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The Bell System has recently completed studies that are expected
to result in substantially improved forecasts for use in network
planning. These improved forecasts are achieved through the use of
new forecasting algorithms that employ Kalman filter models. To
motivate the selection of Kalman filter forecasting procedures, we
describe the Bell System’s special data characteristics and processing
requirements in the network planning process. We also discuss the
Kalman filter models, their statistical properties, the model identifi-
cation process, and certain implementation considerations.

I. INTRODUCTION

Projections of message circuit usage (as measured in hundred call
seconds or ccs), from which message circuit requirements (trunks) are
developed, and special services* circuit demand are fundamental parts
of the Bell System’s network planning and provisioning process. An
overview of the information flows in this process is shown in Fig. 1;
more details are given in Refs. 1 to 4 and in the companion forecasting
papers in this issue.

Since these projections strongly influence the allocations of several
billions of construction dollars annually, it is important that they
possess high quality statistical properties. For example, the projections
should be unbiased; that is, the forecasts should not be consistently

* Special services is a generic term referring to all Bell System services other than
ordinary message telephone service. Examples include foreign exchange lines, tie lines,
and private lines.
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Fig. 1—Network planning and provisioning process.

high or low. A biased forecast will result in either over expenditures or
equipment shortages, depending on the sign of the bias. Also, the
forecasts should be stable, cr precise, never varying too much from the
realized true requirements. Previous studies have shown that highly
variable forecasts result in increased reserve capacity requirements
necessary to meet customer demands.’

The service and economic motivations for high quality forecasts of
message trunks and special services circuits have led the Bell System
to reevaluate the existing projection algorithms used in these processes
and to recommend improved methods, as necessary. It should be noted
that a further motivation for this reevaluation is that most existing
projection methods utilize curve fitting and extrapolation algorithms
that were originally designed for manual calculations and that were
available prior to the widespread use of computers and the advent of
modern estimation techniques."?

The possible approaches to improved projection methods were in-
fluenced strongly by the particular characteristics of the time series
and by the typical mode in which the forecasts are produced.

Two factors were crucial in the selection of forecasting models and
algorithms: the need to produce a large number of forecasts in a fully
mechanized system and the typical dearth of data for any individual
series.

A large number of forecasts is necessary because trunk and special
services circuit requirements must be forecast at least once per year
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for each trunk group and special services circuit group on record. Thus,
there may be up to 100,000 trunk group time series and tens of
thousands of special services circuit time series forecast in each run of
the mechanized forecasting systems illustrated in Fig. 1. Therefore,
these procedures must be fully mechanized. Moreover, for ease of
comprehension and for computational efficiency, the algorithms must
be simple to program and maintain.

The sparsity of data is perhaps the more restrictive of the two key
considerations in selecting new projection algorithms. Typically, the
individual time series have between 1 and 10 years of relevant data,
with 3 to 5 years being common. The fact that a projection may have
to be based on less than 5 years of data (up to 60 points if monthly
data were available), make the use of many approaches, including the
popular Box-Jenkins ARIMA (autoregressive integrated moving av-
erage) models® that require more than 100 data points, infeasible.

The linear Kalman filter, in its most general form, was derived by
Kalman’ and Kalman and Bucy® in the early 1960s. The motivation
for their work had its roots in various control theory applications. Of
particular note was the implementation of the algorithms in tracking
systems for the aerospace industry. In recent years, the models have
also been used in power systems, process control, and forecasting.

In Section III, we describe the general Kalman filter linear model,
analyze and interpret the key matrices of the formulation, and relate
the Kalman filter to other common forecasting models. In Section IV,
we discuss various implementation considerations that are necessary
to reduce the Kalman filter algorithm to practice. In Section V, we
indicate methods for evaluating the effectiveness of the Kalman filter
models and discuss the importance of certain key statistics. Finally, in
Section VI, we summarize our conclusions concerning the use of
Kalman filters for forecasting in the Bell System.

Three companion papers to this overview follow. These papers
describe the successful use of Kalman filter models for three Bell
System forecasting applications—two concern message trunk forecast-
ing and one covers special services demand forecasting.

The first trunk forecasting paper, by J. P. Moreland, describes a
simple linear, two-state model for use in projecting busy season (yearly
peak) trunk group loads.” The second paper, by A. Ionescu-Graff,
describes a linear, two-state Kalman filter with an absorbing barrier
that can improve the quality of special services demand forecasts."
The third paper, by C. R. Szelag, derives a Kalman filter for traffic
that has not only linear growth, but also a seasonal within-year pattern
as well.'® That is, Szelag illustrates how, for trunk group load patterns
exhibiting seasonality, nonbusy season data can be used to update and
improve estimates of imminent busy season loads.
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Il. KALMAN FILTER DESCRIPTION

The Kalman filter, described in more detail in Section III, has many
desirable properties. Most of these properties are not unique to the
Kalman filter; however, because of its generality and particular form,
as well as statistical properties, computational characteristics, and
robust qualities it should be considered in most estimation applica-
tions.

2.1 Models

The models used are based on state-space representations of the
variables being estimated. The state-space formulation implies that,
at each point in time, the process being modeled is described by a
vector of state variables that summarize all relevant quantities of
interest. In most instances, the state variables have physical interpre-
tations, such as trunk quantities, growth rates, and so on. Then, a
further characterization of the model specifies how this state vector
evolves over time.

The Kalman filter algorithm uses this model of the time behavior of
the system along with “noisy” observations or measurements of some
system variables to produce optimal estimates of all state variables.
These estimates are then used in the process model to determine state
estimates for future time periods.

The distinction between the state-space models and the ARIMA
models is mostly in the model identification process. That is, while the
interpretation of the state-space models permits the user to choose a
model based on physical properties (and hence when only limited data
are available), the “time series” approach of Box and Jenkins attempts
to have the data specify the model based on certain first- and second-
order characteristics. However, after a state-space time-series model
is known, one can find nearly equivalent representations of that model
for either theory.

The particular state-space formulation of Kalman has some desira-
ble features. First, it lends itself to simple, recursive estimation of the
parameters. That is, no data history need be stored. As new data or
observations become available, they are processed and the stored state
vectors are updated accordingly. In fact, this recursive calculation
suggests a Markovian property of the filter: the current state vector
summarizes all relevant historical information concerning the history
of the time series. Second, there is a provision for separate character-
ization of the two sources of significant estimation errors: the dynamics
of the true process and relationship between the state variables and
the measurements used to estimate these variables. Third, the model
provides an analytic framework for studying relationships among the
first- and second-order properties of the state variables and measure-
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ments. For example, one can derive analytic expressions for forecast
variances as functions of the number of data points processed and the
autocorrelation matrix of the measurement errors. Finally, the model
is general enough to include as special cases the common models:
exponential smoothing, weighted least squares, multiple linear regres-
sion, and Wiener filtering.

2.2 Statistical properties

A correctly specified linear Kalman filter produces forecasts that
have minimum mean square error.* Moreover, the forecasts are un-
biased and have minimum variance. When the errors are Gaussian,
these properties hold without restriction to the class of linear models.
The estimators can also be derived using maximum likelihood or Bayes
models. When the models are only approximately correct, the gener-
ality of the formulation allows one to analyze the filter’s suboptimal
performance and, if desired, to adjust the filter’s parameters as appro-
priate.m'”

IIl. DISCRETE-TIME LINEAR KALMAN FILTER MODEL
3.1 The model

It is assumed that the true process dynamics are described by the
following linear transition equation

X1'|+1 = ¢xn +Un+ wn ’ (1)
where
X, = an s-vector of state variables in period n,
¢ = an s X s transition matrix that may, in general, depend on n,
w, = an s-vector of random modeling errors, i.e., random deviations
of the true process from the assumed linear relation defined by
¢, and

U. = an s-vector of deterministic changes in state.
The one-step projection formula is given by

Roiin = 0X,n + Uy, (2)

where, in general, X, . xn is an estimate of X,z (& = 0) given data
Y1, *++ , ¥n in periods 1 through n, where y, is a d-vector of observed
variables in period n.

The relations that distinguish the Kalman filter model and associ-
ated computational procedures from other linear estimation tech-
niques are the particular model relating X, to y, and the algorithm for

* These terms and others are defined in Section V.
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computing X, .. The d X s matrix H, which in general may depend on
n, defines the relationship between y. and X, as

yn=Hxn+pu: (3)

where », is a d-vector of measurement errors. At time n, the vector
K. is computed by

Xn.n = fApn—1 + Kn(Yn - Hxn.n—l)- (4)

The s X d “Kalman gain” matrix K, can be calculated recursively by
the following equations:

K.= P,H"(HP.HT + R)™
S,.=(U-K.,H)P,
Poi=0¢S0" + @, (5)

where

(i) R is the covariance matrix of the measurement errors, i.e.,
R = E(vur7),

(ii) @ is the covariance matrix of the modeling errors, i.e., @ =
E(wnwr), and

(iii) it is assumed that E(v,) = E(w,) = 0 for all n, E(w.»T) = 0 for
all (n, i), E(wnw?) = 0 for all n # i, and E(p.»[) = 0 for n # i, and

(iv) in general, @ and R may depend on n.

Thus, in summary, the forecasting procedure has the following steps:

1. When n = 0, the filter is initialized by a user-supplied estimate
R0 of the initial state vector X, and So.

2. Using these estimates, a one-period-ahead forecast is produced
using eq. (2).

3. The gain matrix, K,, and the matrices S, and P, are calculated.

4. When a new observation is received, eq. (4) is used to obtain a
“smoothed” estimate X, of the present state vector.

5. Then using this new estimate, a one-period-ahead forecast is
produced. The period index 7 is incremented and Step 3 is repeated.

The algorithm continues to process new observations and produce
forecasts in this manner.

Several points should be noted:

1. If the matrices H, R, ¢, and @ are independent of n, the gain
matrix, K,, and the matrices S and P are independent of the observa-
tions. Thus, these matrices can be precalculated for use in the algo-
rithm.

2. No past observations must be stored since all historical informa-
tion is contained in the “smoothed” estimate X., or, equivalently via
eq. (2), the one-period-ahead projection K1

6 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1982



3. Only the one-period-ahead forecast must be saved to be used in
the next period’s process.

When the assumptions listed above in (iii) are valid and the models
accurately describe the true process dynamics and the measurement
system, the Kalman filter produces unbiased estimates of X,+r0; that
is, E(Xn+tn) = Xnss for £ = 0. In addition, the estimates X,+x» have
minimum variance in the class of all unbiased estimators.” If w, and
v, are Gaussian, then no restriction to the class of linear estimates is
required and the estimators can also be derived from maximum like-
lihood and Bayesian models."* Conveniently, the Kalman formulation
actually provides estimators for the estimation error variance matrices
of interest:

(smooth)
8= ERpn — Xo) Rnn — X7, (6)
and, for k=1,
(predict)
Poiik = ERnisin — Xoned) Rion — Xnst)". (7)

Therefore, the requirement that the user specify an initial estimate of
S, is a need for an estimate of the covariance matrix of the initial state
vector ﬂg_o.

Analyses of the sensitivity of the filter performance to model accu-
racy and of the modified estimators of error covariance matrices for
the case of suboptimal gains K’ is given in Ref. 13.

3.2 Interpretation

From eq. (4), we see that the vector f(,,,,,, the smoothed estimate of
X,, is derived as the previous one-step projection R..n-1, plus a linear
combination (weighting) of the differences between the measurement
y. and the previous estimate (forecast) of these measurements,
HX..._1. The weights assigned to the difference terms are appropriate
components of the gain matrix K,. It is also important to note that
K. depends on X.n-1, ¥, K», and H, but not explicitly on y,, ---,
¥n-1. This recursive nature of the Kalman filter eliminates the need
for storage of historical data.

We can give some insight into the effect K, has on algorithm
performance, without actually describing a specific model. It can be
seen from eq. (5) that K, has terms which are directly proportional to
the elements of the covariance matrix @* and inversely proportional

* As we indicate later in Section 3.4, this “proportionality” to @ is strongest for
large n.
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to the elements of R. That is, K, is, in a sense, proportional to the
variability of the true process dynamiecs and inversely proportional to
the measurement variability. Thus, it is the “@/R” relationship which
defines the responsiveness of the filter (via the K matrix) to estimated
errors in state (y. — Hf{m_l). As the elements of K, decrease (by
decreasing @ or increasing R), the forecasts become more stable. That
is, if we have more confidence in the unbiasedness of the process model
or less confidence in our observations, the filter will be designed to
respond more slowly to apparent deviations from the predicted trend
line. As K, increases (by increasing @ or decreasing R ), forecasts detect
and respond to data that deviate from the assumed deterministic linear
model, represented by the expected value of eq. (1).

3.3 An example
Consider a simple linear two-state model (s = 2) ,

where
| Xne1 | _ 1 1 Xn Wn
el B 3 1 8l T

VYn=2n+ . (9)

and (d =1)

We further assume that R = 1 (since the gain matrix depends only on
Q/R, we do this with no loss in generality). To complete the model,
the 2 X 2 matrix @ must be specified. This simple two-state model is
fundamental to the models presented in the three companion papers.
In these models, x, is referred to as the level of the process, and x,, as
the growth increment.

We now show how the various components of @ influence the
response of the filter to a measurement y,. First, note that eq. (4) can
be rewritten as

Xn,n = |:-§n.nj| — |:-’En,n—1 + ka] (yn - -fn,nl)]. (10)

Xn,n x.n,n—l + ké’;) (yn - -'En,n—l)

Hence, the smoothing process is determined by the specification of
two sequences of number &{Y, .., k{7, .-+ and k&, ..., RED, ... .
As we indicated above, these gains tend to be proportional to the
elements of @.

Fig. 2 shows the filter operation and the role of the gain sequence
{%{7} . Initially, attention should be focused on the trend line at time
n — 1 derived from n — 1 pieces of data, yi, - -+, ¥»-1 and note that
£n-1n-1 lies on that line. Further, %, 1 is a straight projection of this
trend one-period ahead. When the new observation, y», is obtained,
the slope of the trend line is adjusted upward in the direction of y»
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Fig. 2—Projection using the Kalman filter.

relative to %,.-1. The smoothed estimate £., of x, i8 Z,.—1, plus a
factor k{} times the increment y, — % .—1. The new trend line passes
through %,, and its extrapolation produces n+1n.

The choice of @ (and R) determines the %{} and, hence, the
response of the filter to observation y, relative to Z..—1. Note that the
smoothed estimate %, . of x,, not y,, is projected into the future. Thus,
we do not project all of the noise in y, into the future. This is a
fundamental distinction between Kalman filter projections and most
existing load-projection algorithms used by the Bell System.

3.4 Estimating matrices

If all Kalman filter model matrices (¢, H, Sp, @, and R) are known,
the algorithm is completely specified; moreover, the desirable statisti-
cal properties of the filter are assured. However, in general, the true
model is not known precisely, or it is likely that the model is to be
applied to many different estimation problems. Hence, in practice, we
often settle for less optimal (in a bias or variance sense), but more
robust properties for our forecasts. That is, we choose to achieve a
reasonable balance between bias and variability (stability) over a wide
range of practical interest for key parameters while relaxing some of
the assumptions in Section 3.1.

Usually, it is the case that the processes being modeled suggest a
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reasonable choice of matrices ¢ and H. (Examples are discussed in the
companion papers in this issue.) Also, typically, the data characteristics
can be analyzed so that R is known either analytically or empirically.
Therefore, the main concern is the selection of matrices Sy and . The
former strongly influences the transient characteristics of the filter;
that is, K, is strongly dependent on “So/R” for n small (<10). The
latter affects the steady-state performance; that is, K, approaches
“@Q/R” for large n.

These matrices S, and  can be determined analytically or empiri-
cally to provide the desired responsiveness and statistical properties
over many time series. The key to the analytical approach is the
matrix P,.; in eq. (5), which describes forecast variance as a function
of model matrices, when the assumptions of Section 3.1 are correct.
Empirical studies attempt to tune filter performance so that a robust
balance of unbiasedness and stability is achieved over the test cases.
The performance trade-offs are illustrated generically in Fig. 3 as a
function of K, whose dependence on S, and @ was stated previously.
The studies described in the companion papers illustrate these two
approaches to filter design.

We have ignored the extensive literature (see, for example, Ref. 14)
on model identification for Kalman filters, because, as for the Box-
Jenkins technique, substantial data is required for each time series.

3.5 Special cases

The Kalman filter model includes as special cases many common
estimation techniques. We indicate three such examples.

3.5.1 Multiple regression

The multiple regression approach to estimation assumes that a time
series { y.} is well-approximated by

Yo=HiX + v, (11)

where H, is an s-vector of observations of the independent regression
variables, X is an s-vector of (constant) regression weights, and », is an
error term. The Kalman filter model is obtained by allowing the
regression coefficients to depend on n and by adding the dynamics
relation

X =X,. (12)

Clearly, the model includes the autoregressive case (H, is composed
of previous realizations of y,) and can be generalized to vectors yn.

3.5.2 Exponential smoothing

Exponential smoothing is a process whereby current estimates of
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Fig. 3—Empirical performance trade-offs.

state £., are composed of a weighted average of the previous estimate
at state (£.-1) and the current measurement (y,). That is,

.'En = fn_l + k(y,-, - fn—])- (13)

Note that the weight % is a constant. The term exponential smoothing
was chosen because the previous measurements influence current
estimates by weights that decrease exponentially with lag.

Clearly, eq. (13) is of the form of eq. (4) and can be generalized to a
Kalman filter by including eqs. (2) and (3), and the dependence of %
onn.

3.5.3 Wiener filtering

Wiener filtering'® corresponds to the case of constant Kalman gain
matrix, i.e., when K, = K for all n. If ¢, H, R, and @ are constant, then
the steady-state error covariance matrices exist and a Kalman filter
with gains calculated using these matrices is identical to a Wiener
filter.

IV. IMPLEMENTATION CONSIDERATIONS

Experience has shown that the Kalman algorithm, as described in
Sections II and III, performs well, as long as the model is reasonable
and the data y, are consistent with the model assumptions. However,
in practice, additional logic or considerations are necessary to improve
the performance when outlier data are present or when certain types
of nonstationarity are present and to improve the computational
efficiency of the procedures.

An overview of a typical Kalman filter implementation is shown in
Fig. 4. We will describe the components of the Kalman filter system in
the following subsections.
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Fig. 4—Kalman filter implementation.

4.1 Data smoothing and projection

The Kalman filter algorithm, described in Section 3.1, comprises the
smoothing and projection functions.

4.2 Initiation, transient response, and gain sequences

In some Kalman filter applications, the transient period is very short
relative to the total time the filter is in operation. However, in the
applications described in Refs. 9 to 11, a series rarely exists for more
than 10 years, with 3 to 5 years being typical. Therefore, the transient
response of the filter is important andgo,o and S, (and, hence, K, for
small n) must be carefully chosen to provide good performance during
the transient period.

Surprisingly, good statistical performance in both the transient and
equilibrium states is often achieved with fixed (K, = K for all n) or
finite (K = K., for n = n*) gain sequences. Moreover, significant
computational efficiencies are obtained when the precomputed finite
gains are stored for on-line use. The companion papers describe the
success of fixed and finite gain sequences for the respective applica-
tions.

4.3 Outlier detection, deterministic events

We define unusual data to be that representing either an unusually
large (outlier) measurement error (v,) or an unforeseen deterministic
event (U,). The importance of these two types of errors is that the
smoothing process (4) tends to adjust the previous forecast Xono1 in
the direction of the new measurement y,, with the movement being
proportional to the estimated error (y. — H X.,.»-1). Therefore, without
additional logic of an adaptive nature, outliers would cause overreac-
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tion to measurements; unforeseen deterministic events would be in-
sufficiently accounted for because the full (rather than smoothed)
impact should have been entered in eq. (2).

However, in practice, one cannot always satisfy the two conflicting
objectives—ignore bad measurements and react strongly to unforeseen
deterministic events. Hence, either robust estimators must be em-
ployed or logic must be provided to identify and distinguish the two
cases and to not overreact to either. The balance is again between bias
and stability: over-response reduces bias but degrades stability, and
vice versa.

Considerable discussion of this trade-off and the resulting filter
design for one application is described in Ref. 9.

V. MODEL EVALUATION

In previous sections of this paper, we have alluded to various
statistical criteria that may be used to evaluate the performance of the
filter. Clearly, none is right or wrong unless it can be shown that some
significant costs are directly and uniquely related to a particular
criterion. We have never seen such justifications. However, it is usually
the case that costs are related in some indirect fashion to various first-
and second-order error statistics of the forecasts. The companion
papers will each refer to some subset of the following statistics, possibly
normalized to be stated as a percent:

Bias
Apiin = EXrin — Xa)
(In)stability (view-over-view variability)
Snsin = ERnsrn = Xnshn-1) Rt — Kostn1)”
(Im)precision or variance
Prikn = ERnsrn = ERnssn) Rosnn = EKnen))”
Mean square error
Meikn = ERninn = Xo) Knsnn — Xn)”

Clearly, there exist some analytical relationships among these sta-
tistics. We will not derive any here; however, it is of interest to point
out that, if X,+s. and X, are uncorrelated (a sufficient condition is
that @ = 0 or £ = 0 for the linear model of Section III), then

T
Mn+k.n = An+k,nAn+k,n + Pn+k.n
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which, in the scalar case, reduces to
Mn+k,n = A?I+k,n + Pn+k,n .

The rms error is commonly calculated as (My+,.)"/* for this last case.

VI. STATUS AND CONCLUSIONS

The Kalman filter model promises to provide forecasts, for use in
Bell System network planning, that are both substantially improved
in a statistical sense relative to existing methods and computationally
more efficient. The former claim is based on testing by analysis,
computer simulation, and field study. The latter, because of the
efficient recursive calculations of the filter, has been borne out through
Bell Laboratories programs and limited field studies. The companion
papers in this issue will elaborate on these conclusions and will describe
plans to implement the algorithms in standard, mechanized network
planning tools.
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