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Time-compression multiplexing (TcM) has recently been proposed
for application in multiple TV transmissions through satellites. It is
advantageous over frequency-division multiplexing because of its
relative immunity to nonlinear transponder effects. Here we study
two important and fundamental aspects of TcM —the spectral prop-
erties and band-limiting effects on the time-compressed signal. We
derive the output spectrum of a time-compressed signal and show
that if the original input signal is assumed to be: (i) band-limited to
B Hz, (ii) segmented into T-second intervals before time compression
by a factor of a(a = 1), and (iit) 1/T < B, then essentially all the
spectral power in the output time-compressed signal is contained in
the bandwidth | f| = aB Hz. This result is applicable to the TV case.
Numerical examples on various types of spectra are also presented.
Using the Tv example, we further demonstrate that the ripples created
by low-pass filtering the time-compressed signal up to aB Hz are
small, and interburst interference due to these ripples can be kept
negligible with a small guard time (about 2 percent of the burst
duration) between different signal bursts. We also provide a brief
discussion on some interesting spectral properties of time-compressed
signals in spectrum-expansion applications.

I. INTRODUCTION

Time-compression multiplexing (TcM) is a technique whereby mul-
tiple signals can be multiplexed together in a common communication
channel for transmission."? A simple illustration of this method is
shown in Fig. 1 where x(¢) is a continuous waveform intended for
transmission. It is first divided into segments of T seconds each; and
each segment is time compressed by a factor a(a = 1), resulting in a
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Fig. 1—A simple illustration for TcM.

bursty signal y(t) with a burst duration of T/a seconds. A total of a
such time-compressed signals can then be time multiplexed together
for transmission. In the particular case of TV transmissions through
satellites, TcM is advantageous over frequency-division multiplexing
(FDM) because various degrading effects (e.g., intermodulation and
intelligible crosstalk) due to transponder nonlinearities can be avoided
by employing TcM. In a more general context, TCM is more efficient
than FpDM whenever time division can be accomplished more efficiently
than frequency division. In this paper, we study two important and
fundamental aspects of TcM—the spectral properties and the band-
limiting effects of the time-compressed signal.

If we assume that the original signal x(¢) in Fig. 1 is band-limited to
B Hz, then time compressing it by a factor of a in the infinite time
duration, i.e., transforming x(#) to x(¢/a), would mean a frequency
spectrum expansion by the same factor (a). However, as shown in the
diagram, x(¢) is segmented into T-second intervals before time com-
pression on each segment. Doing so, it is no longer obvious what the
spectrum should look like or what the bandwidth expansion factor
would be. It is clear though that the spectral power in y(t) is nonzero
beyond aB Hz due to the segmentation; and it is desirable that this
power beyond aB Hz be small to maintain spectral efficiency in TCM.
We derive and discuss an explicit expression for the output spectrum
of the time-compressed signal y(t) (see Section II) and show by
numerical examples (Section III) that all the significant power is
contained in the frequency bandwidth below aB Hz, thus, confirming
the long-speculated result that the bandwidth expansion factor in TcM
is the same as the time-compression factor.
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To ensure compliance with the out-of-band emission requirements,
signals are often filtered before transmission. Such a band-limiting
operation on the time-compressed signal truncates its small but non-
zero power beyond its passband (aB Hz) and creates ripples in its time
waveform. The ripples following the trailing edge of each burst are
important because they lead to interburst interference in the system.
We demonstrate using a computer simulation (Section IV) that in the
specific case of Tv transmission, (i) such a band-limiting effect is
minimal as long as all the spectral components below aB Hz are
transmitted without distortion and (ii) the interburst interference can
be kept negligible by introducing a small guard time in the order of
two percent of the burst duration between different time-compressed
TV signals. These encouraging results on both the bandwidth expansion
and band-limiting effects assure us of the basic attractiveness of using
TCM to transmit Tv signals in nonlinear satellite channels.

It is well-known that time compression can also be used as a means
to obtain spectrum expansion, e.g., Henry’s spectrum expander used in
radio astronomy.? In such a case, the key concern is that of spectrum
distortion as analyzed thoroughly by Rowe.* We extend our results to
examine this problem in an appendix, and some simple and interesting
spectral properties pertinent to the spectrum expansion application
are discussed.

Il. SPECTRUM OF THE TIME-COMPRESSED SIGNAL
2.1 Derivation

Referring to Fig. 2, let x(¢) be an input signal to an ideal time
compressor which performs the time compression on each T-second
segment of the input waveform as discussed before. This is mathemat-
ically equivalent to first time compressing x(¢) in the infinite time
duration, resulting in x.(¢), by the required time-compression factor
a(a = 1), and then time-shifting segments of T/a-second duration in
x.(¢) to various proper time instants to arrive at y(¢), the desired time-
compressed output as shown in the diagram. We are interested in the
spectrum (or Fourier transform) of y(¢), denoted by Y(f).

By the above definition, y(¢) is related to x.(¢) by

oo

y(t)= ¥ x[t- k(T — 7)]rect,(t — kT), (1)

k=—u

where

, (@=1) (2)

21

and
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Fig. 2—An illustrative time-compression sequence.
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L g
Using the following,
x.(t) & X(f), (4)
rect,(t) < 7 sinc #fr, (5)

where « denotes Fourier transform pair, and

. sin x
sinc x & Pt (6)

the Fourier transform of y(#) can be written as

=]

Y =3 | X.(g) expl—i2ngh(T - 7)]

k=—oa

X 7 sinc[w(f — g)r] exp[—72n(f — g)kT]dg. (7)

Assuming that the summation and integration can be interchanged,
the above becomes
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Y(f) =j Xc(g)r sinc[#(f — g)7] Z

k=—=

X exp[—j2nk(—gT + fT)]dg. (8)
Applying the well-known identity of
Y exp(—j2nkfT) = kz S(fT— k) = ): B(f— —) (9)
k=—om —-— T2

Y (f) is simplified as

Y(f) = J X(g)r sinc[n(f — g)7] ki O(fT —gr — k)dg

3 () o -E2)

Z X. [ (f——)] sinc #[ f(r — T) + k]. (10)

h=—mx

Using (2) and
x:(t) = x(at) & X.(f) = lX(f) ) (11)
o o

where X(f) is the Fourier transform of x(¢), we get the final result of

Y(f)_lkg X(f——) smc[ (f—i—g,)i"]. (12)

The above expression relates the output spectrum Y(f) to the input
spectrum X (f) and is the basic relationship we work with in the rest
of the paper. The preceding derivation is the simplest that we are
aware of (see Appendix A and Ref. 5 for comparison). We now proceed
to discuss some simple properties of Y(f).

2.2 Simple properties

We are interested in the properties of Y (f) that convey information
about the spectral occupancy problem (or the bandwidth expansion
factor) in TcM systems. In this regard, we must note that Y (f) derived
above is just the Fourier transform of one single time-compressed
signal in the TcM system. If there are N users for the channel (i.e., N
time-compressed signals for transmission), then the total signal in the
transmission channel is (without post-time-compression filtering):

N
z(t) = ¥ yi0), (13)
=1
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where each y; (¢) is a time-compressed signal resembling y(¢) considered

previously. The power spectrum of the total signal in the channel is

2
, (14)

N
P(f) =12(F)[" = | £ Vi)

where Z(f) and Y;(f) are the Fourier transforms of z(¢) and y:(¢),
respectively. It is well-known that
N

P(f) = }:1|Yi(f)|2 (15)
only when the y;(t) are all uncorrelated. In the particular case of TV
transmission, the various time-compressed TV signals are not totally
uncorrelated because of the presence of sync pulses, color subcarrier
bursts, and so on. However, from the point of view of spectral occu-
pancy (i.e., the total power contained in some passband), consideration
of Y(f) alone is sufficient. In any event, P(f) is calculable from the
above if it is needed.

Without loss of generality, we may normalize T = 1, and Y(f)
becomes

h=—x

Y(f)=£ E: X(f—k)sincl:w(f—g—k)]. (16)

The simplest property observable from the above is the output dc
component in Y(f), ie.,

Y(0)=% S X(—k) sinc(mk)

bh=—0a
-1 x0), (17)
(43

which holds for any general X(f) (see Ref. 5 for comparison).

Let us now examine the bandwidth property of y(t). We assume that
the input signal is band-limited to B Hz, i.e., X(f) is zero for |f| > B.
With the normalization of T'= 1, X(f) is band-limited to M = B/T.
Dropping the multiplying constant of 1/« for convenience, and at a
particular frequency f = af. (recall that « is the time-compression
factor),

Y(afs) = Y X(afs — k) sinc 7f fola—1) — k], (18)
h=—o

where the sinc function provides weightings for various points in X(f).

Since the sinc function is maximum when its argument is zero, it is

sensible to perform the summation starting with the value of % that

maximizes the sinc function. Denoting such a value of k by ko, it is
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given by solving
fela = 1) — ko = (19)
The solution is
ko=fila—1)+€, |e|=0.5, (20)

where € is necessary because k, is restricted to be integer, and A is
unique, except for the case € = +0.5. It should be emphasized that e
depends on both f; and a. Using this expression for ko, Y(af:) can be
written as

Y(af:) = {X(af: — k) sinc 7| fo(a — 1) — ]} r=r,
+ ¥ X(afi — k) sinc #[ fola — 1) — k]

ke,
= X(f: — €) sinc 7(—¢)
+ ¥ X(f. — € + K) sinc n(—e + K), (21)

K#0
where K in the summation is taken as K = +1, £2, and so on. A
graphical representation of the above is depicted in Fig. 3.
To get immediate insight into the bandwidth property, we consider
the following two cases:
Case 1: a = integer, f, = integer. Under this assumption, € = 0 and
we have a simple relationship of

Y(af:) = X(f.). (22)

This means that every integer value of fin X(f) is mapped exactly
onto af in Y(f). Without the normalization on T, this is equivalent to
saying that every integer multiple of 1/T in X(f) is mapped exactly
onto a/T in Y(f) as shown in Fig. 4. If the condition that 1/7 < B
holds, it is almost certain that the spectrum Y(f) is simply the

Xf

k=-1 K=2

X—'-\

|
|
I
|
|
|
|
|

\J/ g

Fig. 3—Graphical illustration for the summation in the expression for the output
spectrum of a time-compressed signal.
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Fig. 4—Frequency-spectrum expansion property through time compression.

frequency-expanded version of X(f) by the factor a with some insig-
nificant sidebands for | f| > aB Hz. In the particular case of Tcm/Tv, T
is taken as a scan line duration, yielding 1/T = 15.73 kHz. With B =
4.2 MHz, BT = 267, using « as the bandwidth expansion factor is,
therefore, a good rule of thumb for the Tv case. We note that the
condition of a« and f. being integers is merely an artifact due to
normalization. Therefore, we emphasize that this case is indeed more
general than it appears to be. For instance, for any given set of a, we
can always find a set of f; such that this condition holds.

Case 2: « # integer, f. # integer. € is generally nonzero here, and
Y (af,) is given by a weighted sum of X(f. — € + k) [see (21) and Fig.
3] with X(f. — €) as the main contributor. An alternative view is that
Y(af,) is the weighted average of X(f: — €) and its neighboring points.
The output spectrum Y(f) is again a frequency-expanded version of
X(f), except for ripples created by the averaging process. It is noted
that € can be zero here resulting in Y(afiy) = X(f:). This occurs
whenever f.(a — 1) is an integer in (20), e.g., a = 3.5, f: = 106.8.

The foregoing discussion by and large answers the basic question on
bandwidth expansion in TcM systems. The result of using the time-
compression factor a as the bandwidth-expansion factor makes sense
for most cases where the input spectrum X(f) can be modeled as
continuous and band-limited. The inclusion of peculiar nulls and delta
functions in X(f) would complicate the matter, but it can be examined
in detail using the equations provided above. As to the precise shape
of Y(f) in comparison to X(af), which is relevant in the spectrum
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expansion application, some interesting discussions are given in Ap-
pendix B.

lll. NUMERICAL EXAMPLES OF OUTPUT SPECTRUM

We present in this section specific numerical examples of output
spectra calculated from (12). There are four different types of X(f) in
the examples:

(i) Rectangular
_1L |fl=8B,
X(f) = {0, otherwise.

B is normalized to be 1 Hz in the calculation, and 7 is taken as 267/B
seconds (the Tv case). Results for five different values of the time-
compression factor « are plotted in Fig. 5. The peak-to-peak ripples in
the output passband (|f| = B) are less than 0.5 dB and the sidebands
are more than 25 dB down in the vicinity beyond the edge of the
passband and drop off very rapidly. There is no doubt that most of the
spectral power is contained in the bandwidth |f| < B.
(if) Triangular

(23)

_ I

1—— fl=B
x(n={"p =B (24)
0 , otherwise.
10 T T T T
@ = TIME-COMPRESSION FACTOR
0
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Fig. 5—Output spectrum of time-compressed signal with a rectangular input spec-
trum.
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B is normalized to be 1 Hz, and T = 267/B seconds. The results are
plotted in Fig. 6. Here the sidebands are so low that they are not
observable in the diagram. Of course, this is due to the taper-off
characteristic in X(f). Some small ripples are again present inside the
bandwidth |f| = aB.

(#ii) Half-Cosine

PlA p e
X(f) = °°S(§§)’ Ifl=B, (25)

0 , otherwise.

B is again 1 Hz and T = 267/B seconds. The results are plotted in Fig.
7, and the same observations as in (ii) apply here.

(iv) Truncated Half-Cosine

The equation for X(f) is the same as in (iii) above, except that B is
0.9362 Hz, which corresponds to a 20-dB taper at X(B) as compared to
X(0). T is again taken as 267 seconds. The results are shown in Fig. 8
where the glitches at the edge of the output passband (i.e., f = aB) are
evident. Note that the sidebands outside the passband are much lower
compared to those in (i) above.

IV. BAND-LIMITING EFFECTS

When the original input signal x(¢) is band-limited to B Hz, we have
shown that most of the power in the output time-compressed signal

10 T T T T

@ = TIME-COMPRESSION FACTOR

RELATIVE AMPLITUDE IN DECIBELS

NORMALIZED FREQUENCY IN HERTZ

Fig. 6—Output spectrum of time-compressed signal with a triangular input spectrum.
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Fig. 7—Output spectrum of time-compressed signal with a half-cosine input spectrum.
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Fig. 8—Output spectrum of time-compressed signal with a 20-dB tapered half-cosine
spectrum.

TIME-COMPRESSION MULTIPLEXING 2177



y(¢) is confined to |f| = aB Hz. Band-limiting y(f) up to aB Hz
therefore should hardly affect the fidelity of the signal itself. However,
such filtering does create ripples following each time-compressed signal
burst, where a sharp edge occurs in the time waveform. These ripples
constitute interburst interference and could be a potential source of
degradation in a TcM system. We demonstrate via a simulation on a TV
signal in this section that the problem can be alleviated by introducing
a small guard time (about 2 percent of the burst duration) between
time-compressed signal bursts from different users.

In our computer simulation, we generate a TV test signal which is
similar to the composite test signal in Ref. 6. A scan line (64 us) of this
is shown in Fig. 9. We first band-limit the test signal by a low-pass (LP)
filter with zero delay and a raised-cosine amplitude roll-off of

[ 1-r
1 Jfl=F + T
BB [tor(fl=F) _ =
H(f) =4 E{l sm[-——r—— 5_ (26)
1-r 1+r
=|fl-Fi =< ,

' 2t |f| ! 2t

L0 , otherwise.

where the parameters F, toand r (F1 =0, 6, =0;0=r=1) control the

120

100 —

80—

IREUNITS

I

-60 | | | | | |
0 10 20 30 40 50 60

TIME IN MICROSECONDS

- =

70
* INSTITUTE OF RADIO ENGINEERS

Fig. 9—A modified composite test signal.
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Fig. 10—A low-pass filter with a raised-cosine roll-off.

filter shape. Instead of using ¢, and r to define the filter shape, we use
the two critical frequencies defined by (Fig. 10):

1

F, A —:

z._F1+2t0, (27)
FﬂF+1+r (28)
3 & F) TR

The specific values for Fi, F», and F; are 4.2 MHz, 4.8 MHz, and 5
MHz, respectively.

After the initial band-limiting, we perform an ideal time compression
over each scan line, and the signal is then compressed (with a = 2)
into time bursts, each of which is 32 us long. We then filter the time-
compressed signal by the LP filter referred to above with F,, F», and F;
at 8.4 MHz, 9.6 MHz, and 10 MHz, respectively. The ripples following
each 32-ps signal burst are observed, and the data are plotted in Fig.
11 where the ripple magnitude is defined as the ratio of the peak-to-
peak ripple voltage to the peak-to-peak picture voltage. As seen from
the figure, a guard time of 0.5 ps is sufficient for controlling the
interburst interference. This amounts to about 2 percent of the burst
duration.

V. CONCLUSION

We have studied two important and fundamental aspects of TcM—
the spectral properties and band-limiting effects of the time-com-
pressed signal. We find under the assumptions that (i) the original
input signal x(¢) is band-limited to B Hz, (i) x(¢) is segmented into 7-
second intervals before time compression by a factor of a(a = 1), and
(z) 1/T < B, then essentially all the spectral power in the output
time-compressed waveform is confined to frequencies below aB Hz.
This result is immediately applicable to the Tv case. Numerical ex-
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Fig. 11—Ripple magnitude following a time-compressed signal burst in the TV simu-
lation.

amples on various types of spectra verify this and show that the
spectral sidebands beyond aB Hz are very low. We also find that
filtering of a time-compressed TV signal creates small ripples following
each signal burst, but the interburst interference due to these ripples
can be kept negligible with a small guard time (about 2 percent of the
burst duration) between different signal bursts.
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APPENDIX A
An Alternate Derivation for the Spectrum of the Time-Compressed Signal

Referring to Fig. 2, the input signal can be written as

x(t) = i x(t) rectr(t —iT), (29)

{=—oa

where rect, (¢) is defined in (3). The output time-compressed signal is
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I=—ux

y(t) = E x{a{t—iT(l-i)]}rectf(t—iT), (30)

where « is the time-compression factor, and 7 is as defined in (2). Note
that

rect.(t — iT) < 1 sinc(wfr) exp(—j27fiT), (31)

A}l i3]

The spectrum of y(¢) involves the convolution of the two right sides in
(31) and (32) and is

Y(f)=r ZI X(B) exp[—jBiT(a — 1)]

X sinc[77(f — Ba)] exp[—j (27f — Ba)iT]dB. (33)

Using the identity of (9), the above can be rewritten as

Y(f) =73 J X(B) sinc[wr(f — ,Ba)]ﬁ[T(f—EB;) - i]a’ﬁ. (34)

With a change of variable of

0=T(f—£), (35)
27
Y(f) becomes

Y(f) =£2J' X(Tf,; a)sinc[m(f— Tf;Ua)}S(a—i}da
1 i\ . la
=E§X(f~?)smc[mr(f—fa+T)}
_1 LA DO Y L
—;gX(f T)smc[ (f " T)T], (36)
which is the same as (12).

A simple way to check Y(f) is of course to let a = 1 in (36), which
yields

Y(/) = )_;X(f— %) sinc m(—i)
= X(f), (37)
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as expected. Another way to check Y(f) involves letting a — . In
doing so, we have to assume that the energy in x.(f) is preserved
through the time compression, i.e.,

j xE(t)dt=J x2(t) dt. (38)

This means that the multiplying factor 1/« in (36) can be dropped,
and with o« — oo,

Y(f) =;X(f—%) sinc[ar(f—,l,i,)i"]. (39)
We now try to verify (39) by a different means. Using a — o« as
described above, the output time waveform is

y(t) = 2 §(t —iT) J x(t)dt

T
iT+—
2
iT T
2

=Y 8(t—iT)yT). (40)
Note that if Y(f) < 7(t), then
Loo(r-%) o ypoe-insan (1)
T2 T x y@T).
Consider now a general definition of

T
F(t) & J'”%,xor)df

2
- f x(7) rectr(t — 7)dr. (42)

The Fourier transform of 7(¢) is then
Y(f) = X(f)[T sinc(nfT)]. (43)
Using the above, (40) and (41), we get the desired result of (39).

APPENDIX B
Additional Spectral Properties of the Time-Compressed Signal

With T = 1, we show in (21) that the spectral output of f = af: in
Y(f)is

Y(af:) = X(f: — €) sinc 7(—¢)
+ ¥ X(fc — e+ K) sinc 7(—¢ + K), (44)

K#0
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where € depends on both «a and f.. Whenever € = 0, we get
Y(af:) = X(f.), (45)

which is a desirable result for spectrum-expansion applications. Con-
sider now a simple example, where o« = 2.1 and X (f) consists of two
spectral lines at f = +5 Hz (a constant sine wave). We expect two
spectral lines in Y(f) at f= +2.1 X 5 = +10.5 Hz. But using f. = 5 in
(44), we have

Y (10.5) = X (5 — 0.5) sinc 7(0.5)
+ ¥ X(5—0.5+ K) sinc 7(—05+ K) =0, (46)
K0

which is so because each term containing X(f) in the summation is
identically zero as X(f) admits nonzero values only at f = +5 Hz. This
absence of output at f = 10.5 is due to the fact that Y(f) admits
nonzero outputs only at f= integer, or equivalently in multiple spacings
of 1/T in the unnormalized case. The segmentation of the input signal
x(t) into T-second intervals can therefore be viewed as making the
frequency resolution in Y(f) 1/T.

As mentioned previously, when € # 0 in (44), the output Y(af.) can
be viewed as some weighted average of X(f. — €) and its neighboring
points. How close is this average to the value X(f,)? We do not have
a satisfactory answer, but the following discussion is interesting. Let
us change the notation in (44) to

X(f) = X(f. — € sincm(—e)
+ ¥ X(f: — e+ K) sinc n(—e + K), (47)

K0

where X (f,)'denotes an interpolated or estimated value for X(f). A
physical interpretation on the above was presented in Fig. 3. An
alternate view is to rewrite the second term in the above as

Y X(fi — €+ K) sinc n[(f: — e + K) — f.], (48)

K0

which is graphically interpreted in Fig. 12. We now do the following
manipulations:

X(f) =3 X(f. — € + K) sinc 7[(f. — e + K) — 2]
K

1/2

=ZX(ﬁ—e+K)j exp{j2nt[(fi —e+ K) — f;]} dt
K

-1/2
1/2

2 X(fs — € + K) exp[j2nt(f. — e + K)]

12 K

X exp(—j2nf:t) dt. (49)
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Fig. 12—Alternative representation for the summation in the output spectrum of a
time-compressed signal.

We note that the term
YX(fs— e+ K) exp[j2nt(fi — e + K)] (50)
K

is a Fourier series with a period of unity. Denoting this Fourier series
by £(£), we see that

(t) = exp[j2nt(f. — ©]1 ¥ X(f: — € + K) exp(j2nKt)
K
=Y x(t — k) exp[j2nk(fc — €], (51)
%

which is a complicated summation of various time- and phase-shifted
versions of x(£).

We now extend our previous results to a limited case applicable to
Refs. 5, 6. Consider the special case where « is an integer, denoted by
N. We take the time-compressed waveform y(¢) in Fig. 2, time shift it
by iT/N (i = 0 to N — 1) and add all N waveforms together. The
resultant waveform has no blank time interval and is basically a
staggering of N time compressed y(t) which we have considered so far.
This can be written as

N—1 .
z(t) = Eﬂ y(t— %‘) , N=2. (52)
Its Fourier transform is
N1 1T
Z(f)=Y(f) ¥ exp (—ﬂnfw)
=0

1 — exp(—j2nfT)
1 —exp| —j2 fz
P\ V4l +
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=Y(/)

) (53)



where Y(f) is the Fourier transform of y(t). The magnitude of the
second complex factor is

1 — exp(—j2#fT)

1- exp(—jZ'rrf%)

_ 1 — cos 27fT . (54)

1- cos(2wf£)

The above term vanishes whenever only the numerator vanishes, and
is nonzero when both numerator and denominator vanish simultane-
ously. This means that the above term is zero when

k
==, (k= integer), (55)
T
except at those points where
N
f=k (56)

holds. Therefore, one may infer that the frequency resolution in this
case is N/T as compared to 1/7 in the single y(¢) case.
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