently on the development of the module.
The developer only needs to negotiate with other members of the
development group if a change is required in the module interface. If
the supervisor and developer agree on a work plan for developing the
module, then the developer is free to execute the work plan without
continual involvement of the supervisor or other group members. This
autonomy fosters a high level of professionalism and a sense of personal
responsibility.

XIl. MAINTENANCE OF THE DOCUMENTS

We have used a concise format for most of the design documents.
Justification material has been separated into supporting descriptive
documents with the exception of the module interface and module
design documents. Lists of modules or data items make up much of
the other documents.

The concise format of the documents should ease updating and
checking for consistency. Automated text processing and static code
analysis tools are readily available to reduce the amount of the manual
document updating. We have used UNIX text processing capabilities
to check for consistency and usage of data items.

Several tools are available to extract dependencies from source code.
Use of these tools could ensure that the design documents were
consistent with the source code. We have not yet adapted these tools
for use with our documents; however, we hope to use them in the
future. The documents that could be automatically checked for con-
sistency with the code include the module decomposition, module
dependency, process structure, and module interface documents. The
communications protocols, data items, and user transaction chapters
of the requirements specification could also be similarly checked.

The resource allocation document must be updated from system

SOFTWARE DESIGN 1975

resource usage measurements. Justification documents including the
module design documents must be manually updated and reissued
periodically.

Xill. CONCLUSION

The principle of separation of concerns requires the division of the
design information into clearly distinct and relatively independent
documents. These design documents are the main products of the
initial design process and, therefore, are the instruments for recording
and communicating design decisions. The documents are to be kept
up to date throughout the lifetime of the project so one should be able
to find current information on any aspect of the software design by
examining the relevant document.

The principle of information hiding is used to guide the internal
design of the software. The functions of the system that are expected
to change are hidden in modules in order to minimize the amount of
software affected by a change in these functions. Explicitly designing
for change is very desirable for systems like ours that are expected to
evolve over a period of years. By giving explicit consideration to the
possibility of change, we have identified many potential areas of
change. Even so, changes are sure to be proposed that we did not
anticipate. We will at least know immediately whether a proposed
change is likely to be easy to implement or not.

No design method will prevent one from making bad design deci-
sions; however, the framework provided by the design documents
encourages systematically answering a comprehensive set of questions
about the system. This process of answering questions may uncover
issues often overlooked until late in the development process when
they have a costly impact. The design method does not alter what
issues must be resolved, but it does change when and how the issues
are decided and documented. For example, often requirements issues
are not decided explicitly; instead, in the course of the coding, the
programmer comes to a point where a decision about external behavior
must be made for their work to proceed. They either consult someone
or make a private decision. With the design method described here,
when a requirements issue is recognized, it is stated in the requirements
specification, and the choice of the desired external behavior is made
openly. When the choice is made openly, the alternatives will often be
more carefully considered. More effort may be invested in making the
decision; however, time spent making a careful decision is generally
well spent.

The effort required to apply these principles to the development of
the No. 2 sEs has been accommodated within the development interval
originally allocated. The immediate benefits we have gained are (i)

1976 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

control of the design process and (if) smooth system integration. In
the future, we hope to be able to implement expected changes at low
cost.

XIV. ACKNOWLEDGMENTS

Many members of the No. 2 sEs Development Group have helped
shape these procedures to be more effective for our application. Con-
tributions worthy of special note were made by David T. Johnson in
defining the module interface document and by Maureen Ahern in
influencing the module design documents.

REFERENCES

1. D. L. Parnas, “On the Criteria To Be Used In Decomposing Systems into Modules,”
Commun. ACM, 15, No. 12 (December 1972), pp. 1053-8.

9. D. L. Parnas, “Use of Abstract Interfaces in the Development of Software for
Embedded Computer Systems,” Naval Research Laboratory, Washington, D.C.
20375, NRL Report 8047, 1977.

. D. L. Parnas, “Designing Software for Ease of Extension and Contraction,” Proc. of
the Third Int. Conf. Software Engineering (May 1978), pp. 264-77.

. K. Heninger et al., “Software Requirements for the A-7E Aircraft,” Naval Research
Labor;.;ory, Washington, D. C. 20375, NRL Memorandum Report 3876, November
27, 1978.

5. K. Heninger, “Specifying Software Requirements for Complex Systems: New Tech-
niques and Their Application,” IEEE Trans. Software Engineering, SE-6 (1980),
pp. 2-13.

. K. H. Britton, R. A. Parker, and D. L. Parnas, “A Procedure for Designing Abstract
Interfaces for Device Interface Modules,” Proc. Fifth Int. Conf. Software Engi-
neering, ACM Order No. 592810 (1981), pp. 195-206.

. E. W’iGDijkatra, A Discipline of Programming, Englewood Cliffs, NJ: Prentice-Hall,
1976.

8. H. D. Mills, “How to Make Exceptional Performance Dependable and Manageable
in Software Engineering,” Proc. COMPSAC Conf., IEEE, Catalog No. 80CH1607-
1 (October 17-31, 1980), pp. 19-23.

9. N. Wirth, Systematic Programming, Englewood Cliffs, NJ: Prentice Hall, 1973.

10. E. Yourdon and L. Constantine, Structured Design, Second Edition, New York:
Yourdon Press, 1978.

11. M. A. Jackson, Principles of Program Design, New York: Academic Press, 1975.

12. E. W. Dijkstra, “Co-operating Sequential Processes,” in Programming Languages,
F. Genuys, Ed., New York: Academic Press, 1968, pp. 43-112.

13. D. L. Parnas and K. Heninger, “Implementing Processes in HAS,” in Software
Engineering Principles, Naval Research Laboratory, Washington, D. C. 20375,
Document HAS.9, 1978.

14. J. C. Mathes and D. W. Stevenson, Designing Technical Reports, Indianapolis:
Bobbs-Merrill, 1976.

15. D. L. Parnas, “On the Design and Development of Program Families,” IEEE Trans.
Software Engineering, SE-2, (March, 1976), pp. 1-9.

16. S. B. Sheppard, E. Kruesi, and B. Curtis, “The Effects of Symbology and Spatial
Arrangement on the Comprehension of Software Specifications,” Proc. Fifth Int.
Conf. Software Engineering, ACM Order No. 592810 (1981), pp. 207-14.

o

[=2]

-3

SOFTWARE DESIGN 1977

