Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 60, No. 9 November 1981
Printed in U.S. A.

Adaptive Equalization and Phase Tracking for
Simultaneous Analog/Digital Data
Transmission

By T.L.LIM and M. S. MUELLER
(Manuscript received May 14, 1981)

The general problem of equalization for data transmission where
one of the two data sources produces continuous amplitude data
samples is studied. There are various ways to configure a modem for
such a transmission scheme, and we describe how a standard quad-
rature amplitude modulation structure can be modified to operate in
this mode. This solution can be specialized to include various linear
modulation schemes, such as single sideband and vestigial sideband.
Theoretical analysis shows that adaptive equalization and adaptive
phase tracking can be achieved with similar quality as in the familiar
digital-only modem. We provide extensive computer simulation re-
sults which confirm the validity of our theory.

I. INTRODUCTION

Recently, considerable interest arose in finding ways to transmit and
receive digital and analog data simultaneously over the 2-wire voice-
band telephone channel. We investigate a system using quadrature
amplitude modulation (qaM) where digital and analog data modulate
the two quadrature channels. The same scheme was independently
proposed in Ref. 1. The effects of various channel impairments, as well
as an imbalance of signal powers between the digital and analog
signals, on the error probability of the system has been studied in
Ref. 2.

In this paper, we analyze an adaptive equalizer for this type of
hybrid modulation, using a cross-coupled transversal filter as described
in detail by Falconer in Refs. 3 and 4. The difference here is that one
of the two quadrature channels transmits analog, i.e. continuous am-
plitude, data. If the communication channel is time invariant, it is
possible to train the equalizer with digital data on both quadrature
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channels and freeze the equalizer taps after convergence. Analog data
can then be sent. However, possible changes in channel characteristics
warrant the use of an adaptive equalizer to update the taps continually.
Since references for the analog data are not available, especially when
the receiver is in a decision-directed mode, the update algorithms
reported in Refs. 3, 4 are not applicable in this case. We propose a
modification which only minimizes the mean-square error (mse) in the
digital data path. Thus, only the error signal from this path is required
for adaption. This analysis is similar to that in Refs. 5 and 6.

Results from computer simulations are given to verify our analytical
results. We observed that because the analog data does not aid in the
equalization, it actually acts as an interferer. As such, it would seem
advantageous to reduce the analog signal power, thus, unbalancing the
system. On the other hand, this would degrade the analog s/n. There-
fore, there is a trade off in allocating different power levels to the two
channels depending on which signal is more important.

In the scheme described here, we assume that data symbols are sent
every T'seconds. Thus, the analog signal has to be limited in bandwidth
to 1/(27) in order to avoid aliasing. Alternatively, the two quadrature
channels can be used to transmit primarily analog data with occasional
digital data for purposes of equalizer updating. Then we could have
one high-rate analog channel and a low data rate digital channel.

Il. MATHEMATICAL MODEL

The general QAM transmission scheme of Fig. 1 is considered. Two
data sequences, {a.} and {b.}, are applied to the in-phase and quad-
rature inputs of the cross-coupled transmission filters with impulse
responses g,(t) and g,(¢). Their output signals are modulated by sine
and cosine waves of carrier frequency wo to form the passband signal

{an) gplt)
78l
——  —ggi0) cas Wot
st hele) alt)
gglt) —sin Wyt
Bie)
{&n} gplt)

Fig. 1—Model of transmitter and channel.
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s(t) = Re [2 D.G(t - nT)exp(jwot):l. (1)

where T is the symbol interval,
D, = a, + jb, (2)
and
G () = go(t) + jgo(2). (3)

In the above equations, {D,} is the complex sequence of data symbols
and G(t) is the complex impulse response of the transmission filter.
These parameters can be specialized to represent any linear modula-
tion scheme,’ e.g., amplitude/phase modulation, single sideband (ssB),
vestigial sideband (vsB), and QAM.

Throughout this paper it will be assumed that at least one data
sequence, for example, {a.} is digital. In particular, we will report
results for a system with G (¢) real and where {a.)} and {b.} are digital
and analog data sequences, respectively. These sequences are assumed
to have zero-mean and the following correlation properties:

E{a,an) = Pibnm (4a)
E{b.bm) = Ppbnm (4b)
E{Qnbm) =0 ' (4c)
B = {1, n=m
0, otherwise

After passing through a noisy, dispersive, and phase-jittered channel,
the signal at the input to the receiver can be expressed as

q(t) = Re(exp{j[wot + 871} ngU(t - kT)) + n(8),

where U(t) is the combined complex impulse response of the trans-
mitting filter and the baseband component of the pass-band channel
h.(t) with respect to the carrier frequency wo. The noise process (%) is
independent of the data sequences, while the phase shift #(¢) caused
by the channel is assumed to vary much more slowly than the channel-
impulse response, A.(t), and is typically about 10 degrees peak-to-peak.
It is mutually independent of the additive noise process, as well as of
the data symbols.

The general QaM receiver is shown in Fig. 2. The received signal g(t)
is bandpass-filtered by the phase splitter pair with impulse response
F(t) = f(t) + jf(t) where f(t) denotes the Hilbert transform of f(t).
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Fig. 2—Receiver structure.

The pair of outputs of the phase splitter at time 7' is written as the
complex signal sample

Xr = xx +j.‘fp,
= exp[j(wokT + 6x)] Y, DiHp—1 + N, (5)
T

where {Hx = H(r + kT)} are the samples of the overall complex
baseband equivalent impulse response, and {N:} are the complex
samples of the filtered-noise process. The latter process is uncorrelated
with the signal and has an autocorrelation Ryy. Thus, we have

E{N.Nn} = Rvn[(n — m)T] (6a)
E{N.Nn.} =0 (6b)
E{a.Nn} =0 (6¢c)
E{b.Nn} =0 (6d)

for all integers n and m.

The complex signal sequence {X;} is passed through a cross-coupled
passband equalizer with 2M + 1 complex taps, the output of which at
time nT is given by

M
Qn= 2 CEXn—k

k=M
=C*X,, (7)
where we write the complex tap as
Cr=cp+ j, cx and ¢ real
and define the vectors
C'=[Cm, -+, Cu] (8)
X =[Xnsn, -+, Xn-m]. 9
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We use the * to denote conjugation for scalars and conjugate trans-
position for vectors and matrices. The symbol ¢ denotes transposition.

The signal @, is demodulated to baseband by multiplication with
exp(— j@n — jwonT), where @, is the estimated phase offset (or jitter)
at time nT. The resulting signal Y, can then be written as

Y, = Q, exp(—jb, — jwonT) (10a)
= Yo+ J¥n. (10b)

The demodulated outputs y. and . are estimates of the transmitted
data samples. In the following section, an optimum equalizer tap vector
is derived which minimizes the mse of an appropriate cost function.

1Il. OPTIMIZATION OF EQUALIZER COEFFICIENTS
3.1 Analysis of the minimum mse criterion for the in-phase branch

In Refs. 3 and 4 an optimum equalizer that minimizes an mse
criterion was derived. The mse was defined as

E[| Y. — D.|’] = E[Re*(Ya — D,) + Im*(Y, —D,)]
= E[(y» — an)’]1 + E[(3» — ba)°], (11)

which is the sum of the mse’s in both branches of the equalizer output.
It was found that the optimum equalizer coefficients can be calculated
adaptively provided the complex output error Y, — D, is available to
the receiver. While this is the case for a transmission system with
digital data in both branches where references can be estimated easily,
it is not for the system considered here. In this application only one
reference sequence is assumed to be available. Consequently, only the
error signal in this branch can be made available for updating purposes.

In the following discussion, we define an optimum tap vector which
minimizes the mse in that branch where a reference signal is available
or can be estimated easily. The resulting tap vector will be compared
with the result for the case where both references are available.
Assuming we have a reference for {a.}, we define the mse in that
branch as the cost function to be minimized

e = E[(y» — an)’] (12)
with
¥n=Re[C*X,, exp(—jbn — jwonT)]. (13)
It is convenient to express y, in vector-matrix notation as follows:
yn = C'T(A0,) X, (14)

where we partitioned the complex vectors C of the passband equalizer
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coefficients and X, exp(—j#, — jwonT) of the ideally demodulated
received signal to get real vectors C and X, with twice the original
dimension
C' = [Re(C") | Im(C)] (15)
X;, = {Re[X% exp(—j6, — jwonT)]
= |Im[X", exp(—jb, — jwonT)]} (16)
Ab, = 8, — B,. (17)

In eq. (14), T'(Af) is a transformation matrix expressing the effect of
the demodulating phase error A, and is defined as

[ cos a 0 —sin a 0
0 .'cosa 0 .'—sina
T(a) = . (18)
sin a 0 cos a 0
| 0 *sin a 0 ‘cosa

Note that this matrix is orthogonal; that is,

T(a) X Ta) = T(a) X T'(a) = I (18a)
Furthermore,
T(—a) = Ta) (18b)
and
T(a+ B)=T(a) X T(B) = T(B) X T(a). (18¢)

In order to get the mse eq. (12) as an explicit function of the coefficient
vector C, we introduce the autocorrelation matrix A of the demodu-

lated received signal
A = E{X.X}} (19)

and the cross-correlation vector V between the demodulated received
signal and the reference

V = E (X.a,). (20)
With egs. (14), (19), and (20), we can express eq. (12) as follows:
& = C'T(A8,)AT(—A8,)C — 2C'T(A,)V + E(a2). (21)

Setting the partial derivatives with respect to C to zero yields the
vector equation for the optimum tap vector Cop

AT (—A6,)Cop = V. (22)
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The definition of A in eq. (19) ensures that it is positive definite.
Consequently, the equation has a unique solution.

qu)[ = T(Agn)A_lv- (23)
Inserting eq. (23) into eq. (21) yields for the minimum mse
E€x = E(a2) — Cip T(A6,)V = E(az) — VAT'V. (24)

In Appendix A, we show that, for stationary data sequences {a.} and
{b.)} uncorrelated with the noise, the autocorrelation matrix A and the
cross correlation vector V are independent of the time instant n. It is
important to note that the minimum mse is independent of the
constant demodulation phase error Af,. This is a consequence of eq.
(23) and indicates that even by minimizing the mse in one of the two
equalizer outputs, the optimum coefficient vectors can take care of any
phase error, in the same manner as in a cross-coupled equalizer which
minimizes the total mse at the output.

These facts have been reported in Refs. 5 and 6 for vsB- and ssB-
modulated pulse amplitude modulation signals. Our analysis shows,
however, that this holds in general for stationary sequences {a,} and
{b,)}. Thus, the independence of the minimum mse on the demodula-
tion phase is a property of the cross-coupled equalizer which is not
adversely affected by the particular selection of the cost function nor
by the nature of the sequence {b.}.

When the power of the two data sequences is balanced, i.e., Py = Py,
it can be seen from eq. (80) that the resulting equation for the optimum
tap vector coincides exactly with the equation resulting from minimiz-
ing the total mse in both branches. In this case, both methods will give
the same optimal coefficient vector and the same total mse.

In all our analysis we have assumed uncorrelated data as described
by egs. (4a) through (4c). If, instead of eq. (4b), we have

E (brbm) = Re(n — m),

then the expressions for A,(k, [) and As(k, [) in Appendix A would be
more complicated but they would remain stationary matrices. Then,
assuming correlated data, eq. (24) is in general still valid, except that
V and A are more complicated than the expressions derived in Appen-
dix A.

Although we have based our analysis on a symbol spaced equalizer,
we can also handle fractional spacing and derive similar results. As an
example, we can view the 7//2 equalizer as two parallel symbol-spaced
equalizers, where the first of the two data samples during each baud is
processed by one of the equalizers while the second is processed by the
other equalizer. Let us denote the two equalizer tap vectors asC, and
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C> and the input vectors as X, and X »+./2. Then we can define

C' = [Re(C}) | Im(C}) | Re(C3) | Im(C)]
X = (Re[X", exp(—j6, — jwonT)]|Im[X% exp(—jb — jwonT)]
| Re[X 7.41/2 exp(—jbn — jwonT)]
| Im[X 7412 exp(—jbn — jwonT)]}

T\(a) 0
T(a) = “7 y
0 Tv(a)

where T'(a) is given in eq. (18). With these definitions, all the previous
results for Cop and €, in eqgs. (23) and (24) follow.

3.2 Mean square error in the quadrature branch

We now analyzed the mse in the second branch of the equalizer.
The output of this branch is

Y. = Im[C*X ,, exp(—jb. — jwonT)]. (25)
Since

Im{Z} = Re [Zexp (—-j g)], (26)

we are able to express y, in terms of C and X defined in egs. (15) and
(16) using the transformation properties in eq. (18)

Yu=CT (Aﬂn - ’2-’) X,.. 27)

Therefore, the mse in the second branch can be expressed in vector-
matrix notation as follows:

€2 =E[(¥.— bn)?] (28)
¢ _r - d
=CT(A0,. 2) AT( Aa,.+2)c
—2C'T (Aa - ’E’) E(Xabs) + E(b2). (29)

Using eq. (18) and an approach similar to eq. (66) through eq. (70) in
Appendix A, we show that

T (- g) E {X,bn} = V(Py/P.). (30)
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On substituting eq. (30) into eq. (29) we obtain
& =C'T (Aa,, - g) AT (—Aﬂn + g) C
¢ P,
- 2C'T(A6,)V —P— + P.. (31)

For the balanced power case, i.e., P, = P,, Appendix A shows that

T (— g) AT (g) = A, (32)

and it follows that
é€? = C'T'(A0,)AT (—A6,)C — 2C'T(A6,)V + P.. (33)
This is exactly the same expression as for €* in eq. (21). Consequently,

€' =¢€ (34)

Thus, we conclude that the mse’s in both branches are equal. In this
special case, minimizing the mse in one branch also minimizes the mse
in the other branch.

3.3 Analysis of an infinitely long equalizer

While the formal solution eq. (24) for the minimum mse already
shows the independence of a constant-phase error, it does not reveal
anything about the influence of channel parameters (amplitude, or
phase distortion) or of the sampling instant. To obtain further insight
into this dependence, we analyze an infinite length equalizer.

We show in Appendix B that the resulting minimum mse for an
infinite tap equalizer can be written as

, TP, [ PiZ(w) + Z(—w)] + 1
r T on L/T 4P.PZ(w)Z(~w) de, (39)
+ (Pa+ P Z(w) + Z(—w)] + 1
where
_ |Helw)|?
Z(w) = m . (36)

In eq. (36) Heq(w) is the Fourier transform of the sampled impulse
response H(r + kT), where 7 indicates the sampling instant. It is
related to the transfer function H(w) as follows:

exp(jwr)

Heolw) == ki H(w+k2—;)exp(j2wk%), (37)

DATA TRANSMISSION 2047



and | Ne(w) |? is the baseband component of the noise power spectrum

| Neg(w) |2 = hZ Run(kT) exp[—j(w + wo)kT]. (38)
The formula given in eq. (35) can be evaluated for all the different
modulation schemes which can be modeled by a linear transmission
system. The only frequency-dependent term appearing in eq. (35) is
Z(w), the s/n of the sampled received signal. According to eq. (37) this
will, in general, depend on the sampling instant, 7, and the phase
characteristic of the overall channel transfer function, H(w). If the
sampling theorem is satisfied, i.e., if H(w) = 0 for all w outside the
interval [w), w1 + 27/T'], where w, is arbitrary, combining egs. (37) and
(36) shows that the minimum mse is only dependent on the amplitude
characteristic of the channel transfer function and of the noise power
density spectrum. A QAM transmission system with no excess band-
width is an example; a system transmitting only one data sequence
and using vsB-modulation with less than 100 percent excess bandwidth
is another, more realistic example. In case of balanced power in the
transmitted data sequences, i.e., P, = P or for Z (w) symmetric around
wy, i.e., Z(w + w1) = Z(—w + w1), the mse is given by,

TP, J’ T dw

2 T 2P.Z(w) + 1 (39)

2 =
€opt | P,=P, =

In eq. (100) of Appendix B we show that the partial derivative of €2
with respect to P; is nonnegative. Therefore, an increase in the analog
signal power P, causes an increase in €2,. So the analog signal acts as
an interferer to the digital signal.

IV. ANALYSIS OF THE GRADIENT ALGORITHM FOR JOINT
EQUALIZATION AND PHASE TRACKING

In an adaptive receiver, the equalizer is assumed to know the
reference data for startup and to operate in a decision-directed mode
when random data is being sent. In either case, the tap weight vector
is being updated continuously. Similarly, the phase offset, or jitter,
would be continuously tracked in order to remain in synchronism. As
Falconer did, in Refs. 3 and 4, we assume gradient algorithms are used
in these updatings as follows (C is now time-varying),

CrM-[ = Cn - g VCE?. (403.}
a . a
Bnar = b, — %E €2, (40b)
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where VCe? denotes the gradient of ¢, with respect to C.
It can be shown from eq. (21) that

VCel = 2T (A6,)[AT(AG,)C, — V] (41a)
and
a aT
— €2 = 2C, — (AG.)[AT!(A8,)C,. — V]. 41b
. € 2. (A6,)[AT"(A8,) 1 (41Db)

Using the definitions of A in eq. (19) and V in eq. (20) and substituting
eq. (14) we can recast egs. (41a) and (41b) into

VC.e2 = 2E[T(A0,)Xn( ¥ — an)] (42a)
€2 , 0T (Af,)
== n = n— QAn) |. 42b
. 2FE [C 2. Xo(yn—a )] (42b)

Finally, we use another property of the transformation matrix 7'(a),
namely,

TP p(ss ).

dat 2

together with eq. (27) to obtain
o€’ .
-_—= 2E n n = n) |« 42
A [Fn(yn — a@n)] (42c)

Equations (42a) and (42c) can be used to update the equalizer accord-
ing to eq. (40). Note that all the signals required to update the equalizer
are readily available at the receiver. Also note that y, — a. = e, is the
error in the branch where a reference is available and y, is the output
of the other branch.

By taking expected values as shown in eqgs. (42a and b), we obtain
the estimated gradient algorithm. In practice, a stochastic gradient
approach is used to avoid the long delay involved in estimating the
averages. The update equations are obtained by omitting the expec-
tations in eq. (42) and making small corrections in the direction of the
instantaneous values instead. Hereafter, we shall discuss only the
stochastic gradient method.

Inserting eq. (42a) into eq. (40a) yields the update equation for the
coefficient vector

Cri1=Cr — B'(¥n — an) T(A0,) X (43)

The corresponding equation for the update of the phase jitter corrector
is

én+1 = gﬂ - %jn(yn - an)- (44)

DATA TRANSMISSION 2049



Division by a2 has been included in eq. (44) to give the corrections a
smaller weight, if the nominal data value has a larger absolute value.
Note that because of the special nature of T'(Af,) defined in eq. (18),
the matrix multiplication in eq. (43) requires only 2(2M + 1) multipli-
cation. Equation (43) can be reexpressed in terms of the complex
equalizer C, and input X, as

Crni=Crn— B'XA[(yn — an) exp(jnwoT + jbn)]*. (45)

The equalizer coefficient and phase adjustment algorithms repre-
sented by eqs. (44) and (45) are similar to the ones published in Ref.
3. The main difference is that here, only the error in the digital data
path appears in the adjustment algorithms.

An important parameter in the evaluation of the dynamic behavior
of the control loop is the rate of convergence (roc). For the case of
updating the equalizer only, the ROC can be analyzed using, for exam-
ple, Ungerboeck’s method,? since the stochastic recurrence equations
for the excess mse can be cast in the form analyzed in Ref. 8. Combining
eq. (43) with eq. (14), it is seen that for the stochastic gradient case

T(—A8,)Crii = [I — 8'X.X:]T(—A8,)Cr + B'a: X, (46)
From egs. (21) and (24) the excess mse is given by
€2 — €apt = (Cn — Copt)' T(AG)AT (—AB,)(Cr. — Cop). (47)
Therefore,
€ne1 — €ope = DZAD,, (48)
with
D, = (I - B’X:X5) T (—A8,)(Cr — Cop)
— B’XA[XLT(—AG,)Copt — @.).  (49)

The convergence of the excess mse eq. (48) is analyzed in Ref. 8. There
it is shown further that for stability the control loop constant has to
satisfy

2

0=p8"=< EXX)’ (50)
with
, 1
Bo =m‘ (51)

The control loop constant, 8o, is chosen to give the fastest initial
convergence.
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In steady-state the excess mse is given by
62 - €2 t =__.._.—B’E (XIEX)E?)M
" " 2 - B'EX'X)

From eq. (52) it can be seen that the excess mse can be reduced to an
arbitrarily small value by selecting 8’ small enough.

It is interesting to note that eq. (50) specifies a stability region for
B’ equal to that for an equalizer using error signals from both branches
[E(X'X) = E(X*X)]. From eq. (52) it follows that for a particular 8’
the ratio of the excess mse to €2, is the same as for an equalizer using
error signals from both branches.

We have not been able to analyze the Roc for the joint operation of
equalizer and phase jitter loops. In contrast to the equalizer update
equation, the transformation matrix T'(Af,) in the joint case is involved
in a nonlinear manner. We, therefore, resort to computer simulation of
the loop behavior. These results are reported in the next section.

(52)

V. SIMULATION RESULTS

Here, we present simulation results for the hybrid modulation
scheme described earlier. Pseudorandom digital data selected from the
{£1, +3} alphabet is used to modulate the in-phase channel, while a
set of pseudorandom numbers with a Gaussian distribution N (O, Ps)
modulates the quadrature channel, where P, is the analog signal
power. Additive Gaussian noise at —30 dB below the average signal
level is introduced in the channel and, whenever desired, phase jitter
is introduced. The latter process is modeled by a 60-Hz sinusoid of 10
degrees peak-to-peak. The channels used in the simulation are (i) a
good channel with a flat amplitude frequency response within most of
the frequency band of interest and small delay distortion, except near
the lower band edge, and (iZ) a channel just violating the requirements
for basic conditioning with both moderate amplitude and delay distor-
tion. These characteristics are shown in Fig. 3.

Although it is not intended to start up an equalizer with a reference
signal only in one branch, we report results of such simulations. This
gives good insight into the dynamic behavior of the adaptive equalizer
update loop and facilitates the comparison with a conventional pass-
band equalizer.

The first run described is for balanced power (P, = P, = 5), where
the receiver has a 64-tap T/2 complex equalizer and the error signal is
derived from the in-phase digital channel alone. The basic channel
described above is used. Figure 4 is a sample simulation run displaying
the s/n as a function of time where s/n is defined as the ratio of the
digital signal power to the digital mse. The latter is taken to be a
weighted sum of past and present instantaneous squared errors. The
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Fig. 3—Channel frequency responses.

two curves are for two different timing phases in the receiver. As
shown, the equalizer converges in about 2000 iterations for a step size
of 8 = 0.0005. The step size giving the fastest convergence, according
to eq. (563), would be 8y = 0.0015. A lower value is used in order to re-
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Fig. 4—Convergence of hybrid equalizer.
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duce the mse in steady state. The receiver’s digital and analog outputs
after equalization and demodulation to baseband are displayed in Fig.
5 as a scatter plot. The vertical and horizontal axes represent analog
and digital values respectively and, ideally, the data points would be
on vertical lines passing through the X-axis at 1, £3. Owing to
channel noise, there is both lateral and vertical displacement from the
true values. The decision thresholds for the digital data are the vertical
lines with abscissae 0 and +2. In this example, and all the others to be
described, the input s/n is about 30 dB so that the equalizer has done
a reasonable job in removing intersymbol interference (1s1) caused by
the basic channel.

We next exhibit the results for the regular gam in Figs. 6 and 7, with
digital data on both branches and using exactly the same channel and
receiver parameters as before. The ideal constellation in the scatter
plot would be 16 points with coordinates +1, £3 (in the absence of 1s1
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Fig. 5—Hybrid receiver output constellation.
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Fig. 6—Convergence of regular qaM equalizer.

and channel noise). As seen in Fig. 6, the convergence is faster than for
the hybrid modulation since here we used a complex error function,
leading to a tap weight vector C . that fluctuates less than when using
a one-sided error signal only.

We mentioned in Section 3.1 that when the powers in the digital
and analog branches are balanced, the optimum equalizer and mse are
the same as that of a regular QAM receiver. Indeed, we see by comparing
Figs. 4 and 6 that the digital mse’s reach the same levels. It was also
observed that the significant tap weights for both receiver timing
phases differ by less than 5 percent.

Now we exhibit the effect on the mse of unbalancing the analog
signal power from P, = 5 to some other value. The simulated receiver
has an Acc that scales the received signal to an average power of “ten”
and, hence, the equalizer tap adjustment step size is kept the same in
this series of runs. The analog mse is obtained by averaging all the
past instantaneous mse’s over time. Instead of presenting a series of
curves, we summarize the results in Table I. The digital signal power
is fixed at “five,” but the analog power is varied from “one” to “nine.”
The output mse normalized to the power of the corresponding signal
is presented in Table I for the good channel. Thus, we see that, as the
analog power is increased, the digital mse increases, confirming the
analytical results in Section 3.3 for the infinite length equalizer. It was
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Fig. 7—Regular QaM receiver output constellation.

also shown in Ref. 2 that the error probability upper beund is increased
when a power imbalance exists in favor of the analog signal. As
expected, we also see that the normalized analog mse is smaller with
a larger analog signal power. We also note that the digital and analog

Table I—Comparison of analog
and digital mse for different P,
(good channel)

Normalized mse
Analog
Power P,  Digital Analog
1 0.0007 0.0040
3 0.0010 0.0017
5 0.0013 0.0013
7 0.0016 0.0011
9 0.0018 0.0009
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mse’s are almost the same for balanced power, as theoretically pre-
dicted in Section 3.2.

Simulations were also performed to study the hybrid equalizer
performance in the presence of sinusoidal phase jitter of 60 Hz, where
the phase tracker modeled by eq. (44) is used to estimate the jitter
process. Figure 8 shows a sample run where, after allowing the equalizer
to reach steady-state, 60-Hz jitter with 10 degrees peak-to-peak am-
plitude is introduced causing a degradation in performance. The plot
in Fig. 9 shows the same run, except that the phase tracker is turned
on shortly after the phase jitter is introduced. The lower the jitter
frequency and amplitude, the more effective we can expect the phase
tracker to be.*

VI. CONCLUSION

A data transmission system capable of transmitting and receiving
analog and digital data simultaneously has been studied in detail. We
found that it is possible to perform adaptive equalization of the channel
even when only one of the two quadrature channels is carrying digital
data. Moreover, the minimum mse and tap-weight vector are un-
changed from that of the regular QaM as long as the analog and digital

35
30 JTTER STARTS
25
9
w
@
2 20
a
z
5
515
a
=
2
o
10
GOOD CHANNEL
JITTER 60 Hz, 10° PEAK-TO-PEAK
5
0 ] | ] ] | |
0 10 20 30 40 50 60 70

NUMBER OF ADAPTATIONS IN HUNDREDS

Fig. 8—Hybrid receiver performance in presence of phase jitter (no carrier recovery).
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Fig. 9—Hybrid receiver performance in presence of phase jitter (carrier recovery,

a=05).

signal powers are equal. However, start-up with simultaneous analog
and digital data is slower by approximately a factor of two compared
to the case of a conventional QAM system. An efficient start-up proce-
dure might be to train the receiver with digital data on both channels
and then switch one channel to analog data upon convergence of the
equalizer, since in the case of balanced power, the equalizer taps are
the same. We also found that the scheme can tolerate moderate
amounts of phase jitter.

APPENDIX A
Analysis of A and V
We define,
X,»=Re[X, exp(—jO, — jonT)] (53a)
X,n =Im[X, exp(—jO. — jwonT)]. (53b)
According to eq. (16), it follows that
Xh = (Xpa|Xgn)- (54)
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Inserting eq. (54) into the definition eq. (19) of A yields

XpnXpn | XonXon
a-s(Fe ) o
This can be expressed as
A3 T it reaas) O
where
A: = E[(Xpn + jXan) Xpn — jXan)] = EXAX3) (57)
A; = E[(Xpn + jXqn) Xpn + 7Xqn)']
= E[X.X" exp(—2j6 — 2jwonT)]. (58)

We note that A, is symmetric and A, is Hermitian. For uncorrelated
data and noise sequences the £, /th entry in the matrix A, is computed
with egs. (5), (6), (9), and (58) as follows

As(k, ) = E[Xo-Xo-16xp(~2j6n = 2jwonT)]
= E 2 E(D»Du)Hn—k—an—i—,;
LA

expl(Bns + Bus — 20,) — juoolk + DT
+ E[N,—xNn—1exp(—2j0, — 2jwonT)]. (59)

From egs. (2) and (4) we get
E(D.D,) = (Pa — Pp)d,,. (60)

With the assumption that the phase jitter is quasi-stationary over the
equalizer length, i.e. 8, = 0, for all £ € [-M, M], we obtain

As(k, 1) = (Po— Py) Y HH, p1exp[—jwolk + [)T]. (61)

Note that As(k, I) is zero, if the powers of the sequences {a,} and {b.}
are equal, i.e., P, = P,.
Similarly the k, Ith entry in A, is

A](k, )= E(Xn—kX:_;)
= E 2 E(DrD:)Hn—k—.H:—l—y

X exp[ j(0n—r — On-d) + jowoll — B)T]
+ E[Nn—Nn-1], (62)

with
E(D,Dy;) = (Pa + P)d,, (63)
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E(N,N;) = Ryn[(p = »T], (64)
and the assumption of quasi-stationary phase jitter, this finally yields
Ak, I) = (Pa+ Py) ¥ HH i

X exp[jwo(l — B)T] + Run{(k — DT]. (65)
With the definition of V in egs. (20) and (54), we find

V- E(‘:;i:’::) (66)
or
V= (ﬁ) (67)
with
Vi = E[V,na] (68a)
and
Vs = E[Xqnan]. (68b)

The kth entry in V, is calculated by inserting egs. (5), (9), and (53a)
into (68b)

Vi(k) = E{a.Re[X.—exp(—jb, — jwonT)]}
= E{a.Re[exp(jOn-r — jOn — jwokT) Y. DiHnx-1]}. (69)
{

Again, under the assumption of quasi-stationary phase jitter and with
eqs. (2) and (4), we have

Vi(k) = P,Re[H_zexp(—jwokT)]. (70)
Following the same lines, one obtains for Va(%),
Va(k) = PJIm[H _rexp(—jwokT)]. (71)

A transformed version of A is needed for the analysis of the mse in the
second branch. According to eq. (18), the transformation matrix is

"0, 0|1 07

i o *olo "1
T(-—)= . (72)
1. 0|0 o0

o —1l0 "ol
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Inserting this into eq. (56) yields

7\ (7 _ 1[Re(A — Ag) | —Im(A: + Aq)
T(‘ 5) AT(E) - §|:Im(A1 —A2) | Re(A; + Ay) ] (1

By comparing eq. (73) with eq. (56), it is found that

T(— 3) AT(i’) —A+A (74)
2 2
with
, _ [~ReA: | ~ImA.
A= [—ImAz [ ReA., ] (79)

In eq. 75, A’ is symmetric but not positive definite. Then, referring to
eq. (61), we see that for the balanced power case, i.e., P = Py,

= _I 7\ =
A’=0 and T( 2)AT(2) A.

APPENDIX B
Optimum Tap Weight and mse of the Infinitely Long Equalizer

Define :
Cipe = (CY| CH) (76)

and use egs. (56) and (67). Then, the equation for the optimum
coefficient vector eq. (22) can be expressed as follows

Re(A; + A2)C) — Im(A, — A)C, =2V,
Im(A; + A2)C: + Re(A, — Ay)Cy = 2V, (77)

where it is assumed that the demodulation phase error A#, equals zero.
(It has been stated that the minimum mmse is independent of Af,, at
least for a constant phase offset. Therefore, no loss of generality results
because of this simplification).

Let
C=(C,+)Cy) (78)
and
V=(V,+,V,). (79)
This allows us to write eq. (77) in complex notation
AC+ A C*=2V. (80)

Equation (80) can be expressed in the components of the vector V and
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matrices A; and A-

M
) EM [Ai(k, DC(I) + Ax(k, DC*(D)] = 2V(R). (81)
Note from eq. (61) that since A; is not a Toeplitz matrix, the sum in

eq. (81) is not a convolution even if the dimension M approaches
infinity. Define

C(l) = C(Dexp(jwolT), (82)
V(D) = V(Dexp(jwolT), (83)

Ai(k — 1) = Ai(k, Dexp[—jwo(l — k) T],
=(Pa+ Py) Y HH 1

+ Run(k — Dexp[—jwo(l — R)T], (84)
Aok — 1) = As(k, Dexp[jwolk — )T,
= (Pa— Py) Y HH, st (85)

Equations (61) and (65) were used to get eqs. (84) and (85). With these
definitions, we can transform the problem to baseband. Inserting egs.
(82) to (85) into eq. (81) yields

M

3 [Aik — DC(WD) + Ak — DC*(D)] = 2V (k). (86)

J=—

Here the sums will be convolutions if M — oo. Consequently, the
equation can be expressed in the domain of Fourier transform as

A (w0)C(w) + Az(w)C*(—w) = 2V(w). (87a)

Together with the transform of the conjugate complex of eq. (86),
which is

A (~w)C*(—w) + AF (—w)C(w) = 2V*(-w), (87b)
it can be used to find the formal solution
& 2V(w) AT (—w) — 2V*(—w)As(w)
(w) = .
A (WA} (—w) — Ax(w)AS (—w)

The Fourier transform of the sampled impulse response H(r + &T),
where r indicates the sampling instant, is defined as follows

(88)

He(w) = i H(r + kT)exp(—jwkT), (89a)

K=—m
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where
T /T
H(t + kRT) = — H(w)exp(jwkT)dw. (89b)
2n /T

Assuming the impulse response H(f) has the Fourier transform H(w),
Poisson’s sum formula can be used to get the following relation
between the spectra of the sampled and the continuous functions

-]

Heoo(w) =%1{""’) 3 H(w + 27 ;) exp( j2nk %) (90)

Using the spectral density of the filtered noise in baseband
[Neg(w) P = ¥ Rwn(kRT)exp[—j(w + wo)(kT)] (91)

k=—x

and eqs. (89a) and (89b), the transforms of A,, As, and ¥ can be shown
to be

Al(w) = (Pa + Pb) |Heq(_w) I2 + INeq(_w) |2’ (923)
A2 (0) = (Pa — Pp)Heq(w)Heg(—w), (92b)
V(w) = PaHe(—w). (92c)

From eq. (24) and with egs. (67), (76), and (78) the minimum mse can
be expressed as

fgpl =P, — Cfnptv =P, — RE(Q*D- (93)

In eq. 93, C*V can be viewed as the zeroth term of the convolution of
the sequences (V,) represented by V and (CZ,) represented by C*.
Multiplying the spectra and transforming back to time domain yields

T ("1
Re(C*V) = — = [C*(w)V(w) + C(—w) V*(—w)]dw. (94)
27 T 2

Taking into account the modulation in egs. (82) and (83), this also can
be expressed in terms of C(w) and V(w), which are defined above.

/T
Re(C*V) = 2—":f %[6(@) Viw) + C(—w) V(—w)]ldw.  (95)
—a/T

Combining eqs. (89a), (89b), (92a), (92b), (93), and (95) finally yields
the desired expression of the minimum mse

TP, I T PiZ(w) + Z(-0)] + 1

2 | 4PPoZ(w) X Z(w)
+ (Pa+ Py) X [Z(w) + Z(w)] + 1

dw, (96)

-
€opt =
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where
2

Heq(w) (97)

Z) = I N@

In the balanced power case P, = P;, we can simplify further to yield

TP, (™" 1 N 1
2 /T 2[2PGZ(‘U) + 1] 2[2PaZ(_(rJ) + 1]

dw. (98)

eopt =

Since both terms are integrated over one full period this yields

TP, J'""’ dw

27 . 2P, Z(w) + 1° (99)

€opt =

It can be shown that the derivative of the minimum mse eq. (96} with
respect to the power in the second branch is

sl _ TP; J T [Z(w) — Z(—w)Pdw

APy 27 D? ’ (100)

—a/T

where D is the denominator of the integrand in eq. (96). This means
the derivative is positive unless Z(w) is symmetric in which case the
former is zero. In general, a decrease in the power of the second branch
will decrease the minimum mse in the first branch.
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