Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 60, No. 9, November 1981
Printed in U.S.A.

McDonald’s Problem—An Example of Using
Dijkstra’s Programming Method

By D. K. SHARMA
(Manuscript received April 20, 1981)

We use Diykstra’s programming method to solve the so-called
McDonald’s problem and show how to rigorously introduce file input/
output operations in the program. The steps involved are quite simple
and the paradigm suggested is applicable to the wider class of
problems that involve sequentially processing file records. For
these problems, the programs developed using the data structure
design methodology are generally considered to be the most desir-
able. We show that Dijkstra’s method can yield the same program.
Unlike other methodologies, it also yields a correctness proof,
which is extremely valuable in understanding the program and in
modifying it.

I. INTRODUCTION

In this paper, we use Dijkstra’s method of simultaneously developing
a program and a proof of its correctness to solve the so-called Mc-
Donald’s warehouse problem. The problem briefly is to read a card file
and print an inventory report. Our interest in it stems from the fact
that it requires sequentially processing the records of a file—a task
common to a large class of problems. As we solve the problem, we
illustrate how to rigorously introduce file input/output operations
within the framework of Dijkstra’s method. This aspect of the solution
is intended to be a paradigm that is applicable to the above-mentioned
class of problems.

Our solution serves one other purpose. The McDonald’s warehouse
problem is often used to compare the effectiveness of different pro-
gramming methodologies in developing programs that sequentially
process files. As discussed in Ref. 1, the programs developed using the
data structure design methodology are generally considered to be the
most desirable. This is primarily because the structure of the resulting

2157



program closely reflects the structure of the input data. The program
developed in this paper is identical to that developed by the data
structure design methodology, except that the latter has no correctness
proof associated with it. The proof-related assertions in a program are
not only helpful in understanding it, but also in systematically modify-
ing it.

The solution discussed below is quite simple and regular—as a
paradigm it can be systematically applied to other similar problems. It
is obtained in three steps. In Step 1, we develop the program and its
proof assuming that the records of the file are available in an array.
This version of the program also uses a few symbols that are related
to its proof, assuming that their values are readily available. These
assumptions are made purely for the sake of convenience in developing
the program and are removed in the next two steps. In Step 2, we (i)
introduce additional program variables, (i) modify the assertions to
reflect the introduction of the new program variables, and (i) add
appropriate statements that make the assertions hold. Thus, we are
guaranteed that the program remains correct through all the modifi-
cations. This is done to eliminate from the program text the symbols
whose values are not readily available. In Step 3, we introduce the file
operations. This is done by replacing suitably chosen initialization
statements by openfile and by replacing certain other groups of assign-
ment statements, by readfile or writefile.

Section II presents the problem, first informally and then formally.
This is followed by the three steps of the solution in Section III and by
a summary in Section IV.

Il. PROBLEM SPECIFICATION

McDonald’s food warehouse receives and distributes food items.
Each shipment received or distributed is recorded on a punched card
that contains the name of the item and the change in the quantity of
the item due to that shipment. The change is recorded as a positive
integer when items are received and negative otherwise. These cards
are alphabetically sorted according to item names by another program.

The problem is to write a program to read the sorted card file and
print an inventory report. The report should show the net change in
the inventory of each item transacted and the number of distinct food
items transacted. At this point, the reader may wish to devise his or
her own solution and later compare it with the solution derived below.

The following is a more formal statement of the problem, which is
used in developing the solution in Section III.

Assume that the transaction file contains M — 1 cards, and the ith
card contains two fields, f(i) and g(i), where 1 =i=M — 1, f(i) isa
positive integer representing the name of the food item on the ith card,

2158 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1981



and g(i) is an integer representing the change in the quantity of f(i).
Note that, without any loss of generality, we have assumed f(i)’s to be
integers instead of identifiers.

The file has been sorted in the nondescending order of f(i)’s. For the
sake of discussion, we augment the file with an extra card signifying
“end of file” (EOF) condition for which f(M) = EOF and g(M) = 0.
The value EOF is assumed to be greater than all the other f(i)’s to
maintain the sorted nature of the file.

Clearly, all the cards of a particular food item are grouped together
in the file. Let N be the number of distinct food items, that is, the
number of groups in the augmented file. Let m, be the index of the
first card of the nth group, where 1 < n < N. That is,

my=1
and m, = min{i:mp-1<i=M and f(i — 1) <f(i)} forl<n=<N.
The m/'s have the following property
l=ma<mo---<mna<mn=M.

Define p, to be the net change in the quantity of the nth food item,
where 1 = n < N. We do not define pn, which corresponds to the
fictitious card used to augment the file. We can express p, as

DPn = Y q(i) forl=n<N.
rrl,.,siél'ﬂ,,+I
Note that p,’s are the values to be printed in the report.

We can now define the goal of the program as: Print N — 1 lines
such that the nth line contains the name of the nth food item [(i.e.,
f(mx)] and the net change in the quantity of the food item, i.e., p,.
Then print a line containing N — 1, the number of food items trans-
acted. Note that N is the number of groups in the augmented file.

ill. SOLUTION

In the following, we first develop a program to print the first N — 1
lines of the report and add the last line later.

We assume that the reader has at least a cursory knowledge of the
methodology described in Refs. 1 and 2. See Ref. 3 for a brief tutorial.

We develop the iterative solution in three steps. In Section 3.1, we
assume that N is known, and the following are available as arrays:

fli) and gq(i) for 1=i=M,and
m;, for 1=i=<N.

In Section 3.2, we remove the above assumptions one by one, as

McDONALD'S PROBLEM 2159



described in Section 1. This is done by introducing new program
variables, etc., while still maintaining program correctness. This cul-
minates in a program in which N need not be known, and only one
element each from the arrays f(i) and g (i) appears in the loop.

In Section 3.3, we identify statements that can be replaced by file
operations. This substitution is quite mechanical and yields a program
that sequentially reads the card file and prints the first N — 1 lines of
the report. The post-assertion of this program is then used to print the
last line of the report.

3.1 Step 1
In the notation of Ref. 1, the result assertion is given by

R1l: (Ai:1=<i< N:p,has been printed).

This should be read as follows: for all i such that 1 =i < N, p; has been
printed.

The iterative statement will be the main part of the program. Its
loop invariant P1 is obtained by weakening the result assertion R1,
that is, replacing the constant N by a variable n. Thus, we have

P1l: (Ai:1=<i<n=<N:p;hasbeen printed)
and (P1An=N)=R1.

The first version of the program is as below.
Solution 1.1

n=1; {P1}
don#N-—

Increase n under the invariance of P1.
od {P1An=Nj}.

This program begins with an initialization step that trivially establishes
P1. The loop increases n and keeps P1 invariant; therefore, at the end
we can assert P1 A n = N, which is equivalent to R1.

To show termination, choose the termination function

t=N-—n.

The value of ¢ is initially N — 1, each iteration of the loop reduces it,
and ¢ = 0. The loop, therefore, must terminate.
We now add a statement to increment n:

n:=1; {P1}
don#N—
S1; {Q}
n=n+1{P1}
od {P1An=N}.

2160 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1981



Here, @ is the “weakest precondition such that the execution of ‘n :=
n + 1’ will establish P1.” It is obtained by replacing all occurrances of
n in P1 by n + 1, and the resulting expression is denoted by P1|7*".
Thus,

Q= wp(“n:=n+ 17, P1) = P1|3*,

where wp(S,P) is the weakest precondition in which execution of S
will establish P.

The statement S1, starting execution in state P1, must establish
P1|7*". This can be simply done by computing the value of p. and
printing it. Thus, S1 can be refined as:

S1: {P1)
52, {sum = p. A P1}
print (sum) {P1|7*"},

where the program variable sum has been introduced.
We now refine S2. It has the property

{P1} S2 {R2 and P1},
where

R2:sum=p,= Y q(i).
m,=i<my,
Statement S2 will be an iterative program, and to get its loop invariant
P2, replace the constant m .+ by a variable m. Thus,
P2: sum = > q(i)

my=i<m=m, .,

and (P2 Am=m.n)=R2.
Using the same technique as before, S2 is refined as

S2: m := m,; sum = 0;{P2}
do m # mn+1 —
S3; {P2|7*"}
m:=m + 1{P2}
od (P2 Am = mu.}.

Notice that the initializations establish P2 in the beginning and the
post-assertion is equivalent to R2. Statement S3 must have the prop-
erty

{P2} S3 {P2|7""}

and can be easily shown to be sum = sum + q(m).
This gives us Solution 1.2, after assembling all the pieces.

McDONALD’'S PROBLEM 2161



Solution 1.2

n:= 1,{P1}
do n # N—
m:= m; sum = 0; {P2 Am =m,}
do m # my+ —
sum = sum + g(m);
m:= m + 1{P2}
od; {P2 A m = mu41}
print (sum);
n=n+1{P1Am=m,}
od {P1Am=m,An=N}.

We have added “m = m,” to the assertions where it happens to hold.
This is indicated in bold and is used in the next section.

3.2 Step 2

Solution 1.2 is unsatisfactory since it explicitly uses N, m,, and m,4.,
which are not available a priori. We modify it in the following to
eliminate this deficiency.

These modifications are done by (i) introducing additional program
variables, (ii) slightly modifying the assertions to reflect the introduc-
tion of new variables, and (iif) adding appropriate statements to make
the assertions hold. Thus, the modified program is guaranteed to be
correct. We believe that this technique is applicable not just to this
problem but also to the wider class of problems wherein files are
processed sequentially or where the initial versions of the programs
refer to quantities not readily available.

We make the above-mentioned three changes as follows. In the first
change, we eliminate the assignment statement m := m,. Note that the
rest of the outer loop maintains m = m, invariant; so we could add this
term to the loop invariant P1 and eliminate the assignment statement.
An extra initialization statement, m := 1, would then become necessary
to establish the new loop-invariant in the beginning. The program is
still correct. See Solution 2.1 below.

In the second change, we modify the outer loop guard n # N. Since

(n# N) = [f(mn) # f(mn)],
mN=M, and
m=m,

hold before the outerloop, its guard can be replaced by f(m) # f(M).
This change does not affect any of the assertions.

In the third change, we modify the inner loop guard, m # my+.. For
mn =m< Mp+1,

2162 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1981



(m # mps1) = [f(m) = f(ma)].

Therefore, we can use f(m) = f(m.) as the guard in place of m # mnu+1,
without disturbing anything else. We now replace f(m.) by a program
variable F'; the guard becomes f(m) = F. The meaning of the inner
loop is kept unchanged by requiring F' = f(m,) to be true before the
inner loop. This requirement is trivially met by adding the assignment
F:= f(m) at that point; notice that m = m,, is true before the loop, as
discussed above.

The above additions appear in bold print in the following program.

Solution 2.1

n=1m:= 1;{P1Am=m,}
do f(m) # f(M)—
sum:== 0;F:= f(m); {P2Am=m, AF = f(m,)}
do f(m) = F—
sum = sum + g(m); m= m + 1{P2}
od; {P2 Am = Mmnps1}
print (sum);
ni=n+1{PlLAm=m,}
od (PLAm=m,An=N}.

This program, still correct, does not explicitely use N or m,; notice
that f(M) is the special value EOF. They are, however, an integral
part of the proof and the assertions. The two assignment statements
involving n could be removed from the program without affecting it.
But we retain them, as the final value of n is of interest in printing the
Nth line of the report.

3.3 Step 3

Solution 2.1 uses f(m) and g(m) as if they are available as arrays,
but they are not. We eliminate their use in two steps and introduce file
operations instead. This technique is useful not only in solving Mc-
Donald’s problem, but in a wider class of problems that involve
sequential file processing.

In Step 1, we replace f(m) and g(m) by the variables f and g,
respectively. This necessitates asserting f= f(m) and g = g(m) before
the statements where the substitution is made. Just as in the previous
section, the assertions are made to hold by introducing appropriate
assignment statements.

The two above assertions can become false only after a statement
that modifies m. Therefore, we introduce the assignment statements
f= f(m) and g := g(m) after each statement that modifies m. Solution
2.1 has only two such instances. The program after these modifications
is as follows.

McDONALD'S PROBLEM 2163



Solution 3.1

n=1m=0
m=m+1Lf=fm);g=qm); {(P2Am=m,AA}

do f# f(M)—
sum=0F=f{P2PAm=m,AF = f(m) AA}
do f=F—

sum = sum + q,
m:=m+ 1;
f=f(m);

q:=q(m){P2A A)
od; {(P2Am=m,AA}
print (sum);
ni=n+1{PlLAm=m,AA)}
od{P1Am=m.An=N},

where A is f = f(m) A g = g(m), and the initialization of m has been
broken up into two statements in the beginning of the program.

We now introduce the file operations in this program: replace m =
0 by openfile; m :=n + 1, f == f(m); g == q(m) by read(f, q); and f (M)
by EOF. Also, n equals N at the end of the program, so we can add the
statement to print n — 1, the number of items transacted. The resulting
program, without the assertions, is as follows.

Solution 3.2

n = 1; openfile; read(f, q);
do f # EOF—
sum =0, F = f;
dof=F—
sum = sum + q,
read(f, q)
od;
print (sum);
n=n+1
od;
print (z — 1).

This solution is identical to that obtained by the data structure
design technique. It is considered to be a desired solution: its structure
reflects the problem closely, it does not treat any card specially, it
neatly handles all the groups one after the other, and it can be modified
to add special processing at the beginning or at the end of a group.”

IV. SUMMARY
In this paper, we solved the McDonald’s warehouse problem to show

2164 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1981



how to effectively use Dijkstra’s method to develop programs that
process records in a file sequentially.

The solution was developed in three steps. We first assumed that
the records of the file were available in an array, and developed the
program disregarding the file operations. This program also used
certain symbols whose values are not readily available. These symbols
were removed in the next step by introducing additional program
variables and modifying the program under correctness assertions so
that the next step could be carried out. Finally, we replaced one
initialization statement by openfile, and selected groups of statements
by readfile or writefile. The example discussed in this paper involved
only reading a file, but the same techniques apply when a file is
written, too.

With a proper choice of invariants, the programs thus developed are
comparable to those obtained by the data structure design, a technique
that is considered to yield good programs for such problems.

V. ACKNOWLEDGMENTS

Thanks are due W. L. Bain, Jr. and N. Gehani, for many useful
comments on an earlier draft of this paper, and G. D. Bergland, for
bringing this problem to the author’s attention.

REFERENCES

1. Dijkstra, E. W., A Discipline of Programming, Englewood Cliffs: Prentice-Hall, 1976.

2. Gries, D., “An Illustration of Current Ideas on the Derivation of Correct Proofs and
Correct Programs,” IEEE Trans. Software Engineering, SE-2, No. 4 (December
1976), pp. 238-44.

3. Bergland, G. D., “Structural Design Methodologies,” 15th Annual Design Automation
Conf., June 21, 1978, Las Vegas, Nevada, Design Automation Conf. Proc., June
1978.

McDONALD'S PROBLEM 2165






