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A sequence of outputs from a stationary memoryless source is
encoded into n code streams sent over n parallel channels. Any k or
fewer of these channels may have broken down, unbeknown to the
encoder. The receiver maps the streams from the surviving channels
into a reconstruction sequence for minimum distortion. This distor-
tion will take different values depending on what subset of channels
is operative. Let Dyax be the largest of these values, the worst-case
distortion. This paper shows that the infimum of Dpax over all
encodings is the same as if the encoder did have knowledge of the
breakdown situation.

I. INTRODUCTION

Consider a stationary, memoryless source emitting at each unit of
time a random variable X, with values in a measurable space 2. An
encoder maps this source stream into n code streams for transmission
over n channels going to a common decoder.

The channels have positive capacities

Ci=C=..- =Cy, (1)

the inequalities following by the choice of the indexing. Up to & of the
channels may in fact have broken down, so that

k
x-1(7) @

situations are possible, but the encoder does not know which of these
K situations is realized. The decoder uses the streams from the oper-
ative channels to form a sequence of reconstructions X,in a measurable
space Z, (often, but not necessarily, the same as %). Performance is
measured by the time average of a distortion function d (X, X,). For
any given coding scheme, the expected distortion will depend on the
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breakdown situation. Here we focus on Di.., the largest of the K
distortions. D,y is the expected distortion one can guarantee, subject
to the assumption that no more than % of the n channels will break
down.

If the % channels with the % highest capacities have broken down, a
total capacity

n—k

p= 3 C (3)

i=1

is left. Then even if the encoder knew that this was the situation, the
distortion could not be made lower than 6(p), where 8(-) is the classical
distortion-rate function for the given source and distortion measure.'
A fortiori, one has

Drnax = 6(p). (4)

In this paper it is shown that this bound is always sharp, i.e.,
Theorem: For € > 0 it is possible to achieve

Drmax < 8(p) + € (5)

by using appropriate coding with large enough block length.

Thus, in the problem of minimizing D;..x one can do as well as if the
encoder did know which of the K breakdown situations was realized.
The price paid for this is that, as will be seen, one has effectively to
“throw away” most of the excess over p of the capacity available in
nonworst situations.

Il. REGROUPING OF THE CHANNELS

If the capacities C;, i > n — k are all reduced to the value C,_; then,
by (1) and (3), the value of p is unchanged, and if the result holds after
such reduction it holds, a fortiori, before the reduction. This means
that the extra capacity

n

Cextra = E (Ct - Cn—k) (6)

i=n—k+1

can be used for other purposes, such as to reduce the distortion in
some situations below Dp.,. Thus, we assume henceforth that C; =
Cprfori>n—k.

The channel coding theorem' implies that given € > 0 any channel
of capacity C is equivalent—for large enough block length and with
appropriate channel coding—to a channel accepting binary bits at rate
C — € and delivering them with arbitrarily small error probability.
Thus, we can assume that all n channels are binary with rates C} = C;
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—& (=1, ---,n), and that they transmit blocks of sufficient size

unaltered, with probability 1 — e, with €, € positive, arbitrarily small.
Lemma: For all € > 0, it is possible to transmit sufficiently long

blocks of binary bits at rate p — € with error probability less than e,

as long as no more than k channels are out of order.

For the proof, let yy = Ciand fori =2, .-+, n — k&,

vi=Ci— Ci-1. (7
Then one has
Ci=3% vy (8)
j=1
fori=1,---,n—k,and
n—k
Ci=Y v (9)
j=1

fori=n— k.
By (1), the n — 2 numbers y; are nonnegative. As a channel of rate

t
DR
J=1

is equivalent to i parallel channels of respective rates yi, yz, - - , vj, We
may consider the following regrouping of these channels:

Group 1 consists of n channels of equal rate y,. The ith of these
channels is part of the original channel i.

Group 2 consists of n —1 channels of equal rate y. They correspond
to parts of original channels 2 through n.

Continuing in this fashion:

Group i consists of n — i + 1 channels of equal rate y,. They
correspond to parts of original channels i through n.

Finally, group n — k consists of 2 + 1 channels of equal rate yn—,
corresponding to original channels n — k through n.

Note that for i = 2, ---, n — k, group i is missing i — 1 channels
corresponding to the first i — 1 original channels. These missing
channels can be viewed as permanently broken down channels of an
imaginary group of n. As up to k of the original channels may break
down, group i, when considered as originally made up of n channels
(of rate y;), may have up to k£ + i — 1 broken down channels. This is
so for all n — k groups, i = 1, .-+, n — k. Now we invoke the known
fact® that n channels of equal rate y;, out of which at most £ + i — 1
are out of order, can be used to transmit binary bits error-free at rate
(n — k — i + 1)y, using truncated Reed-Solomon (TRS) codes.”

Thus the n — k groups yield a total error-free rate
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n—k i

n—k
S-k-i+Dyi=3 ¥y

i=1 i=1 j=1
n—k

= 2 Ci
i=1

=p—(n— k)e.

To split a binary block among the n — % groups and assign to each
group an integral number of bits—a multiple of its TRs bloc coding
length—rounding may be required with asymptotically negligible
losses of rate. In addition, the assumed noiseless behavior of the n
channels only holds with probability (1 — €2)". As all the €’s involved
go to zero as block length increases, the lemma is proved.

Thus, there exist coding schemes, valid in all K situations, which
convey data from transmitter to receiver as if a channel of capacity p
were between them. Then (5) follows from the classical rate-distortion

theory.

lll. SPECIAL CASES
For a binary symmetric source with Hamming distortion, that is,
d(X, X) = 0 when X = X, 1 otherwise,
one has
8(p) =h7'(1-p),

where A~ (x) = 0 for x < 0, while for 0 < x < 1 it is the inverse of the
restriction to (0, 2) of

h(x) = —xlogax — (1 — x) logz (1 — x).!

For n channels of equal capacity C, of which k can break down, one
has p = (n — k)C so that the limit of achievability is given by

Dmax = h_l(l - (n - k)C)- (10)
If in particular C = n™"' (channels of total capacity 1), then
Diax = h7' (k/n). (11)

For k = 1, if one insists that the distortion approach zero when all n
channels are up, one can achieve® distortion (2" — 1)/2 when any
channel is down, which is of order n™'. If, however, one only cares
about maximum distortion, then one can approach A~ (1/n) which is
of order (n log n)™".

If, for example, n = 3 and k& = 1, then (22 — 1)/2 = 0.130 while
h™' (%) = 0.062.
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