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In this paper, we analyze a technique for accurately detecting
transmitted data symbols contained in a modulated signal that has
been degraded by a linear dispersive channel and additive Gaussian
noise. The approach uses an adaptive equalizer which provides
preliminary decisions to an adaptive canceller. The canceller output
is used to remove the interference from an adaptive matching filter,
resulting in the desired signal. Channel equalization attempts to
invert the channel transfer function, while avoiding excessive noise
enhancement. However, cancellation (as used in echo cancellers),
attempts to generate a replica of the interfering signal and subtract
it from the actual received signal containing the sum of the desired
signal and interference. The cancellation approach, unlike equali-
zation, offers the possibility of removing interference without enhanc-
ing the level of noise already present in the received waveform.
Simulation results for transmission over practical channels show
significant improvement of linear cancellation over both linear for-
ward and decision-feedback equalization.

. INTRODUCTION

For the past twenty years, engineers have been seeking new tech-
niques to combat the intersymbol interference (1s1) in data transmis-
sion over band-limited channels. Adaptive equalization with the mean-
square algorithm has been the major technique that allowed a sub-
stantial increase in attainable transmission rate.' If the channel has

1997



only phase distortion, then the linear fractionally spaced equalizer can
eliminate virtually all of the 151 without enhancing the noise level.*’
However, when amplitude distortion is present in the channel, any
adaptive linear equalizer (LE) must compromise between inverting the
channel transfer function and avoiding excessive noise enhancement.
Inevitably, some noise enhancement occurs. Decision-feedback equal-
ization can offer somewhat improved performance when amplitude
distortion is present.*® By using the Viterbi algorithm,’ maximum-
likelihood receivers, in principle, offer the best performance possible
but depend on adaptive estimators of the channel and require an
impractically high complexity when the channel impulse response is
long, as in the case of the typical telephone channel.

If there were no 181, the probability of error in detecting the trans-
mitted data level (i.e. 1 or +3) would be the same as if only one such
pulse were transmitted in isolation. In that case, the optimal receiver
(for Gaussian noise) would be a matched filter and would yield a
certain error probability, Po.. When pulses are sent sequentially, the
effect of 181 cannot be totally eliminated. The maximum likelihood
estimator of the entire sequence of transmitted symbols is known to
result in an error probability that is somewhat larger than P,.

In this paper, we describe a cancellation technique designed to
achieve isolated-pulse, matched-filter performance. Extensive simula-
tion results confirm that there is a significant improvement over linear
or decision-feedback equalization for severe amplitude-distorting chan-
nels of practical interest.

Il. BACKGROUND AND MOTIVATION

The idea of cancellation was used for the echo problem in two-wire
telephony (see Ref. 7), where the received signal contains an interfer-
ence component that is a filtered and delayed version of an “originat-
ing” signal. In that application, the originating signal is actually
available at the same location. However, in data transmission the
originating signal—the transmitted data stream—is not directly ob-
servable at the receiver. The idea of using preliminary decisions to
generate an intermediate estimate of the transmitted data signal was
independently proposed by various investigators. All of the proposals
included adapting the coefficients of a filter that forms a replica of the
1s1. Adaptation is, of course, needed since the appropriate filtering
operation is not known in advance and can vary with time. Hirsch and
Proakis proposed the cancellation scheme with the essential structure
in Figure 1.5° Here the canceller attempts to remove the 1s1 directly
from the received line signal. This approach does not achieve improved
performance over linear equalization if there is phase distortion. In
this paper, we describe a linear canceller (Lc) structure where a
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Fig. 1—First generation linear canceller.

transversal filter W is used instead of the delay in Fig. 1. Both C and
W are adapted simultaneously with the error signal between the input
to the final detector and the appropriate reference.

The motivation for this structure stems from the need to effectively
detect high-speed data on channels that have both a high noise level
and substantial amplitude (slope) and phase distortion. In certain
conditions of practical interest, even if the equalizer were of infinite
length, the noise enhancement of linear or decision feedback equali-
zation makes it impossible to achieve the required error rate. Never-
theless, linear equalization is sufficient to obtain fairly moderate error
rates so that the detected symbols may be adequate as preliminary
decisions for a cancellation scheme.

In Section 3, we provide intuitive reasoning that the optimal choice
for W is a matched filter, and the optimal C is a canceller whose tap
weights are the samples of the channel autocorrelation function, except
for the center tap, which has zero weight. We show in Section 4 that
this is true under the assumption that the preliminary decisions A are
correct. Section 5 covers adaptive operation and Section 6, simulation
results.

lll. FORMULATION

Let the transmitted data symbols be denoted A;, A,, A, --- with
each complex valued symbol having real and imaginary parts restricted
to one of a finite set of values (i.e. 1, £3). A complex-valued pulse
shape p(t) is used to generate the baseband transmitted data signal
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s(t) = %} Axp(t — kT). (1)

The linear distortion of the channel results in the received waveform
X(t) =Y Azh(t — kT) + V1), (2)
3

where V(t) is white noise and A(t) is the overall channel impulse
response.

Suppose initially that the receiver consists of a matched filter and a
sampler (rate 1/T) followed by a symbol detector as shown in Fig. 2.
The matched filter has impulse response

Wit) =h*(LT - 1), (3)

where * denotes complex conjugation and the integer L is chosen large
enough so that the output is small for ¢ < 0. The output of the sampler
is then
U(mT) = ¥ Awr(mT — kT — LT) + V'(mT), 4)
k

where V'(¢) is the colored noise at the matched filter output and r(¢)
is the autocorrelation function of the pulse A(t); that is, r(¢) =
. h(s)g(s + t)ds. Equation (4) can be written as

UmT) = An-rr(0) + VY(mT) + In-1, (5)
where
Inr= Y Aw(mT-kT-LT). (6)
k#m—L

Suppose that at time ¢ = mT the receiver must detect the currently
observable symbol A,-. and it knows all prior symbols Am-r-1,
Am-r—2 ... and all subsequent symbols Am-r+1, Am-z+2, ..., Am that
determine the value I, of the total 1s1. In this case, I,-. is a known
constant and can be subtracted from U(mT). What remains is exactly
the output value that the matched filter would produce if the trans-
mitter sent a single isolated pulse An—p[t — (m — L)T]. Hence, the
ideal performance, with error probability P,, would be achieved.
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Fig. 2—Model of transmitter, channel and matched filter (MF).
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Fig. 3—Decision feedback equalizer.

The above reasoning suggests that we could approach the ideal—
isolated symbol—performance with each symbol decision if we could
generate a good estimate of the total 1s1, I,._r, at each sampling instant,
t = mT. The decision feedback approach can be viewed as a partial
step in this direction. This approach is based on the idea that we can
estimate the prior symbols called precursors by storing and processing
the outputs A,,—;-1, Am-1-2, ... already produced by the detector. The
part of I,_; determined by the precursors can then be constructed. By
applying the decision A; to a feedback filter, the output is subtracted
from U(mT) and the resultant signal is applied to the detector. The
decision-feedback equalizer (DFE) is shown in Fig. 3. Since we have
not removed all of the 181, the resulting performance will be inferior to
that of the isolated-pulse case. This discussion shows that the DFE
technique can be regarded as a partial step towards the goal of totally
removing 1sI. We next examine how we go beyond the stage of
postcursor cancellation to include precursor cancellation.

Suppose at time mT we could also eliminate the subsequent, post-
cursor, symbols Ap—r+1, An—rL+2, ..., An that also contribute to the total
interference at time mT. Then, using eq. (6), an estimate of the total
181, Ir-1, would be available at time instant mT. This is not possible
using the output of the detector in Fig. 2. However, suppose a separate
equalizer operates on the received data signal y(¢) as shown in (a) of
Fig. 4. If optimally designed, it will have a modest error rate, and we
can use its decision A,, as preliminary or tentative decisions for the
purpose of constructing our estimate of I,—r. Now there is no problem
in obtaining both precursor and postcursor estimates needed to form
I,,_;. By introducing a fixed time delay, D, to the received signal prior
to the matched filter as shown in (a), the LE has a head-start in
estimating data symbols. A practical implementation of an adaptive
passband canceller would take the form shown in (b) of Fig. 4.

The delay D can actually be incorporated into the matched filter by
choosing L suitably large. The cancellation filter C produces the
estimate [,,_, of the actual interference

In-= Y Aw(mT-kT-LT), (7)

kwtm—L
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Fig. 4—(a) Linear canceller. (b) Passband linear canceller structure.
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where A4; is the sequence of preh'minarz decisions. Note that the
transversal filter C, which takes as input A,, and produces the output
I, . at time mT, has an impulse response

c.-={(’)[“(m‘L)T] ;’:::f ®)

We shall see in Section IV that, under the assumption of perfect
preliminary decisions, this is indeed the optimum impulse response in
the mean-square sense.

IV. OPTIMAL CANCELLATION
4.1 Derivation of optimal filter coefficients

To determine the optimal pair of filters W and C for the cancellation
scheme, we make the simplifying assumption that the preliminary
decisions available from the LE are correct. We focus on the structure
shown in Fig. 5, where the filter W, called the matching filter, is a
T/2-spaced infinite length transversal filter preceded by a sampler
operating at rate 2/T samples per second. The filter C, called the
canceller, is a T-shaped infinite length transversal filter.

The matching filter W has input samples, y; = y(IT/2), where y(t) is
the received line signal, and the output, U,, of W is taken at time
instants, ¢ = kT, as indicated in Fig. 5 by the 1/T rate sampler. The
input to canceller C is the true data sequence {A,} since we have
assumed the tentative decisions are correct. Thus, Fig. 5 shows C being
fed directly by the transmitted data symbols. It is not necessary to
explicitly consider the time delay D since we are allowing infinite
length filters. The output of the canceller V, is subtracted from the
matching-filter output. This difference producing U, — V, to be applied
to a slicer may be viewed as a linear estimator of the data symbol A,.
The goal is to determine the filters W and C that minimize

E, = E(|e|?), &)

the mean-square error (mse), where e, = U, — V,, — A,..

T T
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£

Fig. 5—Model of a linear canceller.
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Let a(t) denote the additive receiver noise as shown in Fig. 5. Then,
the input to the matching filter is given by

¥ = exp(jwolT/2) ¥, Ah(IT/2 — vT) + a(IT/2)

= exp(jwolT/2) [2 AR(IT/2 = vT) + al(lT/2)], (10)

where A(t) is the complex impulse response of the channel and includes
the effect of the transmitter shaping filter p(¢) as treated in Section
III. The term a;(-) is the complex baseband noise sample. All sum-
mations are over the integers from —o to o, unless otherwise indicated.
The output U, of the matching filter is

U, = exp(—jwonT) ¥ Wiyons, (11)
k

where W; denotes the tap weights of W. Let h; = h(IT/2) and define
bi=Y Wih-,. (12)

Then U, may be written in the form
Un = E Anb2n—2s + Nn, (13)

where
Nn = E W:a2n—n (14)

is the noise at the output of the matching filter.

We shall let C; denote the ith tap weight of the cancellation filter for
each integer i, except { = 0. We make the constraint that the center
tap weight of the cancellation filter is zero. This restricts the role of
the canceller to removing 1sI and prevents the canceller from making
use of the current data symbol which must be estimated by the output
signal from the matching filter. The canceller output V, is given by

V=Y ClAns (15)
70

and we assume that
E|A.|’=1, (16)
which is a convenient normalization of the data symbol power level.
To minimize the mse in eq. (9), we differentiate E, with respect to

the complex tap weights {C:} and { W} and set the derivatives to zero.
Using eq. (15), it can be shown to yield
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E(er Apr) =0 m # 0, (17
and using eq. (11),
exp(—jwonT)E(er yom-m) =0  all m. (18)
Thus, these optimality conditions require that the error signal € be
orthogonal to the observable inputs to the C and W filters, namely,
{A,} and {y.}.

We discuss two cases of interest. In Case 1, the channel is wideband.
We assume that the W filter processes the line signal directly from the
channel without prior band-limiting so that even when sampled at a
rate of 2/T, the noise samples are uncorrelated. In Case 2, which is
more relevant to our situation of a channel band-limited to the voice
frequency range, the noise samples at T'/2 spacing are correlated.

Case 1. Uncorrelated noise samples

In Case 1,

E[a(lT/2)a*(RT/2)] = o*6u,
where o? is the noise variance. We also define a new term,
Ry(l) = Z h*(jT/2)h(jT/2 + 1T/2), (19)
7

which is the autocorrelation function of the T/2-sampled impulse
response, A(jT/2). Then, with
T
hlj—
2)

= Rn(0), (20)

we show in the Appendix that the matching filter has 7'/2-spaced tap
weights

2

Ev=Y

J

h(—mT/2)

Wm = exp(—jwomT/Q) W, all m, (21)

which is clearly proportional to a matched-filter impulse response. The
C taps are shown in the Appendix to be

1 .

Thus, the canceller impulse response, for m # 0, is that of the overall
T-spaced impulse response of the channel and matching filter.

Case 2. Correlated noise samples

As described earlier, Case 2 corresponds to the voiceband telephone

INTERSYMBOL INTERFERENCE 2005



channel, where the noise has approximately the same bandwidth as
the signal so that noise samples at 7/2 spacing are correlated.
The noise correlation is

E[(akT/2)a*(IT/2)] = Ra(k — 1).

We define W(w) as the Fourier transfgrm of the W tap weights, Sn(w)
is the sampled noise spectrum, and H (w) is the Fourier transform of
the channel-sampled impulse response. Then, with

T (% |H(-w—w)|®

$ = E ‘_::'—S,.(:w)—dw’ (23)

we show in the Appendix that

_ ﬁ(—w —wo)
Wiw) = (1 + &)8Sa(—w) 24)
The corresponding Fourier transform of the canceller is
PR
Clw) =L | H(-w)| (25)

T 14+ £8Su(—w+ wo)
Note that since
R (—2m) = Rn(2m),

and S,(—w + wo) is real, we see from egs. (22) and (25) that the
optimum, infinitely long canceller sampled impulse response is Her-
mitian symmetric about the center, i.e.

Cn=C*. (26)

4.2 Derivation of mse

We now derive the mse achieved for Case 1, under the assumption
that W and C have the optimal impulse responses given by egs. (21)
and (22), respectively. The matching filter output is given by

1
U, 5 2 A.Riu(2n — 25) + Nn. (27)

The noise, N,, is the result of applying white noise with variance ato
the matching filter eq. (65). Hence, using egs. (66) and (67), we find
that

o’Ey,
2 _
E|N.| =Gt O (28)
Also, the canceller output is given by
1
Vn = m Eﬂ A_.,R;,(2n - 28) (29)
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Hence, the error signal, with R,(0) = E,, is

E;
=U,-V, —An—mAn+ N,— A,

o’

- (m) An + Nu, (30)
so that, using eq. (30), the mse is
02
= 2 _

E, = E|e| Bt o (31)

The s/n, p, at the output of the cancellation system is defined as the
ratio

_E|Us— Vo= Na|’

E|N,|* (32)
Hence, we find that
E
p= ?ﬁ (33)

4.3 On the property of invariance of mse to timing phase

The mse expression in eq. (31) can be written in terms of the
channel-sampled power spectrum. If H(w) is the Fourier transform of
the overall impulse response A(t), then the transform of A(jT/2) is

ﬁ(w)——zH[w+4;k] |w|<2?'”, (34)
and
T\ |*
-3 |#(s3)
_r T | H(w) | de. (35)
4 -=

Therefore, from eq. (31) the mse of the optimum Lc, normalized to
unit signal power, is

T 21r )
Ewc= 1/[4 ~ IH(w)I dw + 1] (36)
If the matching filter were T-spaced then we have
A == 2 H( 2;k), (37)
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and

En= —j | B () | 2dw. (38)

We can compare the results with similar expressions for the optimum
LE and DFE in Ref. 5 which assume matched filters preceding the
equalizers. They are

T (3 1
Eg = o I_ﬂ —_Y(w) 1 dw, (39)
and
ED[-'E = exp {— ET'I; J’—; ]n[Y(m) + l]dw}, (40)
T
where
1 omk\ |

The expression in eq. (39) is the same as that for an infinitely long
fractionally spaced LE,’ whereas the result for a symbol-spaced equal-

izer is
T (= 2'nrk
EW%E[/& (o4 )

Finally, we note that if the overall channel-impulse response has less
than 100 percent rolloff and the matching filter is T/2-spaced, then

+ 1]dw. (42)

ﬁw=%m¢

and

T 211'

Ep=— | H(w) | *dw.
47

—21'r

T

Clearly, Eic is independent of any phase characteristics and, hence,
the canceller performance is insensitive to timing phase. This property
is shared by the fractionally spaced LE*® and the symbol-spaced LE
and DFE which are preceded by matched filters, as exhibited by egs.
(39) and (40). On the other hand, by itself, the symbol-spaced LE is
sensitive to timing phase, as seen in eq. (42), because the integrand is
a function of the folded spectrum of the channel. This is because a
symbol-spaced filter cannot properly synthesize a proper matched
filter. Likewise, the Lc with a T-spaced matching filter is sensitive to
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timing phase, although some simulations have indicated that the effect
of a bad timing phase seems to be less on the Lc than on the LE.

V. ADAPTIVE CANCELLER STRUCTURE

In practice, we have finite length filters and the ensemble averages
described above are not available to the receiver. As in the case of the
adaptive LE, we adjust the complex {C;} taps of the canceller and
{ W} taps of the matching filter to minimize the instantaneous squared
error,

|€n|? = |Un — Va — A%, (43)

at each time instant nT. As shown in (b) of Fig. 4, U, and V, are the
outputs of the matching filter and canceller, respectively, where

L-1
U, = exp[—j(wonT + 8,.)1 ¥ W¥ y2n-s, (44)
-L
and
M -
S CtAns (45)
k=—M
»%0

where we have 2L complex W taps at T/2 spacing and 2M complex C
taps at T spacing. Unlike the ideal case in Fig. 5, A, are the tentative
decisions obtained from the LE, and #O, is the estimate of any phase
jitter present. The value of A, in eq. (43) is that of the ideal reference
in the training mode and is the receiver’s output decision in the
decision-directed mode of operation. Note that €, in eq. (43) is a linear
function of the tap weights {C:, W3} so that it is possible in theory to
jointly adapt the tap weights to achieve a unique mse.

It can be shown that the gradients of | e,|* with respect to the tap
weights are given by

dleal® _
B—Ck = 2€nAn—k, (46)
and
a | €n | 2 . a *
= 2exp[—j(wonT + 6,)]e yon—s- (47)
AW,

Thus, the adjustment algorithms are

Ci(n + 1) = Ci(n) + BeXAns (48)

k=-M, ..., M
k0,
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and
Win + 1) = Wi(n) — Bexp[—j(wonT + .)€ yon—s,
k=L, ---,L—1 (49)

The step size 8 is chosen to obtain reasonably fast tap convergence
without the algorithm becoming unstable. The problem is similar to
that addressed in Ref. 10 for adaptive equalizers where it is proved
that the step size needs to satisfy the constraint

0<B<—
E<1 (x2)

where L is the total number of taps, (2L + 2M) in our case, and ()*)

is the average input signal power. The fastest initial convergence is

achieved with

1
= . 50
BL()&) (50)

Vl. COMPUTER SIMULATION

The performance of the system over three channel models is evalu-
ated. Channel 1 has a flat amplitude response over the entire voiceband
frequency with little delay distortion, except near the lower band edge.
Channel 2 has moderate amplitude and delay distortion, which just
meets the private-line conditioning, and Channel 3 has severe ampli-
tude distortion. These characteristics are shown in Fig. 6. Pseudo-
random digital data at levels +1 and +3 are used to modulate the
quadrature amplitude modulation (QAM) transmitter at a rate of 9.6
kb/s and the resulting signal is sent over one of the channels. Additive
Gaussian noise and, whenever desired, phase jitter are introduced into
the channel. The input signal-to-channel noise ratio (s/n;) will be
taken to be either 30, 24, or 20 dB.

In the simulations, the Lc filters {C:} and {W,} are allowed to start
adapting after 1000 iterations to ensure that the LE has converged
sufficiently and is able to provide good tentative decisions for the Lc.
The performance of the Lc is measured by the output s/n
(s/n,). This is defined as the ratio of the average data symbol power to
the output noise power, which is taken to be the time average of the
squared error at the Lc output. We exhibit plots of s/n, as a function
of time, expressed in number of data symbol intervals, for both the LE
and Lc. Scatter plots of the output signal constellation are also pro-
vided. In the absence of any impairments, the plot would show 16
points with the x and y coordinates at +1, £3.

In the simulations, both Lc filters span 31 data symbols so that the
matching filter has 62 T/2 taps, while the canceller has 31 taps. The
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LE has 64 T/2 taps to sufficiently span the channel-impulse response.
An initial step size of 0.0005 is chosen for updating all the tap coeffi-
cients and it is reduced to 0.00005, when the taps have nearly con-
verged, to get a small final mse.

We first compare the performance of the Lc and LE over the three
channels described earlier using an s/n; of 24 dB. The receiver switches
from the ideal reference to the decision directed mode of operation
after 3000 iterations. Figures 7, 8, and 9 show the receiver s/n, as a
function of time for the three channels.

Note that in the absence of significant distortion, as in the case of
the Channel 1, the LE and Lc perform equally well, and we see that
s/n, is approximately s/n;. However, the LE degrades more than the
Lc when the channel is more severely distorted in amplitude.

Table I summarizes the results of several simulation runs, for the
LE, DFE, and Lc, over Channels 2 and 3 and with various s/n;. Results
for Channel 1 are not presented because all three schemes do not
suffer any significant degradation. These results are based on the use
of an ideal carrier demodulating phase. Note that for Channel 2, the
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Lc is able to attain s/n,’s which are very close to s/n;, for all three
cases. The gain is about 2 dB over the LE and about 1 dB over the
DFE. If we can use the rule of thumb that every 1-db gain corresponds
to an order of magnitude reduction in error rate, then the Lc would
have an error rate two orders of magnitude less than the LE and one
order less than the DFE. The results for Channel 3, again, show the
improvement over both LE and DFE. We see that the LE performance
degrades significantly when the channel has considerable slope distor-
tion, and on the average, it suffers losses of about 4 dB from the input
s/n. The Lc shows improvements of about 3 db over the LE and 1 dB
over the DFE in all three cases.

We conclude this section by comparing the scatter plots of the
receiver outputs after processing by an LE and an Lc. In this example,
Channel 3 is used and the s/n; is 24 dB. Figure 10 is the result of linear

Table I—Comparison of linear equalizer, decision feedback
equalizer, and canceller performances

Channel 2 Channel 3
s/n; (dB) 20 24 30 20 24 30
Linear equalizer s/n, 180 221 268 154 204 265
Decision feedback equalizer s/n, 19.1 230 279 173 220 271
Canceller s/n, 19.7 238 292 185 231 28.7
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equalization. There is a considerable point spread because of severe
amplitude distortion. Figure 11 shows the result of cancellation, which
considerably tightens the spread and provides a larger noise margin
than equalization.

Vil. CONCLUSION

Cancellation is a powerful alternative approach to linear equalization
that strives to mitigate the effects of slope distortion. This technique
is based on cancelling the sidelobes of the overall channel-impulse
response, unlike equalization, which attempts to invert the overall
channel.

Simulation results of QAM transmission at 9.6 kb/s have shown that
the canceller performs impressively, especially for severely amplitude-
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distorted channels, where neither the LE nor the DFE is satisfactory.
The Lc needs an LE to provide it with reasonably good tentative
decisions to perform the cancellation. It is then able to provide a final
output which has a lower mse than the tentative output. In addition,
the canceller is insensitive to phase distortion, provided the matching
filter has an input sampling rate at least twice the data symbol rate.
Hence, the Lc accommodates the task of a fractionally spaced LE as
well.

In summary, we have introduced a fundamentally new approach
that performs better than either the linear or decision-feedback equal-
ization, as confirmed by simulation results. Moreover, a recent theo-
retical study'' applicable to this cancellation method further confirmed
the effectiveness of our approach.
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APPENDIX
We derive the optimum minimum mse L¢ filters C and W under the
assumption of (i) uncorrelated noise samples, and (ii) correlated noise
samples.
Case 1. Uncorrelated noise samples
In Case 1
E[a(IT/2)a*(kT/2)] = o*du,

where o is the noise variance. Consequently, we have, from egs. (10),
(11), and (15),

E(UnAn-m) =Z;, Wiexp(jwokT/2) h*[(2m — k)T/2], (51)

E(VaAnn) =Cn, m # 0, (52)
E(y3n-nYam-m) = exp jwolk — m)T/2] ¥ E{A}h*[(2n—k)T/2
pPa

—pT]+eai[(2n— R)T/2]}
X {Agh[(2n —m)T/2 - qT]
+ ai[(2n — m)T/2]}

= exp| jwolk — m)T/2] PZ h*(pT — kT/2)

X M(pT — mT/2) + *8km
=Rk —m) + 0% 8km, (53)

where
exp(jwor) ¥ A*(RT + T/2)h(RT + T/2 + 7), [odd
k

Ri(r) = (54)
exp(jwor) ¥ A*(RTYA(RT + 7) 1 even
P

and we also define another term,
Ri(l) =Y h*(JT/2)R(jT/2 + IT/2), (55)

J
which will be used later. Equation (55) is the autocorrelation function
of the T'/2-sampled impulse response iA(jT/2), whereas eq. (54) is T-
spaced. So, from eq. (11)

E(U» y2n-m) = exp(jwonT) § WiE(Y3n—1 Y2n—m)

= I:)_“ WiRi(E — m) + o2Wm:|exp(jwonT). (56)
k
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Also,
E(A :—kyZn—m) = EXP[JI‘-JUQH - m)T/2] 2 E(A:llthp)
P

X h[(2n — m)T/2 - pT]
= exp[jwo(2n — m)T/2]A[(2k — m)T/2]. (57)

Therefore,
E(V}ysn-m) = expljwo(2n — m)T/2] ¥, Cih[(2i — m)T/2], (58)
=0

and
E(A}Yan-m) = exp[jwo(2n — m)T/2]h(—-mT/2). (59)
By substituting egs. (51) to (59) into egs. (17) and (18), we have
Crn =Y, Wiexp(juwokT/2)h*[(2m — k)T/2], m# 0, (60)
k

and
Y WiRk(k — m) + 0 Wn = exp(—jwonT/2)
&
x ¥ Cih[(2i — m)T/2] + exp(—jwomT/2)h(—mT/2), allm. (61)
=0

We next solve for {C;} and {W;} from this pair of equations. Substi-
tuting eq. (60) into eq. (61) gives

%, WaRh(k —m) + iWn = exp(~juomT/2) 3 3 Wi
A L

X exp(jwokT/2)h*[(2i — k)T/2]
x h[(2i — m)T/2]
+ exp(—jwomT/2)h(—mT/2)

= I Wilexp juo(k — m)T/2]

XY h*[(2 - k)T/2]

X h[(2i — m)T/2] + exp(—jwomT/2)
X h(—-mT/2)[1 — ¥ Wiexp
k

X (JuwokT/2)h*(—kT/2)]
= ; WiRE(E — m) + exp(—jwomT/2)
X h(—mT/2)(1 — B), (62)
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using eq. (55), and where

B= ; Wiexp(JwokT/2)h*(—kT/2). (63)
Therefore, we obtain the equality
* W, = exp(—jwoT/2)R(—-mT/2)(1 — B), all m, (64)
or
W, = : (1 - B)
m = exp(—jwomT/2)h(—mT/2) 7 (65)
On substituting eq. (65) into eq. (63), we can show that
— E"
e (©6)
where, using eq. (55),
.T\|?
= Rx(0). (67)

From eqs. (66) and (65), we see that the matching filter has 7T'/2-spaced

tap weights

A(—mT/2)
E,+d "’

which is clearly proportional to a matched-filter impulse response.

Wi = exp(—jwomT/2) all m, (68)

Case 2. Correlated noise samples

As described in Section IV, Case 2 corresponds to the voiceband
telephone channel where the noise has approximately the same band-
width as the signal so that noise samples at 7'/2 spacing are correlated.

With noise correlation

El(akT/2)a*(IT/2)] = Ra(k — 1),
and eq. (53) becomes
E(Y3n-1Yn-m) = Ri(k — m) + Ra(k — m). (69)
Then, in place of eq. (56), we have

E(U? Yon-m) = % Wi[Ri(k — m) + Rn(k — m)]. (70)

Consequently, eq. (62) becomes
Y WiR.(k — m) = exp(—jwomT/2)h(—mT/2)(1 — B), allm. (71)
k
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We have to solve a set of linear equations for the W taps, and the
solution in the time domain is not obvious. Instead, we examine the
results in the frequency domain. Transforming both sides of eq. (70)
gives

W(w)Sa(—w) = (1 — B H (—w —wo);
that is,
W(w) = (1 = B)H (—w —wo)/Sn(—w), (72)

where W(w) is the Fourier transform of the W tap weights, Sn(w) is
the sampled noise spectrum, and H () is the Fourier transform of the
channel-sampled impulse response. Again, W(w) takes the form of a
filter matched to the channel with additive band-limited noise.
The constant 8 can be written as
T (> -
B= e I H*(—w —w) Wlw)dw (73)

On substituting eq. (72) into eq. (73), we can solve for 8 as

-_&
1+¢&
where
T (Z |H(—w —w)|?
—_—— T _—_——
¢ 4 J, ‘_;” Sn(—w) do. (74)
Consequently, from eq. (72),
H(—w —wo)

Wiw) = (75)

(1 + HSn(—w)

Even though the C and W filters are jointly adapting, the C taps
are, in fact, slaved to the W taps. On substituting eq. (68) into eq. (60),
we obtain, using eq. (55),

1 . -
1

Thus, the canceller-impulse response (for m # 0) is that of the overall
T-spaced impulse response of the channel and matching filter; that is,
the canceller recreates the entire 1S1 component present in the match-
ing filter output signal as long as the correct data symbols are applied
to the canceller.
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The C taps corresponding to eq. (75) can similarly be obtained. From
eq. (71), we have

Al(2m — k)T/2]

= .3) ———— expljwo(k — 2m)T/2] E WiR.(I— k+ 2m). (77)

On substituting into eq. (60), we have

expUwnT) o v WiRIGm + - k), m#0. (18)
1-8 &

If, in addition, we define

Cn=

1
C W.WiRA(I— k),
0= (l—ﬁ)kzr »WiRA( )

we can transform the sequence {C..} to obtain
C(w) =Y Crexp(—jumT)

1 .
= m)—g Wiexp[—j(w — wo)kT/2]

x ¥ Wtexp[j(w — wo)T/2]
]
XY RE@m + 1 — k)

X exp[—j(w — wo) (2m + I — k)T/2] (79)

Since both indices £ and ! run from —o to o, we can replace the
summation over m as

Y R (p)exp[—j(w — wo)pT/2] = Sa(— w + wo)

= S,(— w + wo).
Therefore, eq. (79) can be simplified to
1

Clw) = 1=7 28, (— w + wp). (80)

Substituting for W(w) from eq. (72) gives
_(1-pH(-w|?
Cl) =g (81)
or, from eq. (74),
iri_ 2

14 £8u(— w+ wo)
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