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Forecasts of busy season trunk group traffic loads are required for
Dplanning the Bell System’s message network. Forecasting algorithms
currently in use obtain estimates of future loads by multiplying the
most recent measurement of busy season load by an aggregate growth
factor. Because of statistical errors in measured loads and differences
between individual trunk group and aggregate growth factors, the
resulting forecasts can have large statistical errors. In this paper we
extend earlier work to develop a new algorithm, called the sequential
protection algorithm (spa), based on a linear two-state Kalman filter,
together with logic for detecting and responding to unusually large
measurement errors or changes in trend. In typical applications of
Kalman filtering, the statistics of system noises, measurement errors,
and initial conditions are known and the filter parameters (Kalman
gains) are selected accordingly. For our application, however, these
statistics cannot be determined without error. Consequently, we de-
velop a method for selecting robust filter parameters which provide
improved performance, independent of system noises, measurement
errors, and initial conditions. In particular, under the assumption of
linear growth for 5-year intervals, the average rms 1-year forecast
error of spA is about 10 percent less than that of the existing algo-
rithms. Field test results confirm the theoretical results presented
here. Accordingly, specifications have been written for inclusion of
SPA in the Bell System’s standard trunk forecasting systems.

I. INTRODUCTION AND SUMMARY

Forecasts of busy season (yearly peak) trunk group traffic-loads are
required for the planning of the Bell System’s message network. These
forecasts are used to design traffic networks which minimize the cost
of the trunks required to satisfy anticipated customer demands.
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The standard load forecasting algorithms currently in use in the Bell
System obtain estimates of future loads by multiplying the most recent
measurement of busy season load by an aggregate growth factor; for
example, the average of the growth factors obtained by trending the
total office loads at each end of the trunk group. Descriptions and
comparisons of the various algorithms currently in use are given in
Ref. 1.

As explained in Ref. 1, these algorithms have two significant sources
of error: (i) Because of the finite amount of data upon which measure-
ments are based, measured loads can have large statistical errors;
standard deviations fall in the range of about 5 to 40 percent depending
upon load size and type of measurement system.” (i) Individual trunk
group growth factors can differ from the aggregate growth factor;
standard deviations of 6 percent have been observed. These forecast
errors are significant since they lead to an increase in the reserve trunk
capacity required to satisfy customer demands.?

To reduce forecast error and, hence, reserve trunking capacity, a
new algorithm, called the sequential projection algorithm (spaA), has
been developed to forecast busy season traffic loads within the Bell
System. The sPa is based on a linear two-state Kalman filter model,
whose use in traffic forecasting was studied first by David and Pack,’
together with logic for detecting and responding to outlier measure-
ments, i.e., unusually large measurement errors or changes in trend.

As discussed in Ref. 1, David and Pack tested several Kalman filter
models—some with as many as eight state variables and four data
variables. In summary, for the planning interval of interest (1 to 5
years ahead) none performed consistently or significantly better than
the relatively simple two-state (traffic load and incremental growth),
one-data variable (measured load) model.

The two-state Kalman filter establishes a linear trend for individual
traffic loads as follows: As illustrated in Fig. 1, the level, or smoothed
base load, is a weighted average of the most recent measurement, or
base load, and the previous 1-year forecast. Similarly, the smoothed
growth increment is a weighted average of the measured and previously
forecasted increments. (The measured increment is, by definition, the
measured load minus the previous year’s smoothed base load.)

The performance of the Kalman filter, as measured by mean square
forecast error, depends upon the filter parameters, i.e., the gains a»
and 8, in Fig. 1, the standard deviation of load measurement and
growth estimation errors, and upon the assumed evolution of the true
load.

Since spa will be used under a variety of possible operating condi-
tions, the filter parameters could be tuned to provide optimal perform-
ance, i.e., minimum mean square forecast error, for each application.
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Fig. 1—Basic operation of spa.

For example, in the Bell System we employ two types of load mea-
surement systems; Bell Operating Companies obtain load estimates
from a direct measurement of trunk group usage, while Long Lines
derives estimates from point-to-point, e.g., end-office to end-office data
provided by the Centralized Message Data System (cmps).? For trunk
group data, the standard deviation of measurement error is in the
range of about 5 to 10 percent, depending on load size. For point-to-
point data, the range is about 10 to 40 percent. (See Fig. 2.) Accord-
ingly, different parameters could be used for different measurement
systems and for different load ranges.
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Fig. 2—Sampling error vs. offered load.
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Indeed, the initial development of sPA’ was intended for use with
trunk group data only, and the objective of the current study was to
extend the original work to applications using point-to-point data. As
suggested above, one possible solution would be to develop multiple
versions of SPA.

Instead, in this paper, we develop a single, robust SPA whose param-
eters are selected to provide improved performance over the entire
range of operating conditions, including the use of either trunk group
or point-to-point data.

The use of robust parameters is important for two reasons: (i) A
single spa for all applications should be simpler to implement and
maintain than multiple versions. (if) The actual values of the statistical
parameters for each application cannot be determined without error,
and our results show that erroneously assumed values can lead to a
performance substantially worse than that of conventional projection
methods. Of course, as with any robust technique, we pay a premium
by receiving less than theoretically optimal performance for protection
against the possibility of a performance worse than conventional
methods.

Section II of this paper provides a qualitative overview of the
functions performed by spa that include procedures for detecting and

CURRENT PREVIOUS FORECAST
BASE LOAD (LEVEL, INCREMENT)

INITIALIZE ADJUST BASE LOAD
(YEAR ONE ONLY) {CONSISTENT ASSUMPTIONS)

OUTLIER DETECTION
AND RESPONSE

L SMOOTHING
(UPDATE LEVEL, INCREMENT)

PROJECTION

1

PROJECTED
LOAD

Fig. 3—Sequential projection algorithm.
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responding to outliers, as well as the smoothing and projection func-
tions of the Kalman filter. Section III defines the mathematical model
and procedures for selecting robust filter parameters; Section IV gives
numerical results; Section V develops the outlier detection thresholds;
and Section VI gives the conclusions.

Il. OVERVIEW OF SPA

As shown in Fig. 3, sPA is composed of five major components:
algorithm initialization, base-load adjustments, outlier detection,
smoothing, and projection. In the following paragraphs, we provide a
qualitative description of the operations performed by each of these
components.

2.1 Initialization

As indicated in Fig. 4, the smoothed base load in the first year of
operation, and in certain other cases discussed in Section 2.3, is equal
to the measured base load. The smoothed growth increment is calcu-
lated by multiplying this base load by a growth factor obtained, for
example, by trending the total office loads at each end of the trunk

group.’
2.2 Base load adjustmenis

In the second and subsequent years of operation, SPA updates both
the level and incremental growth by comparing the most recent base
load with the previous 1-year forecast of that same load. Since the
base and forecasted loads must correspond to the same traffic routings,

b
A

a/

A BASE (MEASURED) LOAD

— FORECASTED LOAD
O SMOOTHED-BASE LOAD

TRUNK GROUP FIRST-ROUTE LOAD

YEAR OF OPERATION

Fig. 4—Initialization of sPaA.
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differences between the previous and current routings are accounted
for by adding an adjustment term to the base load so that the adjusted
base load agrees with previous routing assumptions. After performing
the outlier detection and smoothing functions described below, the
routing adjustment term is subtracted from the smoothed base load so
that it agrees with the current routing assumptions.

Furthermore, the previously forecasted load is adjusted to remove
the impact of deterministic events, such as a proposed tariff change,
that were predicted but did not occur.

2.3 Outlier detection

Under the assumption that the observed forecast error (i.e., the
difference between the forecasted and measured loads) has a Gaussian
distribution with zero mean, the linear Kalman filter upon which spa
is based provides the minimum attainable mean squared forecast
error.* In practice, however, the normal statistical errors (because of
the finite measurement interval, day-to-day load variation, random
variations in cMDs point-to-point sample size,” and growth errors) are
occasionally contaminated by wiring errors, recording errors, or unex-
pected changes in the trend of the true load. In such cases, when the
observed forecast error deviates from a Gaussian distribution, the
linear Kalman filter model can have a mean squared forecast error
which is substantially greater than the minimum.*

Our approach to this problem, which is based in part on the nonlinear

A BASE LOAD
—= FORECASTED LOAD
——— QOUTLIER THRESHOLD
0O OUTLIER
O SMOOTHED-BASE LOAD

TRUNK GROUP FIRST-ROUTE LOAD

| 1 1 1 | 1
1 2 3 4 5 6 7 8

YEAR OF OPERATION

Fig. 5—Response of outliers (sign not repeated).

20 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1982



Kalman filter model described in Ref. 4, is the following: If the
difference between the possibly adjusted base and forecasted loads
exceeds present thresholds, the base load is declared to be an outlier.
In response, spA will adjust the base load or restart at the measured
level, depending only upon whether an outlier of the same sign oc-
curred in the previous year.

If an outlier of the same sign did not occur in the previous year, SPA
replaces the base load by the nearest threshold value as indicated by
the vertical arrows in Fig. 5. Qualitatively, the underlying assumption
here is that in most cases such an outlier signals an invalid or atypical
measurement caused by, for example, a recording error and not a
change in trend. Formally, this modification of the Kalman filter is
equivalent to that proposed by Masreliez and Martin in Ref. 4.

Alternatively, as indicated in Fig. 6, if an outlier of the same sign
occurs in two consecutive years, SPA restarts at the measured level.
The assumption here is that in most cases two consecutive outliers of
the same sign signal a change in trend. In theory, additional improve-
ment could be obtained by restarting at the previous outlier and then
smoothing with the current measurement. However, such a procedure
would be more complicated to implement, and our studies show that
it would have negligible impact on performance.

As indicated by Huber’s studies,” and as supported by our field test
results,” adequate protection against outliers is obtained when the
thresholds are set anywhere in the range of about one or two times the

—_——— A BASE LOAD
— FORECASTED LOAD
——=— OUTLIER THRESHOLD
O OUTLIER
O SMOOTHED-BASE LOAD

TRUNK GROUP FIRST-ROUTE LOAD

| | ] ] |
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Fig. 6—Response to outliers (sign repeated).

SEQUENTIAL PROJECTION ALGORITHM 21



rms observed forecast error. This result is important: we show that it
allows us to use thresholds which are independent of the number of
data points processed and the type of measurement system. Numerical
values for these thresholds are provided in Section V.

2.4 Smoothing

The possibly adjusted base and forecasted loads are combined to
produce a smoothed base load and a smoothed growth increment. As
indicated in Fig. 1, the smoothed base load is a weighted average of
the base and 1-year forecasted loads. Similarly, the smoothed growth
increment is a weighted average of the measured and forecasted growth
increments. Procedures for selecting the appropriate gains a, and S
are described in Section IV.

2.5 Projection

As indicated in Fig. 1, the smoothed base load and growth increment
are combined to establish a linear projection. That is, the projected
load for the kth future year is obtained by adding % smoothed growth
increments to the smoothed base load. In practice, the resulting trunk
group load forecasts can be adjusted to include user supplied estimates
of the impact of deterministic events (caused by, for example, proposed
tariff changes) or to agree with other aggregate load forecasts.

ll. MATHEMATICAL MODEL
3.1 General

Although spa is based on a linear two-state, i.e., trunk group load
and incremental growth, Kalman filter, we considered more complex
models with additional state variables, e.g., aggregations of other trunk
group loads and growth factors. Therefore, for completeness, we first
summarize the equations which define the general discrete-time linear
Kalman filter. For a more complete discussion, see Ref. 7.

The true time-behavior of the state variables is assumed to be
defined by the linear transition equation

Xn1= Mn + W, + Un, (1)

where X, is an s-vector of true state variables in period (year) n, ¢ is
an s X s transition matrix which may depend on r, W, is an s-vector
of zero-mean random modelling errors, and U, is an s-vector of

deterministic changes in state.
The one-period-ahead projection formula is

Xn+1,n = Mu.n + Um (2)

where X, +2, denotes an estimate of X.+x based on data through period
n. The “smoothed” estimate X, . is calculated by
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-Xu,n = Xn,nvl + Kn(__)’n - Iﬂn,n—]), (3)

where K, is a d X s “Kalman gain” matrix and y,. is a d-vector of
measurements in period n related to X, by

Yn=HX, + V,, (4)

where H is a d X s matrix and V,, is a d-vector of zero-mean measure-
ment errors.

The optimal gain matrix K, is determined recursively by the equa-
tions

K,=P,H"(HP,H" + R)™! (5)
S, = (I - K,H)P,, (6)

and
Poi=0S0" + Q, )

where R is the covariance matrix of measurement errors, i.e.,, R =
E(V.VT), @ is the covariance matrix of modelling errors, and S; is an
estimate of the covariance matrix of the initial state estimate Xoo.
Furthermore, it is assumed that V; and W, have zero mean and
are pairwise uncorrelated among themselves and with each other for
all 4, .

As discussed in Section I, we will be concerned with filter perform-
ance for nonoptimal gains. In this case, the covariance matrix P, of
the projection error (X,+1,» — X»+1) is related to the covariance matrix
S, of X.. by eq. (7), but S, is related to P, by

S, = (I - K,H)P.(I - K,.H)" + K,RK?, 8
which reduces to eq. (6) only when K, is given by eq. (5).

3.2 Two-state model

As noted in Section I, we considered models with as many as s = 8
state variables and d = 4 measurement variables. However, our studies’
showed that none performed consistently or significantly better than
the simple two-state, one-data variable model defined by the equations

Xn+1 | _ 1 1 Xn Wn
TR A .

Yn = Xn + Un, (10)

and

where x, and x, are, respectively, the true load and true incremental
growth in year n, and y, is the measured load in year n. These
equations correspond to egs. (1) and (4) with
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11

H=[1,0]. (12)

The more complex models were rejected since the additional vari-
ables that we considered, e.g., aggregations of other trunk group loads
and growth factors, are usually not highly correlated with trunk group
load. Moreover, when the correlation is high the improvement in
performance is minimal and, more importantly, when high correlation
is incorrectly assumed, the penalties outweigh the expected benefits.'

To complete the description of our two-state model, note that the
smoothing eq. (3) becomes

Xon = [’f""‘] = [""v"-l + anlyn = ""’"“)], (13)

and

jn,n—l + Bn(yn - xn.n-l)

where a, and B, are the Kalman gains in year n. The 1-year-ahead
projection formula is

11 Xn,n
Xn+1.n = [0 1] [iﬂ.n}. (14)

Note: Our analysis of the two-state model will ignore the possibility of
deterministic changes in state; that is, we assume U, = 0. Also, by
combining egs. (13) and (14) it follows that eq. (13) may be written in

the form
Xnn | _ (1 - an)xn.n—l + CnYn
[i"‘"j| - [(1 - Bn)in.n‘l + ﬁn(yn - xn-l,,,_l)]’ (15)

which emphasizes that x,, is a weighted average of the forecasted and
measured levels and, similarly, x.. is a weighted average of the
forecasted and measured increments.

Finally, note that R = o°, where o is the standard deviation of load
measurement error; the dependence of o on load size and type of
measurement system is discussed in Section 4.2.2. In the following
section, we define the spa initialization procedure and in Section 3.4
we describe our procedure for selecting values for the filter gains ax
and B, and the associated assumptions about @.

3.3 Initialization

As explained in Section 2.1, the smoothed-base load and growth
increment in the first year of operation are given by

Xoo = Yo (16)
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and
Xo0 = £Yo, (17)

where £ is an aggregate growth factor. For example, if & = 0.1, the
increment is 10 percent of the base load.

The normalized covariance matrix So/o” = (s;;/0”) of the initial state
estimate is given by

s11(0) - E(xo— ,)’0)2 _

o.2 02 1’ (18)
522(0) _ E(gxo — £y0)*
02 02
_E[(g—8)xo+ &(xo— y)]°
- z
2.2
T (19)

where g is the true growth factor and o, is the standard deviation of
the estimate g, and
512(0) _ E[(x0 — yo)(gx0 — £y0)]

= )

o’ o

_ E{(xo — yo)[(& — &)xo0 + &(x0 — )]}

0,2

=g (20)

3.4 Filter parameters

As discussed in Section I, our objective is to select robust values for
the gains «, and B.; that is, values which will provide improved
performance over the range of operating conditions. Our approach to
this problem starts with the following idealistic assumption, which will
be relaxed in a later section:

We first assume that the true load displays constant incremental
growth. That is, we first assume that @, the covariance matrix of
modelling errors, is identically zero. Under this assumption, it follows
from eqs. (5) to (7) that the optimal gains depend only on the ratio
So/c”. In turn, for a given value of g, it follows from eqgs. (18) to (20)
that Sy/0” is determined by the ratio

2

2 __ Te
G __(G/xo)z' (21)

In Section 4.2, we display the optimal gains and corresponding
performance (as measured by mean square forecast error) for various
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known values of G. More importantly, we show that an erroneously
assumed value for G can lead to a performance worse than that of the
conventional projection method; equivalently, since the conventional
method is used to initialize spA, the mean square forecast error can
increase with the number of data points processed.

Next, in Section 4.2.3, we show that the gains corresponding to one
particular value of G provide a performance that is nearly independent
of the actual value of G. We call these gains the “robust gains for linear
growth.”

Finally, in Section 4.3, we relax the assumption of linear growth and
show that certain constant gains, derived from the “robust gains for
linear growth,” provide improved performance in the presence of
system noise, as well as the ideal case where the trend remains
constant.

IV. NUMERICAL RESULTS
4.1 Examples

To help explain our results, we first consider several examples which
show how the gains and the mean-square forecast error depend upon
the ratio G. In these examples, we assume that the true load has
constant incremental growth, and we assume two-point distributions
for measurement and growth estimation errors. That is, the measured
load is either high or low by equal amounts and with equal probability,
and the initial estimate of incremental growth is either high or low by
equal amounts and with equal probability. Moreover, in each example
we assume that the aggregate growth factor £ is zero.

A MEASURED LOAD
——= FORECASTED LOAD
=== TRUE LOAD

LOAD
\

YEAR

Fig. 7—Optimal filter: no measurement error (G = ®).
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4.1.1 No measurement error (G = x)

In the example illustrated in Fig. 7, we assume no measurement
error, i.e., 62 = 0, but an error of plus or minus one unit in the initial
increment so that G = . Thus, with this information, the true load
lies along the dashed line marked A with probability 0.5 or along the
dashed line B with probability 0.5. Accordingly, the initial mean square
forecast error is 0.5(1)? + 0.5(—1)% = 1.

As shown in Fig. 7, the possible measurements in year 1 are M; or
M; with equal probability. However, since there is no measurement
error and since two points determine a straight line, it is clear that in
either case the forecast error can be reduced to zero after processing
the second measurement; examination of eq. (13) shows that the
appropriate gains are ey = f§; = 1.

4.1.2 No growth error (G = 0)

At the other extreme, suppose there is no error in the initial growth
estimate, i.e., 07 = 0, but an error of plus or minus one unit in the
measured load so that G = 0. As shown in Fig. 8, the trend line is
either A or B with equal probability; hence, the initial mean square
forecast error is 1. The possible measurements in year 1 are M; with
probability 0.25 [since A and a high measurement occur with proba-
bility (0.5)(0.5)], M. with probability 0.5, and Ms with probability 0.25.

Since M; and Mj; correspond uniquely to A and B, respectively, the
forecast error can be reduced to zero after processing either of these
measurements; eq. (13) and Fig. 8 show that the appropriate gains are
a; = 0.5 and 8, = 0. However, if M: occurs, no new information is
obtained. Consequently, after processing the second data point, the

A MEASURED LOAD
—— FORECASTED LOAD
=== TRUE LOAD
oM
_____ e ——
a — A
3
p} My
zr——————uth——————b
—_—— —— -——=8
A M3
1 1
0 1 2 3

YEAR

Fig. 8—Optimal filter: no growth error (G = 0).
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—=—— TRUE LOAD

| |
0 1 2 3

YEAR

Fig. 9—Optimal filter: equal measurement and growth errors (G=1).

mean square forecast error is 0.5(0)* + 0.5(1)*> = 0.5. Thus, the rms
forecast error is reduced by a factor of 1/ V2.

4.1.3 Equal measurement and growth errors (G = 1)

For values of G between the above extremes, i.e., 0 < G < o, the
reductions in forecast error might be expected to fall between those
corresponding to the extreme values of G. But, this is not generally
true.

For example, consider the case illustrated in Fig. 9 in which G = 1.0.
We assume uncorrelated errors of plus or minus one unit in the
measured load and in the initial increment. Thus, as shown in Fig. 9,
the possible trend lines are A, B, C, or D, each with equal probability.
Consequently, the initial mean square forecast error is 0.25(2)* +
0.5(0)* + 0.25(—2)* = 2.

In year 1 the possible measurements are M, with probability
[0.25(0.5) = 0.125], M, with probability 0.375 (since M> may correspond
to A, B, or C), M; with probability 0.375, and M, with probability 0.125.

If M, occurs, the trend line must be A and the forecast error could
be reduced to zero by setting a; = % and p: = '5. Similarly, if M occurs
the trend line must be D; again «; = % and B; = ' are appropriate.

If M, occurs, the trend line is either A, B, or C with equal probability.
Since B is halfway between A and C in year 2, it follows that the mean
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square forecast error is minimized by forecasting the level of B in year
2; this result is obtained with «; = % and B8; = %. Similarly, if M;
occurs, the forecast with these gains is on C in year 2, and the forecast
error is minimized.

Thus, the optimal gains are a; = %, 81 = % and, after processing the
second data point, the mean square forecast error is 0.5(0) + 0.25(2)*
+ 0.25(—2)? = 2, which is identical to the initial value. Thus, for this
example there is no reduction in forecast error after processing the
second data point.

4.1.4 G unknown

The above examples assumed that G was known exactly. Suppose
now, however, that the gains are chosen under the assumption that
G = o, ie, ay = B = 1, but in fact G = 0. In this case, which is
illustrated in Fig. 10, the mean square forecast error in year 2 is 0.25(3)?
+ 0.25(1)* + 0.25(—1)* + 0.25(—3)* = 5, which is five times the initial
value.

This result, although exaggerated, is important because it shows
that spa could actually perform worse than the conventional forecast-
ing procedure. Indeed, this fact, combined with the practical impossi-
bility of estimating G without error, is the major consideration in our
decision to use the robust version of spA described in Sections 4.2.3
and 4.3.2.

M'l
————————————— A
0,
(=]
<t
g - —_— B
M3
A MEASURED LOAD
—— FORECASTED LOAD
===— TRUE LOAD
1 |
1] 1 2 3

YEAR

Fig. 10—Nonoptimal filter: assumed G = o, actual G = 0.
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4.2 Linear growth
4.2.1 G known

The results of this section apply when the true load has constant
incremental growth and when the ratio G, eq. (21), is known exactly.

Figure 11 displays the normalized rms 1-year forecast error as a
function of the number of data points processed after initialization.
The normalization is with respect to the rms forecast error of the
conventional projection method. Since this method is used to initialize
SPA, the initial normalized rms error equals 1.0. Each curve corresponds
to a different value of G and, accordingly, to a different set of gains
an and B.. For example, the gains corresponding to three different
values of G are shown in Fig. 12.

The results shown in Fig. 11 assume that the true load displays
constant incremental growth; under this assumption, the forecast error
approaches zero as n increases. In practice, however, unexpected
changes in trend will occur and, consequently, as described in Section
2.3, spA will occasionally be reinitialized. Accordingly, average forecast
error over the interval between reinitializations is a more meaningful
figure of merit. In the following paragraphs, we assume an average
interval of five years. We emphasize, however, that this assumption
will underestimate the benefits of sPA under more stable conditions
and overestimate the benefits under less stable conditions.

1.0

0.8
G

(Gyeq>6Gy)

06—

04—

NORMALIZED rms FORECAST ERROR

0.2 —

1 2 3 4 5 6 7 8 9 10
YEAR (n)

Fig. 11—Optimal filter: forecast error vs. year.
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YEAR (n)

Fig. 12—Optimal gains vs. year.

Thus, the curve labeled optimal in Fig. 13 displays the normalized
5-year average forecast error—the average of the first five values in
Fig. 11—as a function of the parameter G. If, for example, G = G- and
we choose the gains accordingly, the average rms error would be about
20 percent less than that for the conventional forecasting method.
Alternatively, if G = Gs, we would choose a different set of gains and
the average reduction would be approximately 15 percent. Note as
suggested by the examples discussed above, that the reduction in
forecast error is a convex function of G.

4.2.2 G unknown

Suppose now that the actual value of G differs from the assumed
value. For example, suppose we use the gains corresponding to G = G,
but in fact G = Gi. In this case, the curve labeled G = G: in Fig. 13
shows that the 5-year average rms error would be about 20 percent
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Fig. 13—Average rms forecast error for several filters.

larger than its initial value, in agreement with the example discussed
in Section 4.1.4.

The results of Fig. 13 can also be interpreted as follows: Suppose
that G = Gy is appropriate when trunk group loads are derived from
trunk group data. Then G = Gz = G4/3 would be appropriate when
loads are derived from point-to-point (cMDs) data since, from Fig. 2,
the rms measurement error for cMDs data is approximately three times
that for trunk group data. Figure 13 then shows that an sPA tuned for
point-to-point data would perform poorly with trunk group data.

The results shown in Fig. 13 might suggest that we should use
different gains for different applications. We considered this approach
but found it to have two practical problems.

First, as shown in Fig. 2, measurement error depends not only upon
the type of data but also upon load size. And, although we could allow
the gains to be a function of load size and data type, multiple versions
of spA would be relatively more difficult to implement and maintain.

Second, and more important, in practice it will not be possible to
determine the exact value of G. For, in general, actual loads will not
display constant incremental growth, but may exhibit random fluctu-
ations about a trend line. In this case, the model described in Section
III is still appropriate if x, denotes the trend level, instead of the true
load. However, o® now consists of two components: one because of the
difference between the measured and true loads and the other because
of the difference between the true load and the trend line. Although
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Ref. 2 quantifies the first component, we have no way a priori to assess
the contribution of the second component. Thus, our assumed value
for o” may differ from the actual value.

Similarly, since we cannot determine a priori the difference between
our estimate of the aggregate and individual trunk group load growth
rates, our estimate of o, eq. (19), will, in general, differ from the actual
value.

Consequently, the assumed value of G will in general also differ from
the actual value. Accordingly, to guard against the consequences of an
error in our estimate of G, we would like to employ an algorithm which
performs well under a variety of possible operating conditions.

4.2.3 Robust gains for linear growth

Fortunately, there exists a robust set of gains which provides the
same average performance independent of the true value of G. That is,
as shown by the curve labeled “robust” in Fig. 13, if we use the gains
corresponding to G = G; (see Fig. 12) then the 5-year average rms
error will be about 10 percent less than that of the conventional
projection method—independent of the actual value of G.

Of course, as with any robust technique, Fig. 13 shows that we pay
a premium by receiving less than the theoretically optimal perform-
ance for protection against the possibility of a performance substan-
tially worse than that of the conventional projection method. However,
we used the data from our field test® to estimate, a posteriori, the value

NORMALIZED rms FORECAST ERROR

0.3 I | L ] 1 |

YEAR (n)

Fig. 14—Robust filter (variable gains): rms forecast error vs. year.
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of G. Remarkably, the observed value was G = Gs. Thus, at least for
this one case, our robust filter was in fact nearly optimal.

Although the robust gains yield an average performance which is
independent of G, Fig. 14 shows that the actual performance in each
year is not independent of G. For example, if G = Gs the rms error of
SPA increases above that of the conventional method by about 10
percent in year 2, but is decreased by about 35 percent in year 5. Thus,
during the first couple of years after initialization, SPA may perform
slightly worse than the conventional method for some trunk groups.
Thereafter, spa will perform better, provided that the trend remains
constant.

4.3 Robust, constant gains for SPA

4.3.1 Response to unexpected changes in trend

With the “robust gains for linear growth,” spa is robust to measure-
ment and initial growth estimation errors. For practical applications,
however, it is equally important that spa also be made robust to
deviations from linear growth.

E(W2) =E(W3)

0102

0.0502
0.0107?

YEAR (n)

Fig. 15—Optimal gains with modelling error.
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That is, the results of Section 4.2.3 assume that the trend line
displays constant incremental growth. Under this assumption, since
the forecast error approaches zero, the gains a, and 8, approach zero
as n increases. Accordingly, as discussed in Section 2.3, sPA would
eventually respond to unexpected changes in the level or slope of the
trend only when their cumulative effect produced two consecutive
outliers of the same sign.

4.3.2 Constant gains

At the expense of receiving less than the theoretically optimal
performance in the ideal case where the trend remains constant, we
can decrease SPA’s response time to unexpected changes in trend by
not allowing the gains a,, and S, to approach zero. As discussed in Ref.
7, one approach to selecting limiting values for a, and . is to add
zero-mean, uncorrelated random variables (w, and ;) to the descrip-
tion of the true load in eq. (9). That is, we assume that the covariance
matrix @ of modelling errors is nonzero. These modelling error terms
lead to gains a, and B8, which approach nonzero constants that depend
upon the mean square value of these error terms. For example, Fig. 15
shows the optimal gains corresponding to G = G; for several values of
E(w?) and E (w3).

Although theoretically appealing, the above approach leaves the
practical problem of determining appropriate values for E(w}) and
E (12). Values could be gleaned from a large amount of historical data,

1.2
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Fig. 16—Robust filter (constant gains): rms forecast error vs. year.
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which we do not have, but there is no guarantee that they would be
appropriate for the future.

Therefore, instead of pursuing the above approach, we simply re-
placed the variable gains corresponding to G = G in Fig. 12 by the
average of the first few terms and made the following observations:
First, as shown in Fig. 16, the performance in the ideal case where the
trend remains constant is nearly identical for the first six years after
initialization to that for the robust gains for linear growth. Thereafter,
the performance is somewhat poorer, but we anticipate that only a
small fraction of groups will remain on a constant linear trend beyond
6 years. Second, as illustrated in Fig. 17, when the true load displays
random deviations from a linear trend, i.e., when w,, w. are nonzero,
the constant gains perform better than those designed for linear
growth. Thus, although the performance is somewhat degraded in the
ideal case, the use of constant gains provides protection against the
very real possibility of unexpected changes in trend. For comparison,
Fig. 17 also displays the performance with gains obtained by truncating
the robust gains for linear growth in year 6. As indicated, performance
is somewhat better in the ideal case, but worse when modelling errors
are present. Since we do not have sufficient historical data to estimate
the level of modelling errors, we are, therefore, recommending the use
of the constant gains.

E(WR)=EW]) 4

-

YEAR (n)

Fig. 17—Forecast error with modelling error.
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Fig. 18—Root-mean-square observed forecast error vs. load: outlier thresholds.

V. OUTLIER THRESHOLDS

As discussed in Section 2.3, Huber’s studies® show that the outlier
thresholds may be set anywhere in the range of one to two times the
rms observed forecast error. In theory, the observed forecast error
depends upon the number of data points processed after initialization;
however, since the average rms forecast error decreases by only about
10 percent and since performance is not sensitive to the precise setting
of the thresholds, we will set them based upon the initial value of the
rms observed forecast error; that is, by

p* = E(x10 — y1)~ (22)
Since x:10 = (1 + £)yo and x; = (1 + g)xo, it follows that
p* = E[(y0— x0) + (¥o = X)) & + x(& — &) — (y1 — x1)]*
=20%(1 + & + £°/2) + sioy, (23)
or, since |g| <« 1,
p® = xjol + 20°. (24)

To establish numerical values for p, we use the theoretical expres-
sions for mean square measurement error given in Ref. 2:

9 1 [2x0h
=— +
=35 > Val, (25)

where h is the mean call-holding-time in hours, p is the sampling rate
(for trunk group data, p = 1.0; for cMDs data, p = 0.05), and

Vi = max(0, 0.13x5 — 2xo0h) (26)
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is the variance of the daily source loads. For first-routed loads, ¢ = 1.5
is usually appropriate.

Figure 18 displays p as a function of the load xo for both trunk group
data (p = 1.0) and cMDs data (p = 0.05). In each case, we assume
g, = 0.06, which is the value observed during our field test,’ and A =
A2,

Based upon the results of Fig. 18 and Huber’s studies,’ it follows
that outlier thresholds set at two times the value of p for trunk group
data should provide adequate performance for both trunk group and
cMDs data. That is, this setting places the thresholds within the
allowed range of about one to two times the actual value of p for both
trunk group and cMDS data.

VI. CONCLUSIONS

The spa employs a linear two-state Kalman filter, together with
logic for detecting and responding to outlier measurements. The pa-
rameters of spA have been selected to provide improved performance
over the range of operating conditions, including the use of either
trunk group or point-to-point traffic measurements.

Under the assumption of linear growth for 5-year intervals, the
average rms 1-year forecast of spA is about 10 percent less than that
of the forecasting methods currently in use in the Bell System. More-
over, the filter parameters and outlier procedures have been designed
so that spa will respond to changes in trend.

Field test results confirm the theoretical results presented here.
Accordingly, specifications have been written for the inclusion of sPA
in the Bell System’s standard mechanized trunk forecasting systems.
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